
Seminar on 
Dependently Typed

Programming
Wouter Swierstra

23-04-13

1



What are 
dependent types?

2



Google

3



4



Wikipedia

5



6



7



In computer science and 
logic, a dependent 
type is a type that 
depends on a value.

8



Polymorphism

 id :: forall a, a -> a 
 id x = x

• Polymorphism allows abstraction over types:

Dependent types facilitate polymorphism:

 id :: (a :: *) -> a -> a 
 id _ x = x

...but also enable abstraction over data.

9



Can you see a pattern?

• From Data.Word

• What about UTF8, UTF16, UTF32?

10



What could 
possibly go wrong?

11



GADTs

 data Z = Z
 data S k = S k

 data Vec n a where
   Nil  :: Vec Z a
   Cons :: a -> Vec a k -> Vec a (S k)

 vhead :: Vec (S k) a -> a

12



GADTs

 data Z = Z
 data S k = S k

 data Vec n a where
   Nil  :: Vec Z a
   Cons :: a -> Vec a k -> Vec a (S k)

 vhead :: Vec (S k) a -> a

What about append?

12



GADTs

• This pattern is very, very common.

• Red black trees

• Well-scoped lambda terms

• Parsers and lexers

• ...

Precise Programming

13



Curry-Howard 
Isomorphism

• Dependent types provide a mathematical 
framework for doing formal proofs.

• At the heart of proof assistants like Coq.

• You can program and prove properties of 
your programs in the same system.

Lemma revLemma 
  (a : Type) (xs : list a) :
  reverse (reverse xs) = xs.

14



Why should I care 
about dependent types?

15



15



16



More abstraction.

16



DTP Seminar

• The seminar will run from week 17–26.

• We will convene twice a week:

• Tuesday 13:15–15:00

• Thursday 09:00–10:45.

• You can earn 7.5 ECTCS.

• Watch the website for updates.

17



What will you learn?

• What are dependent types?

• What is the Curry Howard isomorphism?

• How can we use dependent types to verify 
software? Or write more precise code?

• How to use both Coq and Agda.

• What research is done in this area?

18



Course outline - I

• In the first week, I want to cover two 
papers:

• Constructive mathematics and computer 
programming;

• A tutorial implementation of a 
dependently typed lambda calculus;

• You should have some understanding of type 
theory when we complete these.

19



Course outline - II

• Next, I want to study (the first chapters of) 
the Software Foundations course. You will 
learn the basics of the Coq proof assistant:

• how to write functional programs in Coq;

• how to write specifications in Coq;

• how to prove a program meets its spec in 
Coq.

20



Course outline - III

• In the last part of the lectures, I want to 
cover the programming language Agda.

• how to design indexed data types capturing 
invariants in your code;

• how to program using these types, 
exploiting dependent pattern matching.

21



Course outline – IV

• You will teach the last part of the course.

• In the last weeks of the course, each student 
must present a research paper or more 
advanced topic.

22



Grading

• Your grade will depend on four factors:

• Presentation of research paper 30%

• ‘Weekly’ individual exercises 30%

• Formalization project & report 30%

• Participation in seminar 10%

23



Presentations

• I’ve put up a list of suggested papers.

• Please have a look after this session and 
start thinking about your choice.

• The sooner you choose, the more time you 
have to prepare.

• I’m open to suggestions!

24



Projects

• I would like everyone to (try to) verify a 
non-trivial functional program using Coq;

• Work in pairs.

25



Verification in Coq

• Verification is hard.

• You may not completely finish.

• But you need to try.

• I’ve suggested a few topics from Richard 
Bird’s Pearls of Functional Algorithm design.

26



Report

• I’d like to see a final report about your 
project.

• What problem did you work on?

• What was the spec? 

• What did you finish? What remains to be 
done?

• Sources will be pooled in a github repository

27



Questions?

28



A tutorial 
implementation

• Paper available on the wiki;

• Source code available from: 

www.andres-loeh.de/LambdaPi/

29

http://www.andres-loeh.de/LambdaPi/
http://www.andres-loeh.de/LambdaPi/


Let’s start with the 
simply typed lambda 

calculus

30



Simply typed 
lambda calculus

• Variables

• Application

• Lambda abstraction

M ::= x | (MM) | λx.M

31



Goal

Explain dependently typed lambda calculus by 
presenting a ‘simple’ implementation in 
Haskell.

32



What now?

• Implement the simply typed lambda calculus.

• Modify our implementation to deal with 
dependent types.

• Add data types to our mini language.

33



Implementing the simply 
typed lambda calculus

• Terms and values

• Types

• Substitution

• Evaluation

• Type checking

34



Term – examples

λx.x

λy.λx.y

λf.λx.fx

the identity function

constant functions

application

35



Terms – specification

M ::= x | (MM) | λx.M

36



Sticky implementation 
details

• How do we treat variables?

• Are bound variables the same as free 
variables?

• If we do type checking, where should we 
have type annotations?

37



De Bruijn indices

• We use de Bruijn indices to represent 
bound variables.

• “The variable k is bound k lambdas up”

• Examples:

λx.x

λx.λy.x

λ.0

λ.λ.1

38



Locally nameless

• We use de Bruijn indices to represent 
bound variables.

• Variables that are not bound, i.e. free 
variables, will also be represented by a 
number.

• Our implementation is careful to distinguish 
between when a variable is free or bound.

39



Type annotations

• We distinguish between checkable and  
inferable terms.

• The checkable terms need a type annotation 
to type check.

• The inferable terms require no such 
annotation.

40



Terms
 data InferTerm
  = Check CheckTerm Type -- annotation
  | Var Int         -- bound variables
  | Par Int         -- free variables
  | App InferTerm CheckTerm
! ! ! ! ! ! ! ! ! ! -- application

 data CheckTerm
  = Infer InferTerm
  | Lam CheckTerm -- lambda abstraction
  

41



Values – specification

• We want to evaluate lambda terms to their 
normal form.

• A value is a fully evaluated lambda 
expression.

v ::= λx.v | x v

λx.x

x(λy.yz)
Examples:

42



Evaluation – 
specification

x ⇓ x
e ⇓ v

λx.e ⇓ λx.v

e1 ⇓ λx.v1 e2 ⇓ v2

e1 e2 ⇓ v1[x "→ v2]

43



How would you 
implement an evaluator?

44



Evaluation – 
implementation

• We will keep track of an environment 
containing a list of values for the variables 
that we have encountered so far.

45



Evaluation – examples

Evaluation turns a term into a value.

(λx.x)z ⇓ z

(λx.λy.x)(λz.z) ⇓ λy.λz.z

46



Values – implementation

 
 data Value
   = VApp Int [Value]  
   | VLam (Value -> Value)

47



Evaluation – 
specification

x ⇓ x
e ⇓ v

λx.e ⇓ λx.v

e1 ⇓ λx.v1 e2 ⇓ v2

e1 e2 ⇓ v1[x "→ v2]

48



Evaluation

• We need to write cases for:

• Bound variables;

• Free variables;

• Application;

• Lambdas.

49



Evaluation – 
implementation

 type Env = [Value]

 evalInfer :: InferTerm -> Env -> Value
 evalInfer (Par x) env = VApp x []!
 evalInfer (Var i) env = env !! i
 evalInfer (App f x) env =
  app (evalInfer f env) (evalInfer x env)

 app :: Value -> Value -> Value
 app (VLam f) x = f x
 app (VApp x vs) v = VApp x (vs ++ [v])

50



Evaluation (continued)

 
 evalCheck :: CheckTerm -> Env -> Value
 evalCheck (Lam f) env = 
   VLam (\v -> eval f (v : env))

51



Type checking

52



Types – implementation

 data Type
   = TPar Int       -- sigma, tau, etc.
   | Fun Type Type  -- sigma -> tau

53



Type checking – 
examples

λx : σ.x : σ → σ

λx : σλy : τ.x : σ → τ → σ

54



Type checking - 
specification

x : σ ∈ Γ

Γ " x : σ

Γ, x : σ " t : τ

Γ " λx.t : σ → τ

Γ " f : σ → τ Γ " x : σ

Γ " fx : τ

55



Type checking

 
 type Context = [(Name,Type)]

 inferType :: Int -> Context 
   -> InferTerm -> Maybe Type

 checkType :: Int -> Context -> Type
   -> CheckTerm -> Maybe ()

56



A few interesting cases
 inferType i g (Par x) = lookup x g

 inferType i g (App f x) = do
   Fun d r <- inferType i g f
   checkType i g d x
   return r

 checkType i g (Fun d r) (Lam t) = do
   checkType (i + 1) ((i,d):g) r
      (subst 0 (Par i) t)
   

57



Things to notice

• When type checking a lambda term, we 
assume that we have a function type.

• There is no case for bound variables, when 
we go under a lambda the bound variable is 
“freed”.

58



What about 
dependent types?

59



Curry-Howard 
isomorphism

60



Haskell types

• Consider the “language” of Haskell types:

• forall a . a -> a
• forall a b . a -> b -> a 

• ...

61



Propositional logic

• Consider the language of first-order 
propositional logic:

• p ! p
• p ! q ! p
• ...
• See the similarity?

62



What about type rules?

Γ, x : σ ! t : τ

Γ ! λx.t : σ → τ

Γ ! t1 : σ → τ Γ ! t2 : σ

Γ ! t1t2 : τ

63



What about type rules?

63



Simple observation

• A type looks just like a propositional 
formula;

• Type rules look just like logical inference 
rules;

• A program “encodes” a proof derivation.

64



The correspondence
• functions

• pairs

• either

• application

• abstraction

• quantification?

• implication

• conjunction

• disjunction

• modus ponens

• implication introduction

• ...

65



What goes wrong?

• So why don’t we use Haskell as a (first-
order) proof assistant?

• The type forall a . a corresponds to 
False;

• In any sensible proof system, False should 
not be true;

• Yet in Haskell we have              
undefined :: forall a . a

66



Totality

• If you take this idea seriously, you need to 
care about when functions are total;

• Haskell cares about purity (when does a 
function have side-effects);

• Coq and Agda care about totality (when is 
a function guaranteed to compute an answer 
in finite time).

67



Consequence

• To make sure their type system corresponds 
to a sound logic, Coq and Agda place some 
restrictions on the programs you may write:

• no missing case branches, head []

• no general recursion (iterate, 
repeat), only folds over finite data.

68



When are 
two types ‘the same’?

• Syntactic equality 

• Unifiable

• What about these two types?

• Vec 4 Int
• Vec (2+2) Int

69



The conversion rule

Γ ! t : σ σ "β τ

Γ ! t : τ

Type checking needs to perform evaluation!

70



Next time

• Read Per Martin-Löf’s Constructive 
mathematics and computer programming.

71


