What is it

Why is it usefu

Coquet: A Coq library for verifying hardware

Jo3o Paulo Pizani Flor

Department of Information and Computing Sciences, Utrecht University
A half-adder

June 13th, 2013

Universiteit Utrecht

1



Table of Contents

Intro
What is it
Why is it useful

Technical overview

Diving into Coquet
Interfaces
Circuit type

Semantics

Applied example
A half-adder

Conclusions

s
Ak§

A
U

What is it

Why is it usefu

A half-adder

Universiteit Utrecht

2



Section 1

Intro

s it

Why is it usefu

Interfaces
Circuit

Semantics

A half-adder

%
w>

Universiteit Utrecht

/A
|



What is Coquet

What is it

A Coq library for hardware specification and verification.

A%
W

Universiteit Utrecht

/A
|

4



What is Coquet

What is it
A Coq library for hardware specification and verification.

Library Datatypes, typeclasses, instances, combinators,
proofs, etc.
Deep-embedded Circuit datatype, structurally defined.
Dependently-typed The circuit AST is fully-typed.

Provably correct Circuits can be proven to realize a
specification.

W,
N

¢ Universiteit Utrecht

/A
|

&
%

4



Why is Coquet useful

Why is it useful

» Coq is more expressive than other theorem provers (HOL,
ACL2, etc.).

» Dependent types help catch common errors soon in the
design process.
» Deep-embedding brings interesting possibilities:

e Functions that transform circuits (can be proven correct).
e Simulating and synthesizing circuits (netlists).

N
- 2
% & % Universiteit Utrecht

KN}

5



What is it
Why is it usefu

|
Technical

SeCtio n 2 overview

Interfaces

Technical overview e
Semantics

A half-adder

>

& = Universiteit Utrecht

6



Circuit interface

» The interface of a circuit is the set of its input and output
ports.

Technical
overview

» Modeled in Coquet as parameters of the circuit datatype.
example : Circuit nm

W,
N

¢ Universiteit Utrecht

/A
|

&
%

7



Circuit interface

Technical
overview

» The interface of a circuit is the set of its input and output
ports.
» Modeled in Coquet as parameters of the circuit datatype.

example : Circuit nm

» The parameters n and m can be of any finite type

* More details on these finite types later. ..

e For example, disjoint sums of “units”:

nBitAdd : Circuit (U :+: sumn Un :+: sumn U n)
(sumn U n :+: U)

¢ Universiteit Utrecht

%,
N

/A
|

&
K/

7



Defining circuits with combinators

Circuits are modeled hierarchically with combinators, closely

mimicking the “pen-and-paper” approach.

Technical
overview

A%
W

Universiteit Utrecht

/A
|

8



Defining circuits with combinators

Circuits are modeled hierarchically with combinators, closely
mimicking the “pen-and-paper” approach. Technical
Circuits are built using: cveren

» Any of a set of fundamental components, user-defined.
» Serial composition.

» Parallel composition.

» Re-arranging and re-ordering of ports, done by plugs.
» Loop combinator, to create feedback loops.

Again, more details soon. ..

N
- 2
% & % Universiteit Utrecht

KN}

8



Re-arranging wires with plugs

As the combinators connect the circuits in a “nameless” Technical
overview
fashion, we need rewiring circuits, called plugs

» The type of a plug that duplicates its input COULD be:
dup : Circuit U (U :+: U)

» To construct a plug, we need a function mapping outputs
to inputs. More details later.

%
N

¢ Universiteit Utrecht

/A
|

&
U

9



Circuit semantics

Until now, we have only dealt with the syntax (the structure) of

Clrcuits. Technical
) . ) ) ) overview
» The meaning or semantics of a circuit (x : C n m)is
defined as a relation between its inputs and outputs,
where:

e inputs is a function of type (n — T).
e outputs has type (m — T).
e T is the type of what is carried in the wires.

» The relation is defined inductively on x, and denoted as
follows: x 7 ins > outs.

&y Gtrech
= = niversiteit Utrecht
s

10



What is it
Why is it useful

Section 3

Diving into
Coquet

Diving into Coquet neraces

Circuit type

Semantics

A half-adder

s

\[/

& = Universiteit Utrecht

11



Tagged unit types

Remember that Coquet uses arbitrary finite types for the inputs
and outputs of a circuit.

» One way to build a finite type is by summing some units.
» This is inconvenient and confusing at /east.

. . . . Interfaces
e To allow easily discernible input/outputs, Coquet uses tags: i
Inductive tag (t : string) : Type := _tag : tag t

e For example:

halfAdder : Circuit (_tag "inil" :+: _tag "in2")

(_tag "sum" :+: _tag "cout")

» Also, this is not the only way to have finite types. ..

%
N

/A
|

&
U

¢ Universiteit Utrecht

12



The Finite typeclass

In general, any type with an instance for the Fin typeclass can
be used as input or output in circuits.

» A typeclass in Coq has approx. the same meaning as in
Haskell.
e Predicate/relation over/among type(s).
 Instances are named and passed.
¢ May contain (of course) proofs of properties over types.

Interfaces

» The Fin typeclass looks like this:
Class Fin A := {
eq_fin : eqT A;
enum : list A;
axiom : forall (x : A), count (equal x) enum = 1

}.

» Instances for unit, tagged unit, sum, etc.
Y

= U = Universiteit Utrecht

KN}

13



The Circuit datatype

» The (dependent) type of circuits looks like:
Context {tech : Techno} What is it
Inductive Circuit : Type -> Type -> Type := iy B3 it
| Atom : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},
techno n m -> Circuit nm
| Plug : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},

(f : m -> n) -> Circuit n m Interfaces
Circuit type

| Ser : forall {nm p : Typel}, S ———
Circuit n m -> Circuit m p -> Circuit n p
| Par : forall {nm p q : Type}, A half-adder

Circuit n p -> Circuit m q -> Circuit (n :+: m) (p :+: @
| Loop : forall {n m p : Typel},
Circuit (n :+: p) (m :+: p) -> Circuit n m

» Parameterized by the type of fundamental gates:
Class Techno := techno : Type -> Type -> Type.

Universiteit Utrecht

14



Plugs, plugs, plugs. ..

As seen, a Plug requires a function from m to n.
Inductive Circuit : Type -> Type -> Type :=
| Plug : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},
(f : m > n) -> Circuit n m

» Let's examine again the circuit which duplicates its input:  circuit type
Plug (fun x => match x with
[ inl e => e
| inr e => e
end) .

» In simple enough cases (like this one), proof-search suffices.

W,
N

¢ Universiteit Utrecht

/A
|

&
%

15



Meaning relation over circuits

As already said: The semantics of a circuit is given by a relation
between its inputs and outputs, defined inductively.

» The base case involves defining instances of the Techno

class for a given set of basic gates:

Class Technology_spec (tech : Techno) T :=
spec : forall {a b : Type},
tech ab->(a->T) -> (b ->T) -> Prop

Semantics

» The meaning relation is generated using this parameter
and other rules (one for each constructor of Circuit).

%
N

¢ Universiteit Utrecht

/A
|

&
U

16



Realizing a spec, implementing a function

» The meaning relation is not a specification for a circuit.
e It is a strict and detailed definition of behaviour.
e Too detailed, in fact. ..

» Coquet relies on 2 typeclasses to let the user specify a

circuit:
Context {n m N M : Type}
(Rn : Iso (n -> T) N) (Rm : Iso (m -> T) M)
Class Realise (¢ : Circuit nm) (R : N -> M -> Prop) :=
realise : forall ins outs,
Meaning ¢ ins outs -> R (iso ins) (iso outs)

Class Implement (¢ : Circuit nm) (f : N -> M) :=
implement : forall ins outs,

Meaning ¢ ins outs -> iso outs = f (iso ins)

Semantics

» Proving the spec is done by providing instances of these
classes (proof objects).
Y

= b = Universiteit Utrecht
NS
N

17



What is it
Why is it useful

Section 4

Applied example nterfces

Circuit type

Semantics

Applied example

A half-adder

s

=0 §‘ Universiteit Utrecht

18



Case studies defined in the paper

v

Half-adder
Full 1-bit adder
Ripple-carry n-bit adder

v

v

v

Divide-and-conquer n-bit adder

v

Sequential circuits (memory elements) Applied example

Here we'll only take a peek at a half-adder. ..

¢ Universiteit Utrecht

19



Definition of a half-adder circuit

(Nice diagram on the whiteboard. . .)

Context a b s ¢ : string (* section variables *)

Definition HADD :
Circuit (_tag a :+: _tag b) (_tag s :+: _tag c)

Fork2 (_tag a :+: _tag b) |> (XOR a b s & AND a b c).

g,
W

)

What is it
Why is it usefu

Interfaces
Circuit type
Semantics

A half-adder

Universiteit Utrecht

20



Proving a half-adder circuit

» We must prove that HADD implements the function:
Definition hadd : (bool, bool) -> (bool, bool) := funm x => i i
match x with
| (a, b) => (a xor b, a /\ b)
end.
» Our claim that HADD implements hadd is written as: G
Instance HADD_Spec : Implement e
(* is0 on inputs *)
(* iso on outputs *)
HADD hadd.
Proof.

A half-adder

» Then we need to prove it (goal on whiteboard. .. ).

Universiteit Utrecht

21



What is it

Why is it useful

Section 5

COﬂClUSionS Interfaces

Circuit type

Semantics

A half-adder

Conclusions

I
w

lal
)

Universiteit Utrecht

&

22



Comparison with related works

» Circuits were already modeled in the HOL theorem prover,

but using a shallow embedding.

Conclusions

A%
W

Universiteit Utrecht

/A
|

23



Comparison with related works

» Circuits were already modeled in the HOL theorem prover,
but using a shallow embedding.

» In Coq, also only a shallow embedding had already been
attempted.

.
0%
N

&
%

Conclusions

¢ Universiteit Utrecht

23



Comparison with related works

» Circuits were already modeled in the HOL theorem prover,
but using a shallow embedding.

» In Coq, also only a shallow embedding had already been
attempted.
» In Haskell, there was Lava, in which verification is reduced
to finite-sized instances of circuits.
 In contrast, in Coq we prove the correctness of parametric
circuits, for any size of inputs.

KN}

Conclusions

Universiteit Utrecht

23



Final words

» “Programming” hardware in functional languages has lots
of advantages, and using dependently-typed languages has
even more.

Conclusions

%
N

¢ Universiteit Utrecht

/A
|

&
U

24



Final words

» “Programming” hardware in functional languages has lots
of advantages, and using dependently-typed languages has
even more.

» Proving the correctness of hardware is an awesome idea.

e Even better if you can synthesize it to an FPGA or even
ASIC.

Conclusions

&y Gtrech
= = niversiteit Utrecht
s

24



Final words

» “Programming” hardware in functional languages has lots

of advantages, and using dependently-typed languages has
even more.

» Proving the correctness of hardware is an awesome idea.
e Even better if you can synthesize it to an FPGA or even

ASIC.
» There is still some polishing to be done: .
onclusions
e Couldn’'t make the lib compile in Coq 8.4.

e There seems to be a synthesis facility, but I'm not sure. ..
e Have a “standard library” of basic circuits.

NI
S U S Universiteit Utrecht

N

24



Questions?

NN
ES % Universiteit Utrecht

= b
KN}



	Intro
	What is it
	Why is it useful

	Technical overview
	Diving into Coquet
	Interfaces
	Circuit type
	Semantics

	Applied example
	A half-adder

	Conclusions

