
Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

1

Coquet: A Coq library for verifying hardware

João Paulo Pizani Flor

Department of Information and Computing Sciences, Utrecht University

June 13th, 2013



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

2

Table of Contents

Intro
What is it
Why is it useful

Technical overview

Diving into Coquet
Interfaces
Circuit type
Semantics

Applied example
A half-adder

Conclusions



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

3

Section 1

Intro



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

4

What is Coquet

A Coq library for hardware specification and verification.

Library Datatypes, typeclasses, instances, combinators,
proofs, etc.

Deep-embedded Circuit datatype, structurally defined.

Dependently-typed The circuit AST is fully-typed.

Provably correct Circuits can be proven to realize a
specification.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

4

What is Coquet

A Coq library for hardware specification and verification.

Library Datatypes, typeclasses, instances, combinators,
proofs, etc.

Deep-embedded Circuit datatype, structurally defined.

Dependently-typed The circuit AST is fully-typed.

Provably correct Circuits can be proven to realize a
specification.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

5

Why is Coquet useful

I Coq is more expressive than other theorem provers (HOL,
ACL2, etc.).

I Dependent types help catch common errors soon in the
design process.

I Deep-embedding brings interesting possibilities:
• Functions that transform circuits (can be proven correct).
• Simulating and synthesizing circuits (netlists).



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

6

Section 2

Technical overview



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

7

Circuit interface

I The interface of a circuit is the set of its input and output
ports.

I Modeled in Coquet as parameters of the circuit datatype.
example : Circuit n m

I The parameters n and m can be of any finite type
• More details on these finite types later. . .
• For example, disjoint sums of “units”:

nBitAdd : Circuit (U :+: sumn U n :+: sumn U n)

(sumn U n :+: U)



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

7

Circuit interface

I The interface of a circuit is the set of its input and output
ports.

I Modeled in Coquet as parameters of the circuit datatype.
example : Circuit n m

I The parameters n and m can be of any finite type
• More details on these finite types later. . .
• For example, disjoint sums of “units”:

nBitAdd : Circuit (U :+: sumn U n :+: sumn U n)

(sumn U n :+: U)



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

8

Defining circuits with combinators

Circuits are modeled hierarchically with combinators, closely
mimicking the “pen-and-paper” approach.

Circuits are built using:

I Any of a set of fundamental components, user-defined.

I Serial composition.

I Parallel composition.

I Re-arranging and re-ordering of ports, done by plugs.

I Loop combinator, to create feedback loops.

Again, more details soon. . .



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

8

Defining circuits with combinators

Circuits are modeled hierarchically with combinators, closely
mimicking the “pen-and-paper” approach.
Circuits are built using:

I Any of a set of fundamental components, user-defined.

I Serial composition.

I Parallel composition.

I Re-arranging and re-ordering of ports, done by plugs.

I Loop combinator, to create feedback loops.

Again, more details soon. . .



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

9

Re-arranging wires with plugs

As the combinators connect the circuits in a “nameless”
fashion, we need rewiring circuits, called plugs

I The type of a plug that duplicates its input COULD be:
dup : Circuit U (U :+: U)

I To construct a plug, we need a function mapping outputs
to inputs. More details later.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

10

Circuit semantics

Until now, we have only dealt with the syntax (the structure) of
circuits.

I The meaning or semantics of a circuit (x : C n m) is
defined as a relation between its inputs and outputs,
where:

• inputs is a function of type (n → T).
• outputs has type (m → T).
• T is the type of what is carried in the wires.

I The relation is defined inductively on x, and denoted as
follows: x `n

m ins ./ outs.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

11

Section 3

Diving into Coquet



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

12

Tagged unit types

Remember that Coquet uses arbitrary finite types for the inputs
and outputs of a circuit.

I One way to build a finite type is by summing some units.
I This is inconvenient and confusing at least.

• To allow easily discernible input/outputs, Coquet uses tags:
Inductive tag (t : string) : Type := _tag : tag t

• For example:
halfAdder : Circuit (_tag "in1" :+: _tag "in2")

(_tag "sum" :+: _tag "cout")

I Also, this is not the only way to have finite types. . .



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

13

The Finite typeclass

In general, any type with an instance for the Fin typeclass can
be used as input or output in circuits.

I A typeclass in Coq has approx. the same meaning as in
Haskell.

• Predicate/relation over/among type(s).
• Instances are named and passed.
• May contain (of course) proofs of properties over types.

I The Fin typeclass looks like this:
Class Fin A := {

eq_fin : eqT A;

enum : list A;

axiom : forall (x : A), count (equal x) enum = 1

}.

I Instances for unit, tagged unit, sum, etc.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

14

The Circuit datatype

I The (dependent) type of circuits looks like:
Context {tech : Techno}

Inductive Circuit : Type -> Type -> Type :=

| Atom : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},

techno n m -> Circuit n m

| Plug : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},

(f : m -> n) -> Circuit n m

| Ser : forall {n m p : Type},

Circuit n m -> Circuit m p -> Circuit n p

| Par : forall {n m p q : Type},

Circuit n p -> Circuit m q -> Circuit (n :+: m) (p :+: q)

| Loop : forall {n m p : Type},

Circuit (n :+: p) (m :+: p) -> Circuit n m

I Parameterized by the type of fundamental gates:
Class Techno := techno : Type -> Type -> Type.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

15

Plugs, plugs, plugs. . .

As seen, a Plug requires a function from m to n.
Inductive Circuit : Type -> Type -> Type :=

| Plug : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},

(f : m -> n) -> Circuit n m

I Let’s examine again the circuit which duplicates its input:
Plug (fun x => match x with

| inl e => e

| inr e => e

end).

I In simple enough cases (like this one), proof-search suffices.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

16

Meaning relation over circuits

As already said: The semantics of a circuit is given by a relation
between its inputs and outputs, defined inductively.

I The base case involves defining instances of the Techno

class for a given set of basic gates:
Class Technology_spec (tech : Techno) T :=

spec : forall {a b : Type},

tech a b -> (a -> T) -> (b -> T) -> Prop

I The meaning relation is generated using this parameter
and other rules (one for each constructor of Circuit).



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

17

Realizing a spec, implementing a function

I The meaning relation is not a specification for a circuit.
• It is a strict and detailed definition of behaviour.
• Too detailed, in fact. . .

I Coquet relies on 2 typeclasses to let the user specify a
circuit:
Context {n m N M : Type}

(Rn : Iso (n -> T) N) (Rm : Iso (m -> T) M)

Class Realise (c : Circuit n m) (R : N -> M -> Prop) :=

realise : forall ins outs,

Meaning c ins outs -> R (iso ins) (iso outs)

Class Implement (c : Circuit n m) (f : N -> M) :=

implement : forall ins outs,

Meaning c ins outs -> iso outs = f (iso ins)

I Proving the spec is done by providing instances of these
classes (proof objects).



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

18

Section 4

Applied example



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

19

Case studies defined in the paper

I Half-adder

I Full 1-bit adder

I Ripple-carry n-bit adder

I Divide-and-conquer n-bit adder

I Sequential circuits (memory elements)

Here we’ll only take a peek at a half-adder. . .



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

20

Definition of a half-adder circuit

(Nice diagram on the whiteboard. . . )

Context a b s c : string (* section variables *)

Definition HADD :

Circuit (_tag a :+: _tag b) (_tag s :+: _tag c) :=

Fork2 (_tag a :+: _tag b) |> (XOR a b s & AND a b c).



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

21

Proving a half-adder circuit

I We must prove that HADD implements the function:
Definition hadd : (bool, bool) -> (bool, bool) := fun x =>

match x with

| (a, b) => (a xor b, a /\ b)

end.

I Our claim that HADD implements hadd is written as:
Instance HADD_Spec : Implement

(* iso on inputs *)

(* iso on outputs *)

HADD hadd.

Proof.

...

I Then we need to prove it (goal on whiteboard. . . ).



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

22

Section 5

Conclusions



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

23

Comparison with related works

I Circuits were already modeled in the HOL theorem prover,
but using a shallow embedding.

I In Coq, also only a shallow embedding had already been
attempted.

I In Haskell, there was Lava, in which verification is reduced
to finite-sized instances of circuits.

• In contrast, in Coq we prove the correctness of parametric
circuits, for any size of inputs.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

23

Comparison with related works

I Circuits were already modeled in the HOL theorem prover,
but using a shallow embedding.

I In Coq, also only a shallow embedding had already been
attempted.

I In Haskell, there was Lava, in which verification is reduced
to finite-sized instances of circuits.

• In contrast, in Coq we prove the correctness of parametric
circuits, for any size of inputs.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

23

Comparison with related works

I Circuits were already modeled in the HOL theorem prover,
but using a shallow embedding.

I In Coq, also only a shallow embedding had already been
attempted.

I In Haskell, there was Lava, in which verification is reduced
to finite-sized instances of circuits.

• In contrast, in Coq we prove the correctness of parametric
circuits, for any size of inputs.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

24

Final words

I “Programming” hardware in functional languages has lots
of advantages, and using dependently-typed languages has
even more.

I Proving the correctness of hardware is an awesome idea.
• Even better if you can synthesize it to an FPGA or even

ASIC.

I There is still some polishing to be done:
• Couldn’t make the lib compile in Coq 8.4.
• There seems to be a synthesis facility, but I’m not sure. . .
• Have a “standard library” of basic circuits.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

24

Final words

I “Programming” hardware in functional languages has lots
of advantages, and using dependently-typed languages has
even more.

I Proving the correctness of hardware is an awesome idea.
• Even better if you can synthesize it to an FPGA or even

ASIC.

I There is still some polishing to be done:
• Couldn’t make the lib compile in Coq 8.4.
• There seems to be a synthesis facility, but I’m not sure. . .
• Have a “standard library” of basic circuits.



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

24

Final words

I “Programming” hardware in functional languages has lots
of advantages, and using dependently-typed languages has
even more.

I Proving the correctness of hardware is an awesome idea.
• Even better if you can synthesize it to an FPGA or even

ASIC.

I There is still some polishing to be done:
• Couldn’t make the lib compile in Coq 8.4.
• There seems to be a synthesis facility, but I’m not sure. . .
• Have a “standard library” of basic circuits.



Questions?


	Intro
	What is it
	Why is it useful

	Technical overview
	Diving into Coquet
	Interfaces
	Circuit type
	Semantics

	Applied example
	A half-adder

	Conclusions

