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Section 1

Intro
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What is Coquet

A Coq library for hardware specification and verification.

Library Datatypes, typeclasses, instances, combinators,
proofs, etc.

Deep-embedded Circuit datatype, structurally defined.

Dependently-typed The circuit AST is fully-typed.

Provably correct Circuits can be proven to realize a
specification.
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Why is Coquet useful

I Coq is more expressive than other theorem provers (HOL,
ACL2, etc.).

I Dependent types help catch common errors soon in the
design process.

I Deep-embedding brings interesting possibilities:
• Functions that transform circuits (can be proven correct).
• Simulating and synthesizing circuits (netlists).
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Section 2

Technical overview



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

7

Circuit interface

I The interface of a circuit is the set of its input and output
ports.

I Modeled in Coquet as parameters of the circuit datatype.
example : Circuit n m

I The parameters n and m can be of any finite type
• More details on these finite types later. . .
• For example, disjoint sums of “units”:

nBitAdd : Circuit (U :+: sumn U n :+: sumn U n)

(sumn U n :+: U)
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Defining circuits with combinators

Circuits are modeled hierarchically with combinators, closely
mimicking the “pen-and-paper” approach.

Circuits are built using:

I Any of a set of fundamental components, user-defined.

I Serial composition.

I Parallel composition.

I Re-arranging and re-ordering of ports, done by plugs.

I Loop combinator, to create feedback loops.

Again, more details soon. . .
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Re-arranging wires with plugs

As the combinators connect the circuits in a “nameless”
fashion, we need rewiring circuits, called plugs

I The type of a plug that duplicates its input COULD be:
dup : Circuit U (U :+: U)

I To construct a plug, we need a function mapping outputs
to inputs. More details later.
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Circuit semantics

Until now, we have only dealt with the syntax (the structure) of
circuits.

I The meaning or semantics of a circuit (x : C n m) is
defined as a relation between its inputs and outputs,
where:

• inputs is a function of type (n → T).
• outputs has type (m → T).
• T is the type of what is carried in the wires.

I The relation is defined inductively on x, and denoted as
follows: x `n

m ins ./ outs.
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Section 3

Diving into Coquet



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

12

Tagged unit types

Remember that Coquet uses arbitrary finite types for the inputs
and outputs of a circuit.

I One way to build a finite type is by summing some units.
I This is inconvenient and confusing at least.

• To allow easily discernible input/outputs, Coquet uses tags:
Inductive tag (t : string) : Type := _tag : tag t

• For example:
halfAdder : Circuit (_tag "in1" :+: _tag "in2")

(_tag "sum" :+: _tag "cout")

I Also, this is not the only way to have finite types. . .
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The Finite typeclass

In general, any type with an instance for the Fin typeclass can
be used as input or output in circuits.

I A typeclass in Coq has approx. the same meaning as in
Haskell.

• Predicate/relation over/among type(s).
• Instances are named and passed.
• May contain (of course) proofs of properties over types.

I The Fin typeclass looks like this:
Class Fin A := {

eq_fin : eqT A;

enum : list A;

axiom : forall (x : A), count (equal x) enum = 1

}.

I Instances for unit, tagged unit, sum, etc.
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The Circuit datatype

I The (dependent) type of circuits looks like:
Context {tech : Techno}

Inductive Circuit : Type -> Type -> Type :=

| Atom : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},

techno n m -> Circuit n m

| Plug : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},

(f : m -> n) -> Circuit n m

| Ser : forall {n m p : Type},

Circuit n m -> Circuit m p -> Circuit n p

| Par : forall {n m p q : Type},

Circuit n p -> Circuit m q -> Circuit (n :+: m) (p :+: q)

| Loop : forall {n m p : Type},

Circuit (n :+: p) (m :+: p) -> Circuit n m

I Parameterized by the type of fundamental gates:
Class Techno := techno : Type -> Type -> Type.
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Plugs, plugs, plugs. . .

As seen, a Plug requires a function from m to n.
Inductive Circuit : Type -> Type -> Type :=

| Plug : forall {n m : Type} {Fn : Fin n} {Fm : Fin m},

(f : m -> n) -> Circuit n m

I Let’s examine again the circuit which duplicates its input:
Plug (fun x => match x with

| inl e => e

| inr e => e

end).

I In simple enough cases (like this one), proof-search suffices.
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Meaning relation over circuits

As already said: The semantics of a circuit is given by a relation
between its inputs and outputs, defined inductively.

I The base case involves defining instances of the Techno

class for a given set of basic gates:
Class Technology_spec (tech : Techno) T :=

spec : forall {a b : Type},

tech a b -> (a -> T) -> (b -> T) -> Prop

I The meaning relation is generated using this parameter
and other rules (one for each constructor of Circuit).
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Realizing a spec, implementing a function

I The meaning relation is not a specification for a circuit.
• It is a strict and detailed definition of behaviour.
• Too detailed, in fact. . .

I Coquet relies on 2 typeclasses to let the user specify a
circuit:
Context {n m N M : Type}

(Rn : Iso (n -> T) N) (Rm : Iso (m -> T) M)

Class Realise (c : Circuit n m) (R : N -> M -> Prop) :=

realise : forall ins outs,

Meaning c ins outs -> R (iso ins) (iso outs)

Class Implement (c : Circuit n m) (f : N -> M) :=

implement : forall ins outs,

Meaning c ins outs -> iso outs = f (iso ins)

I Proving the spec is done by providing instances of these
classes (proof objects).
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Section 4

Applied example
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Case studies defined in the paper

I Half-adder

I Full 1-bit adder

I Ripple-carry n-bit adder

I Divide-and-conquer n-bit adder

I Sequential circuits (memory elements)

Here we’ll only take a peek at a half-adder. . .
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Definition of a half-adder circuit

(Nice diagram on the whiteboard. . . )

Context a b s c : string (* section variables *)

Definition HADD :

Circuit (_tag a :+: _tag b) (_tag s :+: _tag c) :=

Fork2 (_tag a :+: _tag b) |> (XOR a b s & AND a b c).
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Proving a half-adder circuit

I We must prove that HADD implements the function:
Definition hadd : (bool, bool) -> (bool, bool) := fun x =>

match x with

| (a, b) => (a xor b, a /\ b)

end.

I Our claim that HADD implements hadd is written as:
Instance HADD_Spec : Implement

(* iso on inputs *)

(* iso on outputs *)

HADD hadd.

Proof.

...

I Then we need to prove it (goal on whiteboard. . . ).



Intro

What is it

Why is it useful

Technical
overview

Diving into
Coquet

Interfaces

Circuit type

Semantics

Applied example

A half-adder

Conclusions

22

Section 5

Conclusions
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Comparison with related works

I Circuits were already modeled in the HOL theorem prover,
but using a shallow embedding.

I In Coq, also only a shallow embedding had already been
attempted.

I In Haskell, there was Lava, in which verification is reduced
to finite-sized instances of circuits.

• In contrast, in Coq we prove the correctness of parametric
circuits, for any size of inputs.
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Final words

I “Programming” hardware in functional languages has lots
of advantages, and using dependently-typed languages has
even more.

I Proving the correctness of hardware is an awesome idea.
• Even better if you can synthesize it to an FPGA or even

ASIC.

I There is still some polishing to be done:
• Couldn’t make the lib compile in Coq 8.4.
• There seems to be a synthesis facility, but I’m not sure. . .
• Have a “standard library” of basic circuits.
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