Catapult Basic Training 2010a
Lab1 – Catapult Flow Walkthrough
This lab is intended to quickly take the user through the Catapult design flow so that they become familiar with the various stages of high level synthesis. Discussion of high-level synthesis constraints, writing synthesizable C++, and verification will be covered in the next several labs.
· Launch Catapult
· Set the working directory to the Labs/Lab1 directory

[image: image1.png]File View Tools Window Help

O S ddaalpn s] o selnpkutio

Task Bar
Synthesis Tasks

I SetWorking Dir..

G e Te——

· Select File > Run Script and source the directives.tcl file. This will add C++ input files and testbench and synthesize the design. We will then step through each phase of the synthesis flow.

[image: image2.emf]

· Double-click on the mac.cpp file in the Input Files folder. This will open the design that was just synthesized.

[image: image3.emf]

[image: image4.emf]

· Look at the C++ design and note that this is a simple multiply-accumulate algorithm that multiplies and adds two arrays, a[4] and b[4]. You can see that the native C++ data types are used for this design. Also note that the “for” loop has been labeled and is called “MAC”. We will see later that labeling loops is very useful for analyzing the design.
· Click on the Setup Design icon in the task bar. This is where we select the RTL synthesis flow, target technology, memory libraries, and set clock constraints.
[image: image5.emf]

· Note that this design is setup for the Design Compiler flow, 65nm, and a clock frequency of 333 MHz.
[image: image6.emf]

· Click on the handshake icon in Setup Design. Note that “Transaction Done Signal” is enabled. Enabling this signal will allow automated verification of the Catapult generated RTL against the original C++.

· Click on mult_acc icon and note that this function has been set to be the top-level design. Double-click on the mult_acc icon to cross probe back to the C++ code.
[image: image7.emf]

· Click on Architectural Constraints in the Task Bar
[image: image8.emf]

· In the Architectural Constraints view, expand the Interface Folder and expand the interface resources under the folder to see all the variables that have been mapped to a resource. Note that the resources icons indicate the port direction.
· Click on the a:rsc resource and note that the default interface is wire interfaces (No hand shake). Note that the “a” variable under the resource shows both the number of array elements from the C++, array elements == “[4]”, and the bit-width of the data type, int == [32]. Double-click on the “a” variable under the resource to cross probe back to the C++ and note that “a” is a four element array of type integer, “int a[4]”.
[image: image9.png]il
= (@ mult_acc
esource Type: [Dsfault — (ngo_ioport.nge_in_uire; -
© interface Control Resource Type: Befault. - (nge_ioport. g) j
= Interface Stage Replication: | 03
& o Efaazs ey
D a 32
&l ns
S bisc (1x128) Library Delay: | 002
=g nherted Delay: | 002 ns
=@ dourse 132 || ponpely: | o-000000 &) ns
<@ dout [32]
= core Total Delay: | 0.0 &l ns
= ® main
@ mac -y [
Settings [Mapoing | ooy | cancel |

· Click on the MAC loop in the Architectural constraints view. Note that the number of iterations for the MAC loop equals 4. You should also begin to see why labeling loops is useful. When there are many loops it is easier to know which is which when they are labeled. For now we will ignore the other loop setting and will revisit them in the next couple of labs.
· Double-click on the MAC loop to cross-probe back to the C++. Observe that the “for” loop in the C++ has 4 iterations
[image: image11.emf]

· Click on the Scheduling icon in the Task Bar.

[image: image12.emf]

· Expand the loops in the Gantt chart

[image: image13.emf]

· Note the MAC loop shown on the left hand side. Labeling the loops in the C++ allows us to see where things come from in the Gantt chart.

· Double-click on the MAC loop to cross-probe back to the C++.

· Click on the multiplier in the Gantt chart. Note the green lines with arrows that show the data dependencies.

[image: image14.emf]

· Double-click on the multiplier to cross-probe back to the C++. This is the “*” used in the multiply-accumulate.

· Double-Click on the adder that is dependent on the multiplier. This is the add from the += in the MAC loop.

· Mouse over the multiplier to see the component information. Note that the multiplier delay is 1.1 ns out of a possible 3 ns clock period.
[image: image15.emf]

· Look at the Loop Execution Runtime Profile in the top right of the Gantt chart. You can see that the MAC loop is where the algorithm is spending most of its time, indicated by the green bar.

· Click on Generate RTL in the task bar.
[image: image16.emf]

· Open the Output Files folder. Double-click to open the RTL.rpt file.
[image: image17.emf]

· Go to the Bill Of Material section of the report. Note that the final design has been built using one multiplier.

[image: image18.emf]

· Open the VHDL(rtl.vhdl) or Verilog(rtl.v) output. Scroll to the bottom of the file and find the module or entity declaration with name mult_acc.

[image: image19.emf]

· Note that the module/entity has the same name as the C++ function. Double-click on the module name to cross-probe to C++.
· Note that the ports for “a” and “b” are flattened into wire interfaces. (32-bits per integer * 4 array elements = 129)

· Click on the Find Icon in the tool bar and search for a multiplier operation “*”.

[image: image20.emf]

[image: image21.emf]

· Double-click on the multiplier in the RTL and cross-probe back to the C++.
[image: image22.emf]

· Open the RTL schematic by clicking on the schematic icon in the tool bar.
[image: image23.emf]

· Double-click to push down into the schematic

[image: image24.emf]

· Note that the design is built with a single multiplier that is shared (MUXes on inputs) to implement the multiply-accumulate of “a” and “b”. Double-click on it to go back to the C++.

· Right-click in the schematic and set the schematic state to Critical Path
[image: image25.emf]

Click through some of the paths shown. Note how the path is highlighted in the schematic with the timing paths shown on the right.
[image: image26.emf]

· Open the Verifcation > Modelsim folder and right click on either the VHDL or Verilog RTL verification flow. Select Compile and Execute Batch. This will automatically verify the C++ against the RTL. You should see a “PASSED” message in the transcript. We will cover the details of this verification flow in the next training module.
[image: image27.emf]

· As a final step go back to Setup Design and set the clock frequency to 600MHz.
· Click on Schedule in the Task Bar and open the Gantt chart. You should now see the multiplier and adder of the MAC scheduled in different c-csteps because of the increase in clock frequency. This means that a register will be inserted between them since the data dependency is closing a clock boundary.

[image: image28.emf]

· Generate RTL and open the RTL schematic. Find the multiplier and adder from the MAC loop. You should see a register between them now. In other words high-level synthesis automatically added more pipeline registers based on the clock frequency and target technology in order for the design to meet timing. Although this example is simplistic it illustrates one of the most powerful aspects of high-level synthesis in that the algorithm becomes somewhat independent of the target technology and design constraints.
[image: image29.emf]

DONE

Expand

Double-click

8

