Catapult Basic Training 2010a
Lab2 – Interface Synthesis and Verifying the Catapult Generated RTL Using SCVerify Automated Verification
This lab shows users how interface synthesis works and how to automatically verify their original C++ design against the Catapult generated RTL using the original C++ test bench. What the SCVerify flow does is prove that the C++ algorithm and RTL are functionally equivalent given the same set of input test vectors. The test vectors are automatically captured from the C++ test bench and used to drive the RTL inputs. An automated comparison of the C++ and RTL outputs is then made. This flow is intended to primarily show that what Catapult has built is correct, but it is also used to understand how the I/O of the Catapult generated block can be interfaced to other blocks.
The default interfaces for Catapult are wire-type interfaces that have no synchronization signals to control the flow of data. These types of interfaces are best used for connecting to off-chip registers that are known to be held stable while the Catapult block is running. Catapult provides two basic interfaces for controlling the flow of data, enable interfaces and wait interfaces. These are covered in this lab.

Data enable interfaces (No back pressure)
The enable interfaces, mgc_in_wire_en and mgc_out_stdreg_en, provide an enable control signal output port that indicates when the Catapult block is reading or writing data.

· Go to File > Run Scripts and source setup.tcl. This will setup the technology clock frequency and turn on the verification flow.

· Click on the Setup Design icon in the Task Bar. You should see that the technology is set to Sample 90nm and the clock frequency is 500 MHz. The top-level design is set to the accumulate function.
[image: image1.emf]

· Click on the Handshake interface and note that Transction Done is enabled. This is a hardware synchronization signal that should be turned on when using SCVerify.
[image: image2.emf]

· Click on the Flow Manager tab and note that SCVery is enabled.

[image: image3.emf]

· Double-click on the accumulate.cpp file in the Input Files folder. This simple design adds four values “a, b, c and d” and then writes the result to “dout”.

[image: image4.emf]

· Double-click on the tb.cpp file. This testbench has been modified to work with SCVerify. It runs the accumulate function 10 times. The “a_wait_ctrl.cycles = 3” line will be explained when we look at wait interfaces next.
[image: image5.emf]

· Click on architectural constraints in the Task Bar
· Compile and execute the C++ design and C++ test bench verification by double-click on Orignal Design + Testbench
[image: image6.emf]

· Look in the Catapult transcript and you should see the print out from the test bench that shows the accumulate function input and output data.

[image: image8.png]Transcript
@ oerors - [2 Wamings ~ [[(© 18 1nfos - [[#

Hessage
7usr/bin/1d: skipping inconpatible /usr/11b64/1
fusr/bin/1d: skipping inconpatible /usr/1ib64/1

/in/catapultC_20010a,138/1inuc/MHge_honecbin,
©d ,./..; Catapult/accunulate, vi/soverify/orig s
3 dout =6

e

az0 b=lcz2
a=1b=2c=3 d=4 dut=10
a=2 b=3 c=4 d=5 dut=14
4=3 b=4 c=5 d=6 dut=18
a=4 b=5 c=B d=7 dut=22
425 b=B c=7 d=8 dut=2%
a=B b=7 c=8 d=3 dut=30

· Click on Architectural constraints and expand the Interface folder.

· Select all of the input ports and set the resource type to mgc_in_wire_en. You can shift-click to select multiple ports.

[image: image10.png]izl

= {@ accumulate
@ interface Control
53 imerface
D arse (132)
D brsc (132)
D erse 102)
BB drsc (132)
@ doutrsc (1x32)
=8 core
® main

Resource Type:
Stage Replication:

Block Size:

Input Delay

Library Delay:

i

—

Port Delay:

i

e ault
[DirectInput]

190_i0port e _chan_in
c_igport hgc_in_uire

cigport e in Ui
190_i0port ge_in_uire_usit
igo_ioport nge_inout_buf_uait
igo_ioport .nge_inout_f1fo_uait
igo_ioport nge_inout_stdreg_en
igo_ioport .nge_inout_stdreg_uait

Settings | Mapping

· Select the output port and set the resource type to mgc_out_stdreg_en.

[image: image12.png]izl

= {@ accumulate
@ interface Control
53 imerface
B D arse (132)
D brsc (132)
$D erse (102)
BB drsc (132)
@ doutrse (1x32)
=8 core
® main

Resource Type:

Stage Replication:
Output Delay
Library Delay:

Inherited Delay:

Port Delay:

o taport s tnout_fiFo_uait
e iaport s inout_stdres.en
e oport nae_ inaut stk es_uait
e oot nae_out_bif _uait

e oport nse_out_fiFa_uait

[boc_ioport mgc_out_prerss.en

[poc-iorort.ee ot res
i9c_igport ngc_out_stdreg

190_ioport .ngc_out_stdreg.vait

Total Delay:

——

Settings | Mapping

· Click on Generate RTL in the task bar.

· Expand the Verifcation > Modelsim directory and run either the VHDL or Verilog RTL simulation by double-clicking on the script to run RTL vs Untimed C++. This will launch the Modelsim GUI.
[image: image13.emf]

· Select the RTL signals in the waveform viewer and set the Waveform viewer radix to unsigned.

[image: image14.emf]

· Click the Run All Icon in the tool bar or type “run –all” in the transcript.

[image: image15.emf]

· Look in the Modelsim transcript and you should see a message saying that the simulation passed. This means that the C++ and RTL are functionally equivalent.
[image: image17.png]Transcript
[# Checking results

dout

capture count
comparison count
ignore count

error count

stuck in dut fifo
stuck in galden fifa

n:

"
"
"
"
"
"
"
"

Info: Simulation PASSED @ 64 ns
= Note: (vsim-B574) SystemC simulation stopped by user.
#1

* 1

VSIM 35|

· Zoom out in the waveform view. The “_lz” signals are the enable signals that the Catapult block is using in reading or writing data. You can see that the inputs are read every three
 clock cycles and the output is written every three clock cycles. The “_triosy_lz” signals are hardware signals that are added when Transaction Done is turned on. Look at the “dout” waveform and note that the data matches what was printed in the Catapult transcript when you compiled and executed the C++.
[image: image18.emf]

· Close Modelsim
Handshake interfaces (Back pressure)

We now wait to change the interfaces to a two-way handshake. This will allow the Catapult block to stall if data is not available.
· Go to Architectural Constraints and set the input interfaces to mgc_in_wire_wait.

[image: image20.png]izl

= {@ accumulate
@ interface Control
53 imerface
D arse (132)
D brsc (132)
D erse 102)
BB drsc (132)
@ doutrsc (1x32)
=8 core
® main

Resource Type:
Stage Replication: [
Block Size:

Input Delay

Ubraryoetay: ||
—

Fancely [

e ault
DirestInput]
190_i0port e _chan_in
19o_ioport ge_in_vire
i9c_igport ngc_in_uire_en

cigport e in uive uait
19o_i0port .hge_inout_buf_uait
igo_ioport .nge_inout_f1fo_uait
igo_ioport nge_inout_stdreg_en

igo_ioport .nge_inout_stdreg_uait

" setiings | Mapping

· Generate RTL
· Open the tb.cpp file and note the the “a_wait_ctrl.cycles = 3;” line. This tells SCVerify to stall the “a” interface each time data is requested.

· Launch SCVerify

· Click the Run All Icon in the tool bar or type “run –all” in the transcript.

· Zoom out in the waveform window.
· You will no see both the “_lz” enable signals for the input interfaces as well as the “_vz” signals. The “_vz” signals are inputs into the Catapult block that indicated data valid when driven high. You should see that while “b, c and d” always have data available (“_vz” always high), the “a” data is stalled for three clock cycles every time it is requested (“a_rsc_vz” low).

[image: image21.emf]

Memory Interfaces

In addition to mapping variables to handshaking interfaces, Catapult lets you map arrays to memory interfaces. This can be done on both internal as well as interface arrays.
· Go to File > Run Script and source the memories.tcl file.
· Click on Setup Design and note that the singleport memory library has been added.

[image: image22.emf]

· Open the mac.cpp and tb.cpp files in the Input Files Folder. This is the same design used in Lab1. Note in the test bench that the “a” and “b” arrays are initialized with constants.
[image: image23.emf]

· Go to Architectural constraints.
· Open the interface folder and map the “a” and “b” interfaces to singleport ram. Note that the ram read enable is active low.
[image: image25.png]= 08 mulacc
@ iterface Control
53 imerface
13 arsc @32)
13 brsc @02)
@ doutrse (1:32)
=8 core

= ® main

~® mac

Resource Type:
Resource Option}
re_active:

we_active:

num_byte_enable]

[irectInput]
190_i0port e _chan_in
19o_ioport ge_in_vire
i9o_ioport nge_in_uire_en
190_ioport nge_in_uire_usit
igo_ioport nge_inout_buf_uait
igo_ioport .nge_inout_f1fo_uait
igo_ioport nge_inout_stdreg_en
i9c_igport ngc_inout_stdre_uait

Stage Replication:

Block Size:

A sanp) e-Ocinn 3

· Click on “a” and click on the mapping tab. This shows the memory map for the resource.
[image: image27.png]izl

= 08 mulacc
@ Inerface Control
53 imerface
© k2 ox0000
@@ brsc 432)
@ doutrsc (1x32)
=8 core
= ® main
~® mac

siee: a3

595) oo ooy | corcel | @

· Click on Schedule in the Task Bar and expand the Gantt Chart. Note that there are two memory reads in parallel.
[image: image28.emf]

· Generate RTL

· Launch SCVerify

· Run the verification and zoom out on the waveform view. Set the radix to unsigned.

· Look at the waveform and you will see that the read address is issued in the clock cycle before the read-data is read. This is because Catapult uses synchronous RAMs. You should see that the array data in the testbench for “a” and “b” matches the waveform. The “a” address is “1” and the data read from the “a” memory is “2”. This should match “a[1]” defined in tb.cpp.
[image: image29.emf]

· Close Modelsim
· Go to Architectural constraints.

· Since this design does not read the “a” or “b” memories every clock cycle it is not necessary to have two separate memories. The data for “a” and “b” can be combined into a single memory.

· Expand the “a” and “b” resources. Then drag the “b” variable under the “b” resource onto the “a” resource.
[image: image31.png]= (@ mult_acc
@ Interface Control

=23 Iterface
4 arse @o2)
RoU o
=43 brsc @s2)
Y o [OIER]

@ doutrsc (1x32)

[image: image33.png]mult_acc
@ Interface Control
=3 interface

©92)
D k2
© bl
& brsc
@ doutrse (1:32)
=8} core

· Click on the “a” resource and click on the mapping tab to see the memory map. You will see that “a” and “b” are combined into a single memory map.
[image: image35.png]izl

= @ multace
<D Interface Control
=23 Iterface
o it [l eo
D alB2
L® b2
0 brse
<@ doutrsc (1x32)
=8 core
=@ main
@ mac

sie [z

Packing Mode: [compact

0x0007

16884

0x0000.

Setings | mapy

Aoty | cancel | @

· Schedule the design and open the Gantt chart. Note that the two memory reads are now sequential.

[image: image36.emf]

· Generate RTL and run SCVerify.

EXTRA CREDIT
· Go to architectural constraints and change the packing mode for the “a” resource so that “a” and “b” are mapped side-by-side.
[image: image38.png]izl

= (@ mult_acc

@ Inerface Control Resource Type: ran_sanple-05m-singleport_beh_dc. RAl

3 merface Resource Options
S4B ansc @6d)

o eiomn N —
o bupa .
@ doutrsc (1032) num_byte_enables:t

4F brsc
{1 Constant Arrays. Packing Mode:
S core Stage Replicaton: T
o onpact
main Block Size: ase_aligned
@ mac - Seolute

Settings | Mapping

· Look at the memory map
[image: image40.png]izl

= 08 mulacc
@ Inerface Control
53 imerface
& @ arsc 4x6a)
S k2
© bl
@ doutrsc (1x32)
& brsc
3 ConstantAmays
=8 core
= ® main
~® mac

sie e

Packing Mode: [Fdebyside

Seting]

Aoty | cancel | @

· Schedule the design and look at the Gantt chart. Notice that there is now a single memory read since the “a” and “b” data are pack side-by-side.

[image: image41.emf]

· Re-run SCVerify
DONE

SCVerify main

SCVerify header file

DUT

SCVerify return

Read enable

Write enable

Transaction Done signals

Request for data held high while design is stalled

“a” not available till here

Parallel memory reads

Active-low read enable

Read address

Read data

Drag and drop

Sequential memory reads

�Simulation shows inputs are read every four clock cycles and output is written every four clock cycles

6

