
Realizing Reconfigurable Mesh Algorithms on
Softcore Arrays
Heiner Giefers and Marco Platzner

University of Paderborn
Warburger Str. 100

33098 Paderborn, Germany
{hgiefers, platzner}@upb.de

Abstract—The reconfigurable mesh is a very popular model
for massively parallel computation for which a large body of
algorithms with exceptionally low runtime complexities exists.
However, these low complexities can not be exploited due to the
unrealistic assumption that communication time is either constant
or logarithmic in the number of cores. Nevertheless, studying the
reconfigurable mesh model and associated algorithms might lead
to new approaches for the design and programming of many-
cores with light-weight, circuit-switched interconnects.

In this paper, we present the mapping of reconfigurable mesh
algorithms to softcore arrays. We first discuss our architecture
and the corresponding tool flow, and then turn to the most
critical issues, minimizing communication delay and establishing
synchronization in the single-operand, circuit-switched network.
We show experimental results from an FPGA prototype and
evaluate our architecture by a sparse matrix multiplication case
study.

I. INTRODUCTION

A reconfigurable mesh consists of an array of processing
elements and an interconnect that can be switched to form
different patterns of segmented buses. All processing ele-
ments execute cycles of bus configuration, communication,
and constant-time computation in a lock-step. In the 90s,
the reconfigurable mesh as a model for massively paral-
lel computing has been quite popular and a vast body of
algorithms with very low runtime complexities have been
developed for it [1]. The practical exploitation of the low
runtime complexities, however, has been hindered mainly by
the unrealistic assumption that communication time is either
constant or logarithmic in the number of processing elements.

In todays computing systems, the integration of several
processing cores on a single chip is already standard. Moving
to many cores on chip, two key research problems are the
development of energy-efficient interconnects and, a tightly
coupled issue, useful parallel programming models [2], [3].
Many current proposals advocate packed-switched networks
on chip with dynamic routing [4]. While such networks enable
the use of well-known message passing techniques, their
complex switches, routers and buffers consume substantial
amounts of energy [5]. Moreover, some classes of applications
do not efficiently map to message passing schemes.

As an alternative, several many-cores with light-weight,
circuit-switched interconnects have been proposed. Such ar-
chitectures connect the cores tightly to their switches and

thus avoid the complex network interfaces and several layers
of system software typically required by operating system-
driven network on chip implementations. Further, the need for
dynamic routing and buffering large amounts of data can also
be avoided in case the sequence of switch settings is either an
integral part of the parallel algorithm (e.g., for reconfigurable
mesh algorithms) or determined off-line by design tools (e.g.,
for time division multiplexed interconnects).

The reconfigurable mesh is one possible theoretical model
for such a many-core with a light-weight, circuit-switched
network. Consequently, mapping reconfigurable mesh algo-
rithms to such many-cores is of interest despite of the un-
realistic assumptions about communication time that mainly
served the runtime complexity analysis. Moreover, studying
reconfigurable meshes and their algorithms might also lead
to new approaches for the design and programming of many-
cores. However, as the reconfigurable mesh has mainly be used
as a theoretical vehicle, issues of practical architectures and
programming tool flows have not been sufficiently considered.

In this paper, we present the practical implementation of
reconfigurable mesh algorithms on an array of softcore pro-
cessors. The paper is structured as follows. Section II reviews
some theoretical work as well as the few existing practical
implementations of reconfigurable meshes and recent circuit-
switched networks on chip. In Section III, we present our
architecture including the softcore array and the programming
tool flow, followed by a discussion of the interconnect imple-
mentation in Section IV. Section V details our prototype sys-
tem and provides a case study. Finally, Section VI concludes
the paper.

II. RELATED WORK

Different reconfigurable mesh models have been proposed
in literature. The basic model, which is also used in our work,
is the RMESH of Miller et al. [6]. A more general model
extending the RMESH by three additional communication
patterns is the Processor Array with Reconfigurable Bus
System (PARBS) [7]. The Polymorphic Torus model [8] wraps
the interconnect around the borders of the mesh. Of special
interest are models that pose restrictions on the connectivity,
such as the horizontally/vertically (HVRM) or the linear
reconfigurable mesh (LRM) [9]. Other researchers deal with

optical models, e.g., the Linear Array with Reconfigurable
Pipelined Bus System (LARPS) [10].

There is a wide range of application domains for which
reconfigurable mesh algorithms exist, including arithmetic,
sorting, selection, graph algorithms, computational geometry
and image processing. An extensive overview can be found in
[1].

Apart from the large body of theoretical work in the field
of reconfigurable meshes, there are also some implemen-
tations: YUPPIE [11] is a SIMD computing system based
on a polymorphic torus network which is able to simulate
several interconnection topologies. A centralized controller
generates an instruction stream for the processing elements.
The processing element consists of a 1-bit ALU and five
1-bit registers. CAAPP (Content Addressable Array Parallel
Processor) [12] uses a mesh of 512 × 512 1-bit processing
elements connected through the so-called coterie network.
In contrast to YUPPIE, where the global instruction selects
between one of two possible communication patterns, each
processing element of CAAPP autonomously establishes the
switch setting.

Besides implementations, several researchers developed
simulators for the reconfigurable mesh, e.g., RMSIM [13],
JRM [14], JRSim [15] and the simulator described in [16].
A language called Polymorphic Parallel C together with a
corresponding simulator was presented in [17]. Along the
same line, [18] reported on RPC++, a SIMD language and
simulator for reconfigurable processor arrays. RPC++ extends
the standard C language by several control structures and data
types. For instance, variables can be declared to be poly which
implies that each PE has its own copy of a value.

Reconfigurable meshes rely on light-weight circuit-switched
networks, a direction which has also been taken by several
recent many-core implementations. For example, Tile64 [19] is
a 64 core 32-bit processor that integrates five mesh networks,
one of which uses circuit switching.

Ambric also uses a circuit switching approach for their
massively parallel processing array architecture [20]. The
proposed programming model, which is inspired by Com-
municating Sequential Processes (CSP) and Kahn Process
Networks (KPN), uses processes that communicate over point-
to-point links. The globally asynchronous locally synchronous
architecture is synchronized by channels, which are pipelines
of handshake registers.

The adaptive system-on-a-chip (aSoC) [21] employs a light-
weight network to connect heterogeneous elements such as
microprocessors, memories, ALUs and reconfigurable logic in
a 2D mesh topology. The PicoArray [22] communicates over
a network of 32-bit buses and programmable bus switches
using a time division multiplex (TDM) scheme. Similar to
aSoC, PicoArray schedules data transfers at compile time and
requires no run-time arbitration.

III. ARCHITECTURE & DESIGN TOOL FLOW

In this section, we first give an overview over our softcore
array architecture including the used computing and communi-

cation components. Then we discuss the main functions of the
corresponding design tool flow that is used to generate both
the hardware layout and the binaries for the softcore array.

A. Softcore Array

Reconfigurable meshes consist of an array of nodes, where
each node splits into a processing element (PE) and an attached
switch element (SE). The SEs are connected to form a two-
dimensional mesh. We operate such an array as a coprocessor
attached to a host processor system via a dedicated fast data
link. On the coprocessor side, a communication controller
feeds a number of data channels that can connect to the SEs
at the border of node array. Figure 1 shows the block diagram
of our system architecture.

Fig. 1. System architecture for the mesh-based many-core.

An essential component of the RMESH model is the
configurable switch that can be set to establish different
communication patterns. A switch has four ports, one for
each of the four neighbors, and can connect these ports in 12
different ways. The original RMESH communication patterns
are shown in the top-most three rows of Figure 2. The pattern
shown in the top-left corner denotes no connection between the
ports. However, the processing element attached to the switch
can always read and write to and from its four neighbor nodes.
Hence we have added the four switch patterns in the bottom
row of Figure 2 to establish this communication patterns.
Overall, the SE can operate in 16 different configurations and
requires 4-bit configuration data.

The original RMESH model uses bidirectional communi-
cation channels. Driven by FPGA technology, we implement
two directed links, one in each direction, to establish a
bidirectional channel. This has also been proposed in [23].
Clearly, every algorithm developed for the bidirectional model
can be transformed into a corresponding algorithm for our
directional model. Moreover, some algorithms even profit from
the two independent links per channel as they can overlap
several communication steps.

A PE can configure the switch pattern of its attached SE
as well as write/read data to/from the switch. Connection

Fig. 2. Switch element connection patterns. The top 12 patterns are defined
by the original RMESH model [6].

patterns that join several ports are realized over a wired
OR. We have developed SEs which are parameterizable in
their bit-width to be able to scale the network bandwidth
with different classes of PEs. While in its simplest form,
a PE can be implemented as an algorithmic state machine,
more powerful meshes will employ processors. To this end,
we provide appropriate wrappers that encapsulate the PE
and implement registers for buffering data and the switch
configuration. Figure 3 presents the node architecture. For our
current implementation, we have chosen the Xilinx Picoblaze
softcore, an embedded 8-bit RISC microcontroller core, as PE.
The Picoblaze core occupies a rather small amount of 104
slices of logic on a Virtex-4 device plus one block RAM that
can store up to 1024 instructions. The Picoblaze core provides
16 general-purpose registers, a 64-byte internal scratchpad
RAM, and an automatic CALL/RETURN stack. Data can be
input and output by special I/O instructions that take the data
plus an additional port id as operands. As the Picoblaze core
consumes exactly two clock cycles per instruction, its program
timing is perfectly predictable.

Fig. 3. A network node consisting of a processing element (PE), a switch
element (SE), and corresponding wrappers.

As a host processor, we use a Xilinx Microblaze softcore.
The fast data link to the coprocessor is implemented with
so-called Fast Simplex Links (FSL). FSL channels provide

a very low latency interface to the processor pipeline making
them ideal for extending the processor’s execution unit with a
custom hardware accelerator.

B. Design Tool Flow

Figure 4 shows the design tool flow for our softcore array
architecture. The modules in the right-hand side of the figure
are basically covered by the Xilinx EDK tool flow. The
parameters for a mesh instance, e.g., mesh dimensions and the
specification for the communication controller, are specified in
a configuration file. Alternative versions for PEs and SEs as
well as appropriate drivers for data I/O are located in hardware
and software repositories, respectively. Taking these data, the
EDK tool flow generates the netlist for the overall architecture
including the Microblaze and the softcore array. From this
netlist, we extract the placement information of the block
RAMs that will contain the Picoblaze programs. Alternatively,
we could constrain the placement of these block RAMs
before synthesis. However, our experiments have shown that
we achieve better synthesis results by leaving block RAM
placement to the Xilinx tool flow.

On the software side, we use the EDK flow for program-
ming the Microblaze host and a more involved separate flow
for creating the binaries for the Picoblaze softcores. Many
elementary reconfigurable mesh algorithms, such as counting
bits and computing wide logical functions, work in SIMD-like
manner and execute the same few instructions synchronously
on each processor. In contrast, we are interested in more
complex applications that require the processors to compute
different and larger codes. Hence, we are relying on a MIMD
mode where each Picoblaze executes instructions out of local
program memory. While the computation phases of the re-
configurable mesh execution cycle can be rather different, the
communication phases have to be synchronized (see Section
IV).

In our tool flow, an RMESH algorithm has to be specified
in form of a C function, using the node identifier as param-
eter. The code generator calls this function for each node
in the array to create assembly files for the corresponding
Picoblaze cores. The resulting source files are then assembled
to Picoblaze binaries and merged into an FPGA programming
bitfile with the Data2Mem tool.

The code generator supports several higher-level constructs
for assisting the programmer with writing reconfigurable mesh
applications. These constructs include indexing functions for
applying different topologies as well as conditional and loop
statements. The code executed on the cores during the com-
putation phase depends on the nodes identifiers or, more pre-
cisely, the position of a node under a certain indexing function.
This information is available at compile time, allowing the
compilation tool to evaluate position-depended conditionals
and statically schedule individual instructions to the cores.
This results in smaller code sizes for the single cores.

We have further developed a cycle-accurate simulation
environment in Java. The environment comprises a Picoblaze
ISA simulator for each core and an underlying mesh simulator

that realizes the transportation of data through the network. A
simulation run generates logfiles which facilitate debugging
and tracing the complete states of all cores and give runtime
information for the tested algorithm. The graphical frontend
of the simulator allows for visualizing the algorithm steps.

Fig. 4. Design tool flow for generating the softcore array and binaries.

IV. MESH INTERCONNECT

In the RMESH execution model, all PEs cycle through the
three steps bus configuration, communication, and computa-
tion in lock-step. For the analysis of runtime complexities it
is essential that each of these three steps takes constant time
(there are some RMESH algorithms for which runtime com-
plexities have been derived assuming that communication time
is logarithmic in the number of PEs). Regarding the bus con-
figuration and computation steps, this model can be perfectly
implemented. The constant time communication step, however,
is physically impossible. Several researchers deal with this
limitation for the RMESH by restricting the maximum bus
length to a number of k switches [24], [25]. However, it
has been shown that the k-constrained reconfigurable mesh
is merely as powerful as ordinary meshes, if k is a constant
[26]. Reducing the RMESH model to practice, we have to
give up on constant time communication and thus on the
intriguing runtime complexities. The practical implementation
of the communication step raises two questions: How many
clock cycles are required for one communication step (delay),
and how to implement the lock-step (synchronization)?

A. Communication Delay

The most straight-forward implementation approach simply
sets the clock period such that communication can be done
in one cycle, irrespective of the distance between writing and
reading nodes. This is only reasonable if the communication
patterns and distances are known at compile time. Otherwise,
overly pessimistic assumptions had to be made. If writers and
readers are unknown a-priori, in the worst case a broadcast
signal traversing a mesh of

√
N×

√
N nodes passes 2

√
N−1

switches if the {NSWE} pattern is applied, and N−1 switches
if the mesh is configured as a linear bus. The resulting signal
delay would severely compromise the clock frequency in both
cases.

From a practical point of view, we have to resort to imple-
menting communication with an as small as possible delay.
The approaches to design switches for fast single operand
communication include:

1) Switches implemented in purely combinational logic
[27]. In order to avoid extremely low clock rates, the
communication infrastructure has to use multi-cycle data
paths which are rather inconvenient to synthesize and
analyze.

2) Switches that are able to buffer data. Adding registers to
the switches simplifies circuit synthesis and allows for
pipelining. Such registers are also shown in Figure 3.

3) Switches that are implemented with asynchronous (self-
timed) circuit design techniques [28].

4) Photonic switches [29].

In our prototype system, we have experimented with the
first two alternatives. In the first case, the switch basically
consists of multiplexers, controlled by the PE. A writing node
can directly write an operand to any reading node on the same
bus. In the second case, the buses are realized as pipelines. A
data item travels exactly one hop per clock cycle. In both
cases, a communication step takes a certain number of clock
cycles.

Generally, the performance for computing an algorithmic
problem can be improved if i) the communication distances are
short and ii) known at compile time. These features are largely
determined by the selected RMESH algorithm. For many
problems, several RMESH algorithms are known that differ
in their theoretical runtime complexities. However, RMESH
algorithms that excel theoretically are not necessarily the best
choice when it comes to a practical implementation. A de-
scriptive example discussing three algorithms for the problem
of finding the maximum of N numbers shall demonstrate the
trade-offs involved:

• Algorithm #1 takes an N×N mesh to find the maximum
of N numbers. Initially, the N numbers are placed along
the diagonal of the mesh. In the first step, the network
is configured to build column buses, i.e., all switches are
set to {NS, W, E}. The PEs on the diagonal send their
numbers onto the bus; all other PEs read the numbers.
Then, the network is configured to form row buses, i.e.,
all switches are set to {N, S, WE} and the diagonal
PEs again broadcast their data. At this point, each PE
holds two numbers, the numbers of the diagonal PEs in
the same column and row. Each PE compares the two
numbers, and in case the column number is greater than
the row number, an invalidation signal is written onto
the row bus. Diagonal PEs read from the bus and those
PEs which are not invalidated hold the maximum number.

This reconfigurable mesh algorithm takes O(1) commu-
nication steps. In our mesh implementation, we need N
clock cycles for a row/column-spanning communication
which amounts to overall 3N communication cycles.

• Algorithm #2 identifies the maximum among N numbers
of K-bit on a mesh of size N . The network has to be
configured such that all PEs are connected by a single
bus. The algorithm runs in K steps. Figure 5(a) shows
an example for N = 4 and K = 3. In each step
i, 0 ≤ i < K, beginning with the most significant bit,
each valid PE writes the bit at position i to the bus if this
bit is ’1’, or reads from the bus if the bit is ’0’. Whenever
a PE reads a ’1’, it invalidates itself as apparently another
PE holds a greater number. After K iterations and, thus,
O(K) communication steps, the maximum number is
found. In our mesh implementation we employ an array
of size

√
N ×

√
N and the switch settings {NSWE} for

broadcasting, which results in 2
√

NK clock cycles for
communication.

• Algorithm #3 simulates a binary tree on a mesh of
dimension

√
N ×

√
N . Figure 5(b) shows an example

for one row of a 4 × 4 mesh. In the first step, each PE
with an odd index receives the number from its right
neighbor and stores the maximum of this number and its
own number. Then, all PEs with even indices configure
their switches as pass-through, i.e., pattern {N,S,WE},
and the procedure is repeated with all PEs of index i and
i + 2. After log2(N) steps the left-most PEs in each row
holds the row maximum. The procedure is again applied
to the first column. Eventually, the top-left PE holds
the maximum number. This algorithm requires 2log2(N)
communication steps in the reconfigurable mesh model,
which maps to 2

√
N clock cycles in our implementation.

Considering runtime complexity, algorithm #1 is certainly
optimal. This optimality, however, is achieved at the expense
of N2 PEs. For algorithms #2 and #3, N PEs are sufficient. In
turn, their runtime complexities depend either on the bit-width
or weakly on the number of PEs. Importantly, in a practical
implementation where there is no constant time communica-
tion the trade-offs between the different algorithms change.
The area-consuming algorithm #1 which theoretically excels in
runtime, actually requires the most cycles for communication.
Algorithm #2 whose runtime complexity depends only on the
bit-width which presumably is rather small, takes K times
more cycles for communication than algorithm #3.

Picking an RMESH algorithm with the lowest runtime
complexity to solve a given problem on a practical mesh does
not automatically lead to the fastest implementation. As a more
general observation, we note that those RMESH algorithms are
good candidates for practical implementation that tend to rely
on multiple, but rather short bus segments.

Fig. 5. Two maximum algorithms for N values on N nodes.

B. Synchronization

In an RMESH, all nodes operate in lock-step. While every
PE has its own instruction memory and program counter and
can thus run independently, the communication step must be
synchronized. Currently, we have implemented two different
ways of achieving this synchronization.

The first approach schedules PE instructions in such a way
that the communication steps on all PEs are executed in the
same clock cycle. This requires that we know a-priori the
execution times of all computation steps. Since the computa-
tion steps of RMESH algorithms must have constant runtime,
this is not overly restrictive. The instructions to be executed
by a certain PE primarily depend on the PE’s identifier and
the mesh dimension. If the algorithm statically differentiates
between PEs, our code generator statically schedules nop
instructions to ensure that all branches (all PEs) take the same
number of cycles. For dynamic branches, the code generator
schedules assembly code that, again, leads to equal execution
times irrespective of the branch taken.

A second method for synchronizing the cores is to interrupt
them if valid data is detected on the bus. To that end, the data
lines are extended with a valid bit. If data arrives, the Picoblaze
core receives an interrupt and jumps to the highest address
(typically, 3FF). This interrupt-driven technique couples the
cores in a more loosely fashion and does not require the rather
tedious synchronization at the level of clock cycles.

ENABLE INTERRUPT
...
ADD BARRIER, <#SLEEP+1>
CALL _WAIT
INPUT ACC, pIn
...
_WAIT:
COMPARE BARRIER, 00
RETURN Z
JUMP _WAIT

_ISR:
SUB BARRIER, 01
RETURNI ENABLE

;@3FF
JUMP _ISR

Listing 1. Reader

...
OUTPUT ACC, pOut
LOAD RLOOP, 02
CALL _LOOPNOP
...

_LOOPNOP:
SUB RLOOP, 01
COMPARE RLOOP, 00
JUMP NZ, _LOOPNOP
RETURN

Listing 2. Writer.

Listings 1 and 2 show assembly code for the communication
routines of a reader and a writer node that implements the
interrupt-driven barrier mechanism. First, the reader initializes
its local BARRIER register. If a reader does not participate
in the next k communication phases, it simply adds k + 1 to
BARRIER and calls the _WAIT subroutine. Every time valid

TABLE I
SOFTCORE ARRAY COMPONENTS: RESOURCE UTILIZATION AND CLOCK

RATE (IN MHZ) FOR A VIRTEX-4 LX200/SPEEDGRADE -11.

Building block slices BRAM fmax

Picoblaze (PE1) 114 (0.13%) 1 184
Picoblaze+mult. (PE2) 131 (0.15%) 1 184
RMESH switch (SE1) 144 (0.15%) 0 192
HVRM switch (SE2) 67 (0.08%) 0 237
Node1 (PE1 + SE1) 265 (0.30%) 1 156
Node2 (PE1 + SE2) 178 (0.20%) 1 156
Node3 (PE2 + SE1) 195 (0.22%) 1 156
Node4 (PE2 + SE2) 282 (0.32%) 1 156
Prototype: µBlaze, 65091 (73%) 264 100
FSLs and 256 × Node4 (78%)

data passes the node, the BARRIER register is decremented.
When the register reaches 0, the _WAIT block is exited and
the next valid data can be read.

The writer node outputs its data on a dedicated port (named
pOut in Listing 2). If required for the overall timing, writers
execute a number of nop instructions according to a prede-
termined waiting time. For bounding code size, waiting times
are implemented in loops, e.g., _LOOPNOP in Listing 2. It
is important to note that there is no acknowledgment sent
over the bus. Consequently, the code generation tools have to
make sure that readers do not lag more than one write phase
behind. Further, situations must be avoided where there is no
writer for a bus segment. There are several way to further
improve the synchronization mechanism. For example, using
consecutively numbered communication identifiers instead of
a valid bit would allow for more flexibility.

V. PROTOTYPE & CASE STUDY

In this section, we present our FPGA prototype and a
matrix multiplication case study in order to demonstrate the
practicability of a many-core architecture that follows the
reconfigurable mesh model.

A. FPGA Prototype

We have synthesized the different components for our
softcore array to an FPGA Xilinx Virtex-4 LX200, speedgrade
-11. The synthesis results are shown in Table I. As processing
element we employ the Xilinx Picoblaze core in its native
version (PE1), as well as extended with a dedicated multiplier
(PE2), both versions contained in a wrapper. Further, we have
implemented two switch elements, one for the RMESH model
(SE1) and one for the more restricted horizontally/vertically
switched mesh (SE2). The resource utilization and speed
figures for the different node types are also presented in Table
I.

As a host, we use the Xilinx Microblaze 32-bit RISC core
connected to an N×N array of PEs via two FSLs. An overall
softcore array for running RMESH algorithms is presented in
Figure 6. Every first tile of a row contains a special wrapper
that connects to the communication controller. This controller
fetches 32-bit words out of the incoming FSL, splits the words
into four 8-bit words and shifts the data to the indented

position of the array. As this conversion takes one clock
cycle, a complete column of input data can be provided every⌈

N
4

⌉
cycles. For writing data, the communication controller

assembles consecutive 8-bit words to 32-bit words and pushes
them into the outgoing FSL. The latency for transferring an
operand through an FSL link is four clock cycles. Figure 6
displays the 16 × 16 node prototype system we have used
for implementing the matrix multiplication case study. The
resource utilization and clock speed for this prototype is also
given in Table I.

Fig. 6. Prototype comprising a Microblaze system attached to a 16 × 16
RMESH.

B. Case Study

As an example, we have mapped the reconfigurable mesh
algorithm for sparse matrix multiplication presented in [30] to
our 16 × 16 array. The algorithm multiplies two matrices A
and B of dimension N ×N on an array of size N ×N and is
outlined in Algorithm 1. The elements aij ∈ A and bij ∈ B
have to be preloaded to the corresponding nodes in the array.

The outer repeat-loop iterates over the maximum number
of nonzero elements in a column, which is less or equal to
k, the sparseness value. In the inner-most forall-loop, all
nonzero products are considered. As there are also at most k
of these products per column, the runtime complexity of the
algorithm is O(k2) steps.

The practical realization of this reconfigurable mesh al-
gorithm demonstrates the disparity between the algorithm
formulation in pseudo code and the actual physical imple-
mentation. For example, the algorithm requires to ”route the
top-most nonzero p-element of column i to all nodes in row
j”, where j is the index given by one of the factors of p.
Theoretically, this pseudo code statement takes O(1) steps. In
the implementation, we require six column/row broadcasts to
realize this step.

We have measured the algorithm runtimes for different
sparseness values. The results for k = 1, . . . , 10 are shown
in Figure 7. This figure presents the number of clock cycles

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

[c
lo

ck
 c

yc
le

s]

Sparseness

5k

10k

15k

Communication cycles
Computation cycles
Computation cycles (with multiplier)
Runtime
Runtime (with IO)

Fig. 7. Runtimes of the matrix multiplication algorithm for different sparseness values.

Data: Matrices A, B with at most k nonzero elements
per row

Result: C = A×B
repeat

forall columns i pardo
Broadcast the top-most nonzero A-element of
column i together with its row index to all PEs in
row i.

parend
forall PEs pardo

Multiply the received A-element with the local
B-element.

parend
forall columns i pardo

forall non-zero products p do
Route the top-most nonzero p-element to the
row with the index given by the A-element.

end
Discard the top-most nonzero A-element.

parend
until All nonzero A-elements have been discarded

Algorithm 1: Column-sparse matrix multiplication [30].

for communication, computation with and without dedicated
multipliers, raw algorithm runtime (with multipliers), and the
overall runtime including data communication to the host.

Considering a sparseness of k = 2, i.e., a matrix column
contains at most two nonzero elements, the overall algorithm
runtime is 4590 cycles when using a shift&add routine for
multiplication and 3886 cycles when a dedicated multiplier
is used. Compared to a straight-forward matrix multiplication

routine on the Microblaze which takes 14788 clock cycles,
the array is 3.8 times faster. As Figure 7 clearly demonstrates,
data I/O leads to a substantial overhead, especially for small
sparseness levels where the RMESH algorithm is more effi-
cient. For k = 2, as many as 2590 cycles and thus 67% of the
overall runtime is spent for transferring data in and out of the
array.

Our reconfigurable mesh implementation shares the problem
of limited I/O bandwidth with all massively parallel archi-
tectures. An approach to increase I/O bandwidth is to feed
data from several FSL channels in parallel to our array. The
efficiency of this approach depends on the overall system
architecture and, eventually, the bandwidth to system memory.
Further, the matrix multiplication algorithm might be used as
a kernel embedded into a larger application. If the matrices
are already in the array as a result of a previous computation,
the mesh is 11.4 times faster than the Microblaze for k = 2. If
we consider a sparseness of k = 1, our architecture computes
the result in 200 cycles. Compared to the single Microblaze,
this yields a speedup of almost 74.

VI. CONCLUSION

We have presented the design and implementation of a
softcore array and a corresponding tool flow, that allow the
realization of reconfigurable mesh algorithms. A sparse matrix
multiplication case study on an FPGA prototype utilizing 256
softcores has demonstrated the feasibility of our approach. The
main result of this work is the insight into the challenges
and alternatives of realizing reconfigurable mesh algorithms
on many-cores with circuit-switched networks.

The quantitative results we have achieved point to two

important issues that need to be addressed in future work.
First, the optimization of the communication phase is of
utmost importance to make the reconfigurable mesh approach
competetive. One one hand, we need fast implementations
of the communication infrastructure in silicon – our imple-
mentation in field-programmable logic can only serve as an
emulation. On the other hand, we also have to carefully select
the reconfigurable mesh algorithm used for a given problem.
Here, we have discussed attributes of RMESH algorithms
that make them amenable to an efficient many-core imple-
mentation. Second, as any massively parallel architecture, the
reconfigurable mesh can severely suffer from I/O bandwidth
limitations. We need to implement larger applications and
analyze the system-level performance for a fair comparison
to alternative architectures.

A considerable restriction of almost any reconfigurable
mesh algorithm is posed by the dependency between the
problem size and the mesh dimension, which severely ham-
pers scalability. For example, the sparse matrix multiplication
algorithm used in our case study requires a mesh of the
same dimensions as the matrices have. Several techniques have
been proposed for reconfigurable meshes in order to achieve
scalability with problem size, one being self-simulation. For
example, Ben-Asher et al. [9] discuss self-simulation tech-
niques and their properties, and present an optimal simulation
for the HVR-Mesh model, a strong simulation for the LR-
Mesh model and a weak simulation for the basic RMESH
model.

A key issue for our future work is to add such scaling
strategies to our code generation tools. In our case study, we
use a slightly modified version of the original sparse matrix
multiplication algorithm of [30]. For this modified algorithm,
the HVRM switch patterns are sufficient. Hence we can apply
an optimal self simulation that comes with a slowdown of
O(N2

P 2), when multiplying matrices of size N × N on a
mesh of size P ×P . This particular self simulation technique
uses the so-called contraction mapping to assign virtual to
physical nodes. Thereby, a local contiguous region of the
larger (simulated) mesh is evaluated by a single node on the
real (simulating) mesh. Benefits of this technique are shorter
broadcast distances and the opportunity to increase the load
for single nodes, which improves scalability and efficiency of
the proposed architecture.

REFERENCES

[1] R. Vaidyanathan and J. L. Trahan, Dynamic Reconfiguration, R. G.
Melhem, Ed. Springer, 2004.

[2] L. Benini and G. DeMicheli, “Networks on Chips: A New SoC
Paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[3] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of Network-on-chip,” ACM Computing Surveys, vol. 38, no. 1, 2006.

[4] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip
Inteconnection Networks,” in Proc. of the 38th Conference on Design
Automation, DAC ’01, 2001.

[5] A. Banerjee, R. Mullins, and S. Moore, “A Power and Energy Explo-
ration of Network-on-Chip Architectures,” in Proc. 1st Int. Symposium
on Networks-on-Chip NOCS’07, 2007, pp. 163–172.

[6] R. Miller, V. Prasanna-Kumar, D. Reisis, and Q. Stout, “Parallel Compu-
tations on Reconfigurable Meshes,” IEEE Transactions on Computers,
vol. 42, no. 6, pp. 678–692, 1993.

[7] B.-F. Wang and G.-H. Chen, “Constant Time Algorithms for the
Transitive Closure and Some Related Graph Problems on Processor
Arrays with Reconfigurable Bus Systems,” Transactions on Parallel and
Distributed Systems, vol. 1, no. 4, pp. 500–507, 1990.

[8] H. Li and M. Maresca, “Polymorphic-Torus Network,” IEEE Transac-
tions on Computers, vol. 38, no. 9, pp. 1345–1351, 1989.

[9] Y. Ben-Asher, D. Gordon, and A. Schuster, “Efficient Self-Simulation
Algorithms for Reconfigurable Arrays,” Journal of Parallel and Dis-
tributed Computing, vol. 30, no. 1, pp. 1–22, 1995.

[10] Y. Pan and K. Li, “Linear Array with a Reconfigurable Pipelined Bus
System – Concepts and Applications,” Inf. Sci., vol. 106, no. 3-4, pp.
237–258, 1998.

[11] M. Maresca and H. Li, Reconfigurable Massively Parallel Computers.
Prentice Hall, 1991, ch. Polymorphic VLSI arrays with distributed
control, pp. 33–63.

[12] C. Weems, S. Levitan, A. Hanson, E. Riseman, J. Nash, and D. Shu,
“The Image Understanding Architecture,” Int. Journal of Computer
Vision, vol. 2, no. 3, pp. 252–282, 1989.

[13] M. M. Murshed and R. P. Brent, “RMSIM: A Serial Simulator for
Reconfigurable Mesh Parallel Computers,” The Australian National
University, Tech. Rep. TR-CS-97-06, 1997.

[14] K. Miyashita and R. Hashimoto, “A Java Applet to Visualize Algorithms
on Reconfigurable Mesh,” in Proc. of the 15th Workshops on Parallel
and Distributed Processing, IPDPS ’00, 2000, pp. 137–142.

[15] K. Sun, J. Zheng, Y. Li, and X. Pan, “Design of a Simulator for
Mesh-Based Reconfigurable Architectures,” in Int. Conf. on Network
and Parallel Computing, 2007.

[16] C. Steckel, M. Middendorf, H. A. ElGindy, and H. Schmeck, “A
Simulator for the Reconfigurable Mesh Architecture,” in IPPS/SPDP
Workshops, 1998, pp. 99–104.

[17] M. Maresca and P. Baglietto, “A Programming Model for Reconfigurable
Mesh based Parallel Computers,” in Programming Models for Massively
Parallel Computers, 1993, pp. 124–133.

[18] P. Baglietto, M. Maresca, and M. Migliardi, “A Simulator For Reconfig-
urable Massively Parallel Architectures,” in 2nd Euromicro Workshop on
Parallel and Distributed Processing, January 26-28 1994, pp. 185–189.

[19] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” IEEE Micro, vol. 27,
no. 5, pp. 15–31, 2007.

[20] M. Butts, “Synchronization through Communication in a Massively
Parallel Processor Array,” IEEE Micro, vol. 27, no. 5, pp. 32–40, 2007.

[21] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An architecture and
compiler for scalable on-chip communication,” IEEE Transactions on
VLSI Systems, vol. 12, no. 7, pp. 711–726, 2004.

[22] G. Panesar, D. Towner, A. Duller, A. Gray, and W. Robbins, “Determin-
istic Parallel Processing,” Int. Journal of Parallel Programming, vol. 34,
no. 4, pp. 323–341, 2006.

[23] Y. Ben-Asher and A. Schuster, “Time-size tradeoffs for reconfigurable
meshes,” Parallel Processing Letters, vol. 6, no. 2, pp. 231–245, 1996.

[24] B. Beresford-Smith, O. Diessel, and H. ElGindy, “Optimal algorithms
for constrained reconfigurable meshes,” Journal of Parallel and Dis-
tributed Computing, vol. 39, no. 1, pp. 74–78, 1996.

[25] M. Kunde and K. Gurtzig, “Efficient sorting and routing on reconfig-
urable meshes using restricted bus length,” in Proc. th International
Parallel Processing Symposium, 1997, pp. 713–720.

[26] M. Murshed and R. P. Brent, “How Promising is the k-Constrained
Reconfigurable Mesh?” in Proc. of the 15th Int. Conf. on Computers
and Their Applications, 2000, pp. 288–291.

[27] H. Giefers and M. Platzner, “A Many-Core Implementation Based on the
Reconfigurable Mesh Model,” in Proc. Int. Conf. on Field Programmable
Logic and Applications, FPL ’07, 2007, pp. 41–46.

[28] M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno,
“Asynchronous on-chip networks,” Computers and Digital Techniques,
IEE Proceedings -, vol. 152, no. 2, pp. 273–283, 2005.

[29] A. Shacham, K. Bergman, and L. P. Carloni, “The Case for Low-Power
Photonic Networks on Chip,” in Proc. of the 44th Design Automation
Conference, DAC ’07, 2007, pp. 132–135.

[30] M. Middendorf, H. Schmeck, H. Schröder, and G. Turner, “Multiplica-
tion of Matrices With Different Sparseness Properties on Dynamically
Reconfigurable Meshes,” VLSI Design, vol. 9, no. 1, pp. 69–81, 1999.

