Sumário

- 1 Introdução ao Processamento de Consultas
- 2 Otimização de Consultas
- 3 Plano de Execução de Consultas
- 4 Introdução a Transações
- 5 Recuperação de Falhas
- 6 Controle de Concorrência
- 7 Fundamentos de BDs Distribuídos
- 8 SQL Embutida

Definição do Plano de Execução

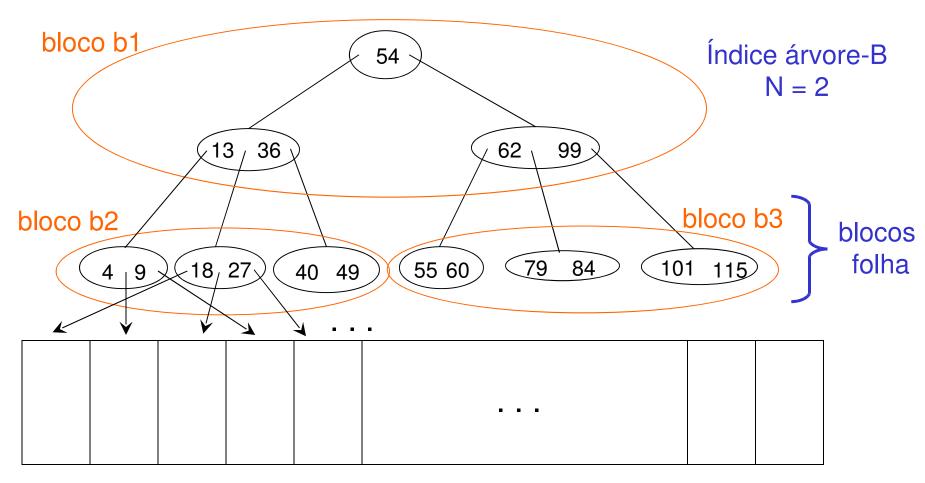
- Analisar alternativas de processamento de operações algébricas
 - escolher a melhor alternativa
- Diversas medidas podem ser consideradas
 - tempo CPU, comunicação, acessos a disco
 - medida mais relevante ("gargalo"): acessos a disco
 - para avaliar o custo de uma alternativa
 - análise de estimativas sobre os dados
 - tamanho das tabelas, existência de índices, seletividade, ...
 - custo dos algoritmos de processamento
 - supõe armazenamento clusterizado de dados e índices
 - supõe que o DD mantém localização física de arquivos de dados e índices

Estimativas sobre os Dados

n_R	número de tuplas na tabela R
t_R	tamanho (em bytes) de uma tupla de R
$t_R(a_i)$	tamanho (em bytes) do atributo a_i de R
f_R	fator de bloco de R (quantas tuplas de R cabem em um bloco *)
	* bloco: unidade de R / W em disco (medida básica de avaliação)
	$f_R = \lfloor t_{bloco} / t_R \rfloor$
$V_R(a_i)$	número de valores distintos do atributo a_i de R
$C_{R}(a_{i})$	cardinalidade (estimada) do atributo a_i de R (tuplas de R que
	satisfazem um predicado de igualdade sobre a_i)
	(estimando distribuição uniforme: $C_R(a_i) = n_R / V_R(a_i)$)
$GS_{R}(a_{i})$	grau de seletividade do do atributo a_i de R (valor entre 0 e 1)
	(estimando distribuição uniforme : $GS_R(a_i) = 1 / V_R(a_i)$)
b_R	número de blocos necessários para manter tuplas de R
, , ,	$\boldsymbol{b}_{R} = \lceil \boldsymbol{n}_{R} / \boldsymbol{f}_{R} \rceil$

Exemplo de Estimativas de Tabela

- Existem 100 médicos cadastrados na tabela Médicos; cada tupla possui 60 bytes e 1 bloco lê/grava 1 kb
- Estimativas
 - $-n_{M\acute{e}dicos}$ = 100 tuplas
 - $-t_{M\'edicos} = 60$ bytes
 - $-f_{M\acute{e}dicos} = \lfloor 1024 / 60 \rfloor = 17 \text{ tuplas}$
 - $-b_{M\acute{e}dicos} = \lceil 100 / 17 \rceil = 6 \text{ blocos}$


Estimativas sobre os Índices

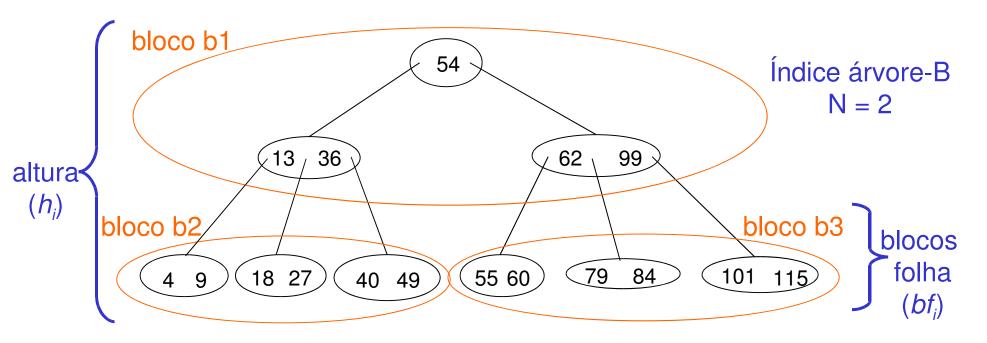
- Principais estruturas de índice utilizadas por SGBDs
 - Árvore-B
 - estrutura em árvore "balanceada"
 - nodos folha têm todos a mesma altura
 - vários nodos estão fisicamente armazenados em um mesmo bloco

- Hashing

- tabela que mantém valores de chave de tuplas e seus endereços de armazenamento físico
- várias registros (linhas da tabela hash) estão fisicamente armazenados em um mesmo bloco

Índices Árvore-B - Exemplo

Blocos de dados


Índices Hash - Exemplo

	_	chave	endereço físico	o próximo	•
	0	null	null	null	
bloco 1	1	112	Z		Ь
<i>chave</i> = 56	2	1	р	null	
h(56) = 3	── >3	241	Х		
(acesso direto ao bloco que contém o					
registro com a chave) *	K - 1	56	У	null	←
* mapeamento registro-bloco	K	114	j	(M - 1)	Ь,
mantido em ED em memória					
bloco 2	M - 1	305	V	null	←

Estimativas sobre os Índices

f_{i}	fator de bloco do índice <i>i</i> (quantos nodos de uma árvore-B cabem em um bloco)			
h_i	número de níveis (em termos de blocos) do índice para valores de um atributo a_i ("altura" do índice)			
	(assume-se armazenamento clusterizado "em largura")			
	$h_i = \lceil \log_{fi} \lceil V_R(a_i) / N \rceil \rceil$ (para índices árvore-B)			
	(N é o número de valores que cabem em um nodo)			
	$h_i \cong 1$ (para índices <i>hash</i>)			
	(chaves são geralmente encontradas no bloco indicado)			
bf _i	número de blocos de índice no nível mais baixo do índice árvore-B (número blocos "folha")			

Exemplo de Estimativas de Índice

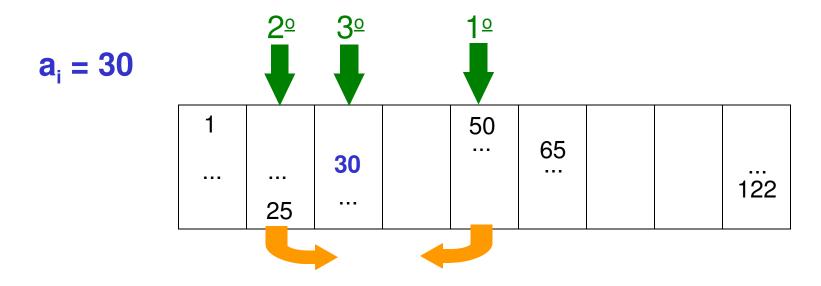
Estimativas

$$-f_{indice-CRM}$$
 = 3 nodos

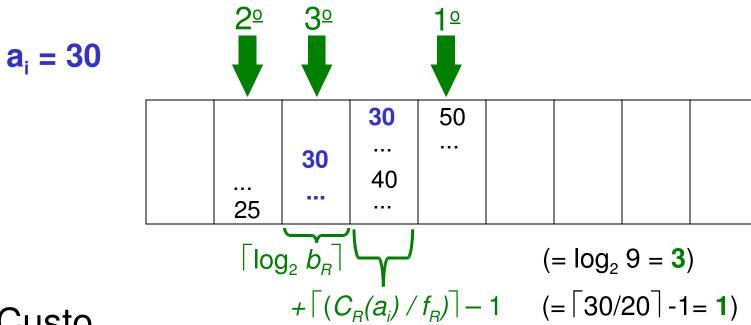
$$-h_{indice-CRM} = \lceil \log_{ii} \lceil V_R(a_i) / N \rceil \rceil = \log_3 \lceil 17 / 2 \rceil = 2$$

$$-bf_{indice-CBM} = 2$$

Processamento de Seleções (σ)


- Alternativas e suas estimativas de custo
 - A1: pesquisa linear
 - A2: pesquisa binária
 - A3: índice primário para atributo chave
 - A4: índice primário para atributo não-chave
 - A5: índice secundário para atributo chave
 - A6: índice secundário para atributo não-chave
 - A7: desigualdade (>, >=) com índice primário
 - A8: desigualdade (<, =) com índice primário
 - A9: desigualdade com índice secundário

Pesquisa Linear (A1)

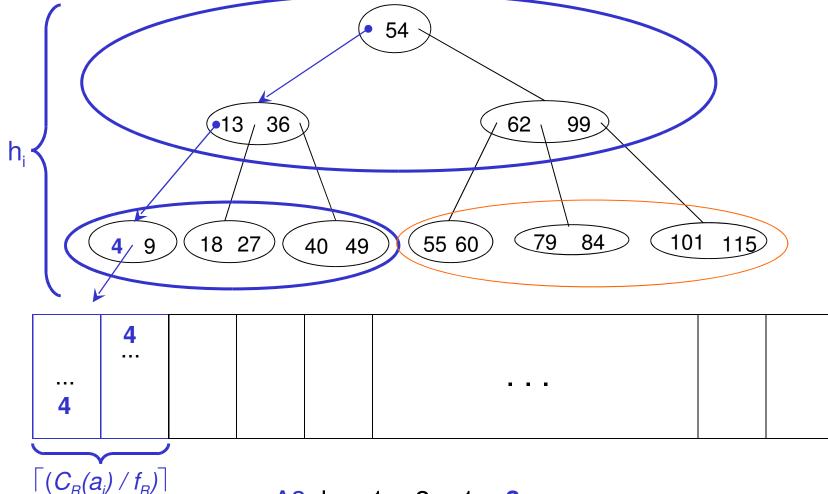

- Varre todo o arquivo para buscar os dados desejados
 - acessa todos os blocos do arquivo
- Em alguns casos, é a única alternativa possível
 - sempre pode ser aplicada!
- Custo para uma tabela R
 - custo $= b_R$

Pesquisa Binária (A2)

- Aplicado sobre uma tabela R quando
 - dados estão ordenados pelo atributo de seleção
 a_i
 - há uma condição de igualdade sobre a;

Pesquisa Binária - Custo

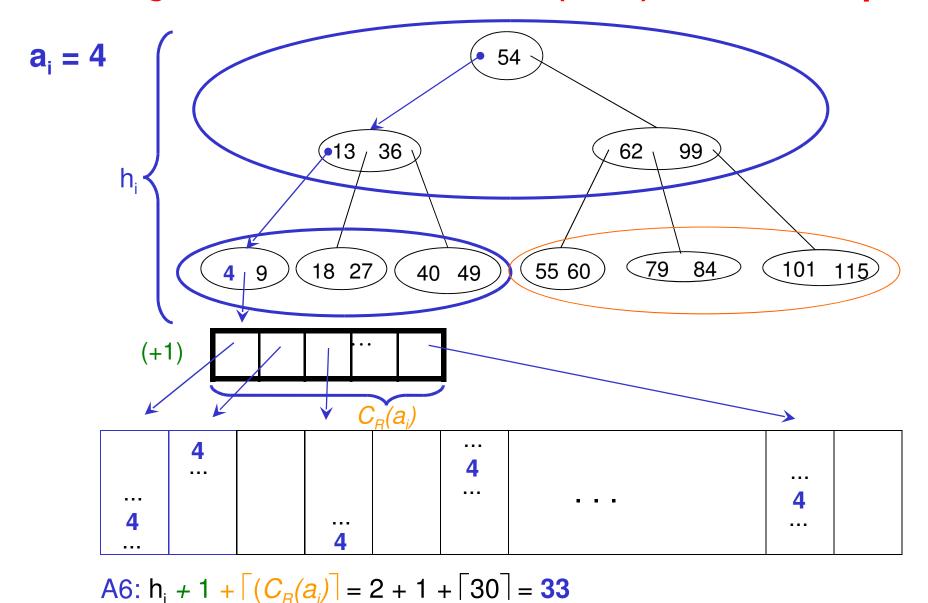
- Custo
 - custo para acessar o bloco da $1^{\underline{a}}$ tupla: $\lceil \log_2 b_R \rceil$
 - custo aproximado para acessar os blocos das demais tuplas: $(C_R(a_i)/f_R)$ 1 desconta-se o bloco da primeira tupla (já foi localizada)
 - custo = $\lceil \log_2 b_R \rceil + \lceil (C_R(a_i) / f_R) \rceil 1$
 - se a_i é chave: custo = $\lceil \log_2 b_R \rceil$ (valor não se repete)


Seleções Utilizando Índices

- Atributo a_i com índice primário
 - leitura do índice corresponde à leitura na ordem física do arquivo
 - arquivo fisicamente ordenado por valores de a_i
 - se a_i é chave (A3)
 - custo = h_i + 1 acesso ao bloco onde está a tupla com o valor de a_i
 - se a_i é não-chave (A4)
 - custo = h_i + $(C_R(a_i)/f_R)$ \longrightarrow número aproximado de blocos contíguos acessados a partir do 1° bloco que contém o valor

da chave

Seleções c/ Índices (A3 e A4) - Exemplo


A3:
$$h_i + 1 = 2 + 1 = 3$$

A4:
$$h_i + \lceil (C_R(a_i) / f_R) \rceil = 2 + \lceil 30/20 \rceil = 2 + 2 = 4$$

Seleções Utilizando Índices

- Atributo a, com índice secundário
 - arquivo não está fisicamente ordenado por valores de a_i
 - se a_i é chave (atributo *unique*, p.ex.) (A5)
 - custo = h_i + 1
 - se a_i é não-chave (A6)
 - supor que o bloco folha do índice aponta para uma lista de apontadores para as tuplas desejadas
 - estimar que esta lista cabe em um bloco
- custo = h_i + 1 + $C_R(a_i)$ pior caso: cada tupla com o valor desejado está em um bloco \neq lista de apontadores

Seleções c/ Índices (A6) - Exemplo

Exercício 1

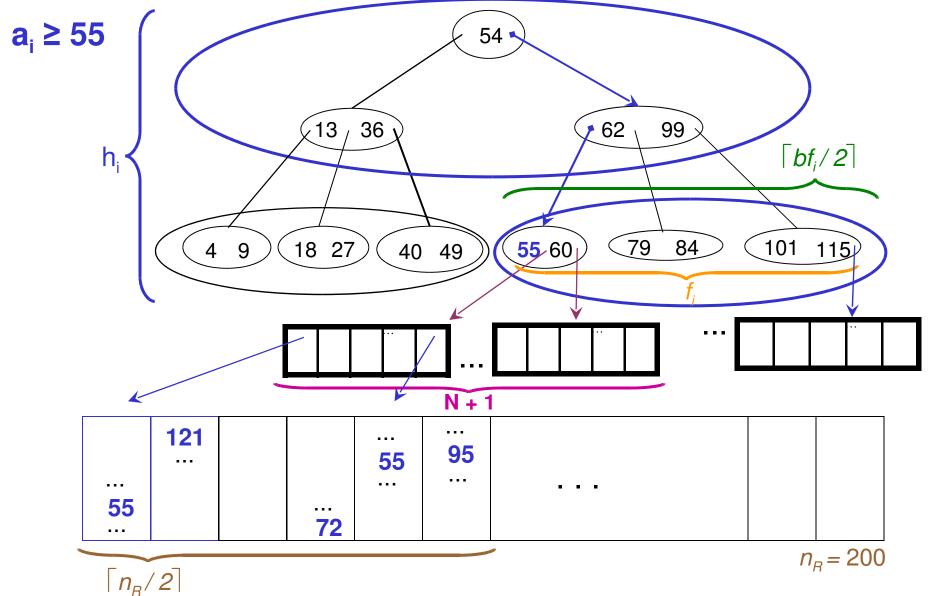
- Dado Pac(<u>codp</u>, nome, idade, cidade, doença) e as seguintes estimativas: n_{Pac} = 1000 tuplas; t_{Pac} = 100 bytes; V_{Pac}(codp) = 1000; V_{Pac}(doença) = 80; V_{Pac}(idade) = 700; um índice primário árvore-B para codp (I1) com N = 5; f_{I1} = 10; um índice secundário árvore-B para doença (I2) com N = 3; f_{I2} = 5; e 1 bloco = 2 kb
- Supondo a seguinte consulta:

$$\sigma_{\text{doença} = \text{'câncer'}}$$
 (Pac)

- a) qual a melhor estratégia de processamento para σ?
- b) se agora 1 bloco = 8 kb, a estratégia escolhida no item anterior continua sendo a melhor?

Comparação por Desigualdade

- Supõe-se que aproximadamente metade das tuplas satisfazem a condição
 - $-a_i \ll x \Rightarrow \text{número de tuplas} \approx \lceil n_R / 2 \rceil$
- DD mantém valores mínimo/máximo de a;
 - $-MIN(a_i) = X$
 - número de tuplas = 0, se $a_i < x$
 - número de tuplas = n_B , se $a_i >= x$
 - $-MAX(a_i) = y$
 - número de tuplas = 0, se $a_i > y$
 - número de tuplas = n_R , se $a_i <= y$


Desigualdade e Índices

- Atributo a_i com índice primário
 - comparações do tipo $a_i > x$ ou $a_i >= x$ (A7)
 - custo para buscar $a_i = x$ através do índice: h_i
 - custo (médio) para varredura do arquivo: \[\bar{b}_R / 2 \]
 - custo = $h_i + \lceil b_R / 2 \rceil$
 - comparações do tipo $a_i < x$ ou $a_i <= x$ (A8)
 - varre o arquivo até $a_i = x$
 - custo (médio) = $\lceil b_R / 2 \rceil$

Desigualdade e Índices

- Atributo a_i com índice secundário (A9)
 - custo para buscar $a_i = x$ através do índice: h_i
 - custo para varredura dos blocos folha do arquivo de índice (em média, metade dos blocos é acessado): [bf_i / 2]
 - custo para varredura das listas de apontadores em cada bloco folha: $\lceil bf_i / 2 \rceil * f_i * (N+1)$
 - custo para acesso a blocos de dados: $n_R/2$
- Custo = h_i + bf_i / 2 + bf_i / 2 * f_i * (N+1) + n_i / 2 cada bloco possui f_i nodos e cada nodo com (N+1) listas de apontadores

Desig. c/ Índices (A9) - Exemplo

A9: = $h_i + \lceil bf_i / 2 \rceil + \lceil bf_i / 2 \rceil * f_i * (N+1) + \lceil n_B / 2 \rceil = 2 + 1 + 1*3*3 + 100 = 112$

Conjunções – Estimativa de Tamanho

- Dada uma seleção o c1 ∧ c2 ∧ ... ∧ cn (R)
 - estima-se a cardinalidade de cada condição c_i
 - $C(C_i)$
 - tamanho da relação resultante é dado por

$$\forall \lceil \mathsf{n}_{\mathsf{R}} \cdot (\mathsf{C}(c_1), \mathsf{C}(c_2), \ldots, \mathsf{C}(c_n)) / (\mathsf{n}_{\mathsf{R}})^{\mathsf{n}} \rceil$$

Exemplo

$$R(\underline{a}, b, c)$$
 $n_R = 100 \text{ tuplas } V_R(a) = 100 V_R(b) = 20$

Dado $\sigma_{a>5 \land b=10}(R)$, temos:

$$C(a>5) = n_B / 2 = 50 \text{ tuplas}$$

$$C(b=10) = n_B / V_B(b) = 5 \text{ tuplas}$$

Estimativa tamanho = $\lceil 100 (50.5) / 100^2 \rceil$ = 3 tuplas

Disjunções – Estimativa de Tamanho

- Dada uma seleção σ_{c1 v c2 v ... v cp} (R)
 - tamanho da relação resultante é dado por

$$\lceil n_R . (1 - (1 - C(c_1) / n_R). (1 - C(c_2) / n_R). (1 - C(c_p) / n_R)) \rceil$$

Exemplo

```
R(\underline{a}, b, c) n_R = 100 \text{ tuplas} V_R(a) = 100 V_R(b) = 20 Dado \sigma_{a>5 \lor b=10}(R), temos: C(a>5) = n_R / 2 = 50 \text{ tuplas} C(b=10) = n_R / V_R(b) = 5 \text{ tuplas} Estimativa tamanho = 100.(1 - (1 - 50/100).(1 - 5/100)) = 53 tuplas
```

Negações – Estimativa de Tamanho

- Dada uma seleção σ_{¬θ} (R)
 - tamanho da relação resultante é dado por

```
n_R – estimativa Tamanho (\sigma_{\theta})
```

Exemplo

```
R(\underline{a}, b, c) n_R = 100 \text{ tuplas } V_R(a) = 100 V_R(b) = 20
```

Dado $\sigma_{\neg(a>5\lor b=10)}$ (R), temos:

Estimativa tamanho($\sigma_{a>5 \vee b=10}$) = 53 tuplas

Estimativa tamanho($\sigma_{\neg(a>5\lor b=10)}$) = 100 –53 = 47 tuplas

Exercício 2

- Considere a relação Pac e as estimativas dadas no Exercício 1
- Dada a consulta

```
\sigma_{codp > 10000 \land cidade = 'Florian\'opolis'} (Pac)
```

- a) qual a melhor estratégia de processamento para σ ?
- b) supondo agora a existência de um índice secundário árvore-B para cidade (I3) com N = 3, $f_{I3} = 5$, $bf_{I3} = 10$ e $V_{Pac}(cidade) = 100$, qual a melhor estratégia de processamento para σ ?

Exercício 3

Estime o tamanho do resultado da execução das operações abaixo sobre a relação *Pac*

```
a) \sigma_{codp > 10000 \land doença = 'hepatite'} (Pac)
```

b)
$$\sigma_{idade > 60 \land cidade = 'Lages' \lor codp = 10000}$$
 (Pac)

```
C) \sigma_{idade = 60 \land cidade = 'Lages' \lor \neg (codp = 10000) \land idade < 20} (Pac)
```