
Part II

Interconnection Network
Architectures

22

Chapter 2

Linear arrays

2.1 Connecting Processors

As we mentioned, in the mid-eighties low production cost of processor chips

enabled computer manufacturers attempt building machines that could con-

tain hundreds, even thousands, of processors. However, obtaining cheap

processors is only half of the manufacturing problem: The other half is, how

do you connect them so they can communicate fast. For now, we leave for

later the problem of how to program such a machine once you have built it.

There are several ways researchers and manufacturers came up in build-

ing parallel machines. For example, given 9 processing elements, any graph

on 9 nodes is a potential interconnection network. Figure 1.5 shows some of

the simpler ones: a linear array L9, a circular ring C9, a star S9, a binary

tree T9, a 2-dimensional array D9, or maybe a random network R9. Which

of them is the best way of connecting the processing elements?

Maybe be the way to go is to connect every pair of PEs, creating one

direct connection between them. This is known as the complete graph K9.

(Figure 2.1). This approach seems to incur a large cost, however, since

so many wires need to be implemented. As a matter of fact, there are

36 connections in K9 and, in general, n(n − 1)/2 connections in Kn. Can

23

Figure 2.1: The complete graph K6.

we do that? Moreover, even if we actually can do that, is the trouble of

implementing a complete graph worth the cost?

Clearly, to be able to answer such questions, we need some way of mea-

suring the “goodness” of each candidate.

2.2 Network Characteristics

We would like to compare all networks containing n nodes. Apparently, the

number of edges in a network is one of the parameters we need to consider.

In addition, we are also interested in its diameter, its bisection width, its

I/O bandwidth and vertex degree, since they are proven to be crucial factors

in determining the network “goodness”. We also care about the existence of

symmetry and recursive structure in them. In this section we will describe

each one of them in some detail.

2.2.1 Number of Edges

We already got a tase of why the number of wires is an important factor in

the speed of a network. Simply put, more wires mean faster communication

between processors. For example, the complete graph guarantees one-step

communication between any pair of processors. However, every complete

graph with more than 4 vertices is not planar. This means that one cannot

create a one-level chip that contains more than 4 processors. To connect

24

5 or more processors on a single chip, one has to create multiple layers on

the chip which is a difficult engineering task. So, clearly, we would like the

network not to have too many wires. Looking at the examples in figure 1.5

above, we can deduce that all the networks but the complete graph are easy

to build.

2.2.2 Diameter

In a network, information needs to travel from one processor to another. If

two processors are distance d apart, i.e., if d wires need to be traversed to

get from one processor to the other, then d steps will be necessary for two

processors to communicate every time they do. Naturally we are interested

in the maximum distance between any pair of processors. We call this max-

imum distance the network diameter. In figure 1.5 above, K9 has diameter

1, while R9 has diameter 5.

Networks with small diameters are preferable. Note that if the diameter

of a network is d, then this network may run some algorithm d times slower

than one that has diameter 1. In fact, the diameter, sometimes (but not

always), sets the lower bound for the running time of an algorithm performed

on the network.

Bisection width

A third characteristic of network performance is its bisection width. To bisect

a network is to disconnect it into two pieces, each one containing roughly

the same number of processors. (We say “roughly’ since in a network with

odd number of processors, one piece will have one more processor than the

other after the bisection.) The bisection width is defined as the minimum

number of wires removed in order to bisect a network.

To see why the bisection width is an important characteristic, consider

the following example: Sometimes, results calculated by one half of the

25

network might be needed by the other half. If the bisection width of the

network is b, which is much smaller than n, the network will spend n/b

steps just shipping values around. A larger bisection width enables faster

information exchange, and is, therefore, preferable.

K9 has a bisection width of 20. In general Kn has a bisection width of

(n/2)2, if n is even, and (�n/2�) · (�n/2�) if n is odd. To see that, consider

pulling half of the vertices of Kn away from the other half. The edges that

will be stretched are those connecting the two halfs: each edge in one half

is connected to each edge of the second half.

I/O bandwidth

By I/O bandwidth we mean the number of input lines in the network. This

number apparently affects the computational speed of the network since the

time to load the processors may dominate the time to solve a particular

problem. In general, the larger the bandwidth, the better; but also the

more expensive to build the network.

Vertex degree

Each chip in a parallel machine may contain one or more interconnected

processors. Theoretically, a network may have a number of connections

that is a function on n, the total number of processors in the system, but in

real life a chip has a fixed pre-specified number of connections. The lower

this number, the easier to build the network.

Symmetry

If the network seems the same from any processor, we say that it has sym-

metry. Symmetric networks are desirable, since they simplify the resource

management and the algorithm design.

26

Figure 2.2: A 6-element linear array

Recursive Structure

A network has recursive structure if every instance of it can be created by

connecting smaller instances of the same network. For example, a network

with n nodes created by connecting in some fixed way four networks of

n/4 nodes each has recursive structure. This property often makes scalable

computers, an important feature of successful machines.

2.2.3 Arrays

2.3 Description and properties

In this chapter we will investigate linear arrays, the simplest parallel net-

work, by studying various sorting algorithms performed on them (Figure 2.2.

The following figures illustrate the basic architecture of these 1-D arrays.

Before we start, however, we will introduce some terminology and factors

that will be used to measure the power of the networks.

So, keep these factors in mind and try to calculate them every time we

introduce a new network.

The linear array of n processors has:

• diameter n − 1. Many times this is responsible or lower bounds.

• bisection width 1 (Figure 2.3).

• I/O bandwidth anywhere between 1 and n. When it is 1 or 2, it is

often referred to as a “systolic array”.

27

or

Figure 2.3: The bisection widths of linear arrays

• vertex degree 1 or 2.

• it is not symmetric, but the closely related ring is.

2.4 Algorithms

2.4.1 A first sorting algorithm — Zero time sorting

One of the first sorting algorithms developed on systolic arrays is described

next.

We keep two variables per processor initialized to hold a special value

greater than any number, which we call +∞. Data enter from the left end

and of the array. In each processing element of the following step is executed:

Input phase step: Receive an element from your left and compare it with

the one you are currently holding; keep the minimum and pass the maximum

to the right.

After all numbers have been inputted into the array the first processor

holds the minimum number; also, when some number reaches the last pro-

cessor, all elements are sorted. So, at that point we may output the sequence

in sorted order. However, we may save some time by outputting numbers

as soon as the last number has been inputted to the array 1. Figure 2.4 has

an example. The special marker (#) is used to sign the end of the input

and to switch the processors to execute the following step:
1This is the reason that this algorithm is called zero-time sorting.

28

Output phase step: Receive an element from your right and pass it to

your left.

As you can see in the figure, we need two variables per processor that

will hold the numbers to be compared. Local will hold the minimum of the

two numbers while temp will hold the maximum that will be passed to the

right.

The code that each processor has to execute is as follows:

Procedure zero-time-sorting

let local := +∞
let temp := +∞
repeat /* input phase */

temp := receive from left port

if (temp = #) then

send temp to right port

exit repeat

else

send max(local, temp) to right port

local := min(local, temp)

end if

end repeat

send local to left port

repeat /* output phase */

local := receive from the right port

send local to left port

if local = # then exit repeat

end repeat

The time for this procedure is 3n using n processors, therefore the total

29

∞

∞

∞

∞

∞

∞

∞

∞

3

∞

∞

∞

∞

∞

∞

∞

1

3

∞

∞

∞

∞

∞

∞

1

5

3

∞

∞

∞

∞

∞

1

2

3

5

∞

∞

∞

∞

#

2

3

5

∞

∞

∞

2

#

3

5

∞

∞

3

#

5

∞

3 5

#

5

#

5

#

#

2 5 1 3

 # 2 5 1

 # 2 5

 # 2

 #

 1

 1 2

 1 2 3

 1 2 3 5

 1

 1 2

 1 2 3

Figure 2.4: An example for zero-time sorting. Observe that immediately
after the last number entering the array (step 5), the first sorted number
comes out (step 6).

30

work is 3n2.

2.4.2 The “0-1” Sorting Lemma

An algorithm is oblivious if the action taken at each step is independent

of any previous steps. For example, bubble sort is oblivious, but counting

sort is not. For oblivious comparison-exchange sorting algorithms, i.e., al-

gorithms that sort by performing a sequence of predefined comparison and

exchange steps between elements, the “0-1” Sorting Lemma is the most im-

portant technique to show the correctness and compute the running times

of the algorithms.

Lemma 1 If an oblivious comparison-exchange algorithm sorts all inputs of

0’s and 1’s correctly, then it sorts all inputs with arbitrary values correctly.

Proof: For the purpose of contradiction, let’s assume an oblivious comparison-

exchange algorithm sorts all inputs of 0’s and 1’s correctly, but fails to sort

the input a1, a2, . . . , an. Suppose the correct ordering is aσ(1) ≤ aσ(2) ≤
. . . ≤ aσ(n), where σ is a permutation of the set 1, 2, . . . , n. Since the algo-

rithm fails to sort a1, a2, . . . , an, we can assume aσ(1), aσ(2), . . . , aσ(n) does

not appear at any step in sorting, and the output is aφ(1), aφ(2), . . . , aφ(n),

where φ is a different permutation from σ. Then there exists the smallest

index k such that aφ(k) �= aσ(k). In fact, since aφ(i) = aσ(i) for 1 ≤ i < k, we

have aφ(k) > aσ(k), and so aφ(l) = aσ(k) for some l > k.

Now let’s define a new sequence bi =
{

0 ai ≤ aσ(k)

1 ai > aσ(k)
. Notice that if

ai ≥ aj then bi ≥ bj . Since the comparison-exchange algorithm is oblivi-

ous, the action taken on two sequences {ai} and {bi} is identical at each

step. So the output of sorting the sequence {bi} is bφ(1), bφ(2), . . . , bφ(n) =

0, . . . , 0, 1, . . . , 1, 0, . . . , 0 where bφ(k) = 1, since aφ(k) > aσ(k), and bφ(l) = 0,

since aφ(l) = aσ(k). But we also know l > k, so bφ(1), bφ(2), . . . , bφ(n) is not

31

1 2 3 4
odd
link

even
 link

odd
link

even
 link

3 7 5 1 2

3 7 51 2

3 7 51 2

1

3

2 7 5

1 2

3

5 7

Compare 2 numbers on odd links
Switch the larger one to right

Compare 2 numbers on even links
Switch the larger one to right

odd links

even links

done!

main
to store values

right
for connection

left
for connection

Figure 2.5: Odd-even transposition.

sorted. This contradicts the assumption that the algorithm sorts 0’s and 1’s

correctly. �

The “0-1” Sorting Lemma has the amazing power of reducing the number

of input strings to be considered by the sorting algorithm from nn to 2n.

By the definition of oblivious comparison-exchange algorithm, if it sorts all

inputs of 0’s and 1’s in N steps, it can sort all inputs of arbitrary numbers in

N steps. In many cases, this fact greatly simplifies the analysis of running

time, since we only need to consider inputs of 0’s and 1’s.

2.4.3 Odd-even transposition

The odd-even transposition algorithm sorts N numbers on a linear array

of N processors. The algorithm compares and exchanges (if necessary) the

numbers linked by odd links on odd steps, and the numbers linked by even

links on even steps. Figure 2.5 has a simple example. Stack “Odd-Even
Transposition

32

The sequential running time for bubble sort is O(n2); the parallel time

with n processors is exactly n. Note that each number is at most n − 1

positions away from its right ordering.

The pseudo code is as follows:

for i := 1 to n in parallel do

if (odd i) then

if list[2k].val < list[2k − 1].val then swap them

else

if list[2k].val > list[2k − 1].val then swap them

end if

An interesting observation is that the largest and the smallest number

start moving no later than step 2. They move toward their final positions

at each step and stop moving once they are there. This simple fact is useful

for odd-even transposition sort. It can be proved (see [?]) that it takes N

steps to sort N numbers with odd-even transposition.

Lemma 2 Any linear array sorting algorithm that only uses disjoint comparison-

exchange operations as in odd-even transposition needs at least N steps to

sort N numbers in the worst case if N > 2.

Proof: Without loss of generality, let’s assume we are sorting numbers

1, 2, . . . , N . Consider the initial configuration with N in processor 1 and

N − 1 in processor 2 (Figure 2.6).

In order to move number N to the Nth processor in less than N steps,

N has to move right in every step. So the configuration after step 1 looks

as in figure 2.7.

Since N will move right at step 2, N − 1 will be stuck in processor 1 for

another round. Since after step 2 it will take at least N − 2 steps to move

33

. . .N N-1

. . .NN-1

Figure 2.6: Initial configuration in an odd-even transposition.

Figure 2.7: Configuration after step 1 in an odd-even transposition

number N −1 to processor N −1, the total number of steps needed for such

an algorithm is at least N . �

2.4.4 Matrix-vector multiplication

We will now see how we can use a systolic array to perform matrix-vector

multiplication. Again, timing plays the most important role here: we have

to make sure that the data arrive at each processor at the right time for

processing. Stack “Matrix-
Vector Mult”Figure 2.8 describes an example of matrix -vector multiplication. This

idea will be essential in the next section when we consider multiplication

between matrices.

34

Figure 2.8: Matrix-vector Multiplication

35

Chapter 3

Meshes

3.1 Description and properties

A straightforward generalization of the linear (1-D) array is the mesh (2-D)

array (Figure 3.1).

We can observe that the square mesh has:

• n2 processors

• I/O bandwidth usually 2n (sometimes n2)

• diameter 2n − 2

• vertex degree 2 or 4

• almost symmetric

If we also require that there are wraparound edges that connect proces-

sors of the first column (resp. row) to those at the last column (resp. row),

then it is called a torus. Note that the torus is a symmetric network. One

of the networks that MasPar efficiently simulates is a torus.

The diameter of a mesh is smaller than the diameter of a linear array

with the same number of processors, but it is still high. There is a network

36

Figure 3.1: A 4 × 5 mesh

that can reduce it further to log n, the mesh-of-trees, which we will describe

in the next chapter.

3.2 The r-dimensional array

A generalization of the mesh is the r-dimensional array N1 ×N2 × . . .×Nr,

defined as follows: each processor is numbered n1n2 . . . nr, where 1 ≤ ni ≤
Ni for 1 ≤ i ≤ r. There is a wire between processor u = u1u2 . . . ur and

v = v1v2 . . . vr if and only if there is some i, 1 ≤ i ≤ r such that ui = vi for

i �= k, and |uk − vk| = 1. The wire between u and v is said to have dimension

k. If N1 = N2 = . . . = Nr = 2, it is called a hypercube of dimension r, a

powerful network we will study later.

3.2.1 Diameter

A 2-D array of size m × n has diameter m + n − 2. In general, an r-

dimensional array N1 ×N2 × . . .×Nr has diameter N1 + N2 + . . . + Nr − r.

(The diameter is found by considering the distance between processor 11 . . . 1

and N1N2 . . . Nr.)

37

Figure 3.2: The bisection widths of 2-D arrays

3.2.2 Bisection width

Intuitively the bisection width of an m × n 2-D array is min(m, n), if

max(m, n) is even, or min(m, n) + 1, if max(m, n) is odd. (Figure 3.2.)

To prove the claim of bisection width rigorously is not as simple, since

all partitions of the array needs are to be considered.

The following theorem from mathematics will be useful in proving Lemma 3.

We quote it here without a proof.

Theorem 1 The area enclosed by a loop with fixed perimeter m can be at

most (m/2π)2 × π = m2/4π. This maximum value is reached exactly when

the loop is a circle.

�

Lemma 3 The bisection width of an m × n mesh is at least min(m, n).

Proof: Let’s look at the cut going through the wires to be removed in

order to bisect. First notice that the cut has to be in one connected piece,

otherwise the cut divides the network into more than two pieces. There

are two cases to consider: either the cut forms a closed loop, in which case

the inside and outside of the loop are two disconnected pieces; or the cut

intersects the edges of the 2-D array exactly twice. Let’s define the size of

38

. . .

. . .

. . .

. . .

.

Figure 3.3: The bisection cut forms a loop

a cut to be the number of wires it goes through. Without loss of generality,

we can assume m ≤ n. Since the minimum size of a cut that bisects is the

bisection width, it is the same as proving that a bisecting cut has size at

least m.

Case 1: If the cut forms a loop, then the number of processor enclosed

by the cut is the same as the area enclosed.

By Theorem 1, the area, i.e., the number of processors, enclosed by the

loop can be at most m2/4π, less than mn/2. So a loop of size m can not

bisect an m × n array.

Case 2: Let A, B be the two intersections of the cut and the edges of the

array. If A and B are on the same edge, one half of the network is enclosed

by the cut and line segment AB. To reach B from A on a cut, at least the

horizontal distance |AB| has to be traveled. So |AB| ≤ m.

If A and B are on the adjacent edges, one half of the network is enclosed

by the cut, line segment AC and BC. (where C is a corner of the array.

To reach B from A on a cut, at least the horizontal distance AC and the

vertical distance BC have to be traveled, so |AC| + |BC| ≤ m.

In either way, one half of the network is enclosed by a loop with perimeter

no larger than 2m. By Theorem 1 we can conclude that the area, the number

of processors, can be at most (2m/2π)2π = m2/π, which is again less than

39

. . .

. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

. or

A AB

B

≤ m()
≤ m()
C

Figure 3.4: The bisection cut intersects the array at A and B.

mn/2. Notice that Case 2 also includes some special cases, for example,

when A and B coincide. So A and B have to be on the cross edges, and it

follows immediately that the size of the cut is at least m. �

3.3 Algorithms for meshes

3.3.1 Discussion

Recall that the best (and, indeed, optimal) sequential sorting algorithm,

works in O(N log N) steps. A square mesh with N = n2 nodes contaning

one number per node, cannot be sorted in O(log N) time, because it may

take O(
√

N) steps for the smallest element to move from, say, the lower

right location to the upper left location. So, sorting on the mesh cannot be

done efficiently since there is apparently a 2
√

N − 2 lower bound on sorting.

Two immediate questions that arize are:

1. Is there a better (higher) lower bound than 2
√

N − 2; and

2. How close can we get to the lower bound.

We will try to answer these questions in the following sections.

40

1 9 6
4 8 5
3 2 7

1 6 9
8 5 4
2 3 7

row sort

column
 sort

(initial) (phase 1)

1 3 4
2 5 7
8 6 9

1 3 4
7 5 2
6 8 9

row sort

column
 sort

1 3 2
6 5 4
7 8 9

row sort 1 2 3
6 5 4
7 8 9

(phase 2)(phase 3)

(phase 4) (phase 5)

Figure 3.5: Shearsort on a 3 × 3 array

3.3.2 Shearsort

Employing n × n processors, with n =
√

N on a square mesh network, we

can try to sort an n × n array using odd-even transposition sort in O(n)

time by repeating the following two steps until fixpoint (i.e., until no change

occurs): sort the rows, in O(n) time, and then the columns in another O(n)

time, independently. The resulting array at the end of each step is shown is

in Figure 3.6. However, this algorithm presents one problem: depending on

the order of application of the row sort and column sort, the resulting array

may be ordered differently. We use an example to illustrate this issue.

Given 2-D array
(

0 1
1 0

)
, if we apply row sort first, then column sort,

the resulting array is
(

0 1
0 1

)
; if we apply column sort first, then row sort,

the resulting array is
(

0 0
1 1

)
.

41

Figure 3.6: The “natural” order of row sorting and column sorting.

Figure 3.7: Shearsort sorts rows in an ox-turning fashin (left) while main-
taining the “natural” order when sorting columns.

A solution to this problem is to first sort rows in ox-turning order (fig-

ure 3.7) and then sort the columns in natural order. (Or, to first sort columns

in ox-turning order and the rows in natural order.)

This 2-D sorting algorithm is called Shearsort (figure 3.5), which inter-

leaves ox-turning row sort with column sort and runs in O(n log n) time

employing the same number of processors. 0-1 lemma here?

When sorting 0’s and 1’s, Shearsort has the useful property that the

number of dirty rows (rows that are not all 0’s or 1’s) is halved at the end of

each column sort. So there are at most 2 log
√

N phases after the row sort

of phase 1. Since each phase performs odd-even transposition which takes
√

N steps, the total running time is T (N) =
√

N(log N + 1).

However, when sorting an arbitrary set of numbers, the dirty rows are

not halved at each step. In the example above none of the three rows is

sorted until the last phase. This fact does not contradict the “0-1” Sorting

Lemma and the analysis of the running time is still correct because the “0-1”

42

Sorting Lemma guarantees any arbitrary set of numbers to be sorted in the

same number of steps as any set of 0’s and 1’s, so T (N) =
√

N(log N + 1)

is correct. The number of dirty rows in Shearsort is not a feature captured

by the Lemma — a property owned by sorting 0’s and 1’s does not have to

be valid for sorting arbitrary numbers.

* Improving the running time

There are many ways to improve the running time of Shearsort. If analyzing

carefully, we can take advantage of the fact that fewer and fewer steps are

used for successive column-sorting phases. Suppose there are d dirty rows,

so it takes d steps using odd-even transposition to sort the columns. If this

is taken into consideration the running time is

T = T (rowsort) + T (columnsort)

=
√

N(log
√

N + 1) +
log

√
N∑

d=0

√
N/2d

=
√

N(log
√

N + 3) − 1.

Compare with the running time before, we have
√

N(log
√

N + 3) − 1√
N(log

√
N + 1)

=
1
2

√
N(log N + 1) + 5

2

√
N − 1√

N(log
√

N + 1)
=

1
2

+ o(1/ log N).

This is close to an improvement of a factor of one half.

* A lower bound

Theorem 2 Any comparison-exchange sorting algorithm which sorts in-

puts into snake-like order, has lower bound Ω(
√

N) (more precisely 3
√

N −
o(
√

N)) if performed on
√

N ×
√

N arrays.

Proof: Consider the initial configuration in Figure 3.8. The upper-left

(shaded) triangle consists of 0’s and N ’s. The number of 0’s or N ’s are to be

43

N , N()

Arbitrary order of
numbers from

1,1()

To be determined Given

1, 2N1/ 4()

2N1/ 4 , 1()

1, N −1[]

Figure 3.8: The initial configuration

determined, and we will see that the order of the 0’s and N ’s does not matter.

Since the algorithm only allows comparisons and exchanges on links, it takes

at least 2
√

N−N1/4−2 steps for any information from the shaded triangle to

influence cell (
√

N,
√

N). This is the same as saying at step 2
√

N−N1/4−3,

cell (
√

N,
√

N) does not contain 0 or N . Moreover, the number in (
√

N,
√

N)

is independent of the configuration of the shaded triangle. (This is a little

hard to accept at first, but think this way: the influence of the triangle

moves like a wave from the upper-left to the lower-right corner. Each step

pushes the wave down by one unit in the direction of the main diagonal. The

area not yet influenced obviously contains the configuration independent of

the triangle. Some simple examples are convincing.)

Let’s assume cell (
√

N,
√

N) contains x ∈ [1, N −1]. Let c be the column

number of x after the input is sorted, and m be the number of 0’s in the

triangle. (Notice that x is independent of m, but c is dependent on m.)

Given the ordering of numbers ordering of numbers from 1 to [1, N − 1] in

the initial configuration, if we vary m between 0 and
√

N , c will reach every

number between 1 and
√

N at least once. This claim can be justified as

44

follows. If
√

N is odd, then the last row will be sorted from left to right.

Suppose when m = 0, the final position for x is c0 = k(1 ≤ k ≤
√

N). Then

for m = 1 the final position for x is c1 = |k − 1|. In general for m = l,

we have cl = |k − l|. When l varies from 0 to
√

N , cl reaches every value

between 1 and
√

N at least twice. 1 The same argument holds for even
√

N . So we are able to set m to the value which forces c to be 1. Now we

can see after step 2
√

N −N1/4 − 3, at least
√

N − 1 steps will be needed to

move x from column
√

N to column 1. And so the algorithm takes at least

3
√

N − 2N1/4 − 4 steps. The proof is complete. �

3.3.3 Matrix multiplication

Given two matrices A, B, both of size
√

N ×
√

N , they can be multiplied

in O(
√

N) time using
√

N ×
√

N processors. This matrix multiplication

algorithm involves preprocessing of the matrices. First, rotate matrix A by

180 degrees about the vertical axis and shear to the right, producing A
′
.

Second, rotate matrix B by 90 degrees, counterclockwise and shear upward,

producing B
′
. We then pass A

′
in the horizontal direction to the right, and

B
′
in the vertical direction downward, as indicated in Figure 3.9. Stack “Matrix

Multiplication”The pseudo code for performing the multiplicationis listed below.

Procedure Matrix multiplication

for each processor pij in parallel do

c := 0

end for

repeat 2
√

N − 1 times

1We may ponder on the validity of this statement. Why cant we have
√

2N1/4 instead
of 2N1/4 as the size of the triangle on the upper-left corner? It is conceivable on the
first thought that

√
2N1/4 would do, since we can follow the same reasoning and cl would

reach every value between 1 and
√

N at least once. Not quite! The mistake here is subtle:
cl = k, k − 1, . . . , 2, 1, 2, . . . ,

√
N − k. So 2N1/4 for the triangle is necessary.

45

...

...
...

a ... a a1n 12 11

a ... a a2n 22 21

a ... a ann n2 n1

b

b

b

n1

21

11

...

b

b

b

n2

22

12

...

b

b

b

nn

2n

1n

...

Figure 3.9: Multiplication of matrices A and B.

for each processor pij in parallel do

receive a from the left

receive b from the top

let c := c + a · b
send a to the right

send b down

end for

end repeat

At the end of the (2
√

N − 1)-st iteration, the values in each of the pij

processors are the elements of the resulting matrix C = A×B, in the exact

order.

The total work done by the algorithm is O((
√

N)3) which matches the

simple sequential algorithm, therefore it is optimal (yet, not in NC). We

46

Figure 3.10: The MasPar X-net. On the left is the logical view (what the
programmer sees) and on the right the hardware view (the actual implemen-
tation).

emphasize the simple here, because there is a very complicated sequential

algorithm that can sort in O((
√

N)2.3).

3.4 Related Networks

3.4.1 The X-net

The MasPar computer grid does not have the typical mesh connections

North, East, West, South (known as NEWS on the CM-2), yet can efficiently

simulate them on its so-called X-net (Figure 3.10). In this network, four

neighboring processors are connected with two X-like wires, which have a

switch in the middle. This way it is very easy to also have the NE, NW, SE

and SW connections at no extra cost.

47

Chapter 4

Trees

4.1 Description and properties

Another inexpensive way to connect n processors is by connecting them in

a binary tree structure as shown in Figure 4.1. A full binary tree with n

nodes has n − 1 edges. Each node has a connection to its parent node,

plus two connections to its left and right children, with the exception of the

root (which has no parent), and the leaves (which have no children). Its

characteristics are:

• I/O bandwidth �n
2 � + 1 — typically I/O connections are held at the

root and the leaves.

• diameter 2�log n�.

• bisection width 1,

• vertex degree 1, 2, or 3, and

• a recursive structure.

So it is comparable to the linear array with which it shares several char-

acteristics (namely small bisection width and low, fixed vertex degree), but

48

Figure 4.1: A regular binary tree.

it has an advantage in terms of the small diameter. So, algorithms, in gen-

eral, are expected to run faster on a tree than on an array. Many times the

small bisection width may be responsible for lower bounds of algorithms.

This is not always the case, however, and one has to be careful.

4.2 Algorithms

4.2.1 Prefix sum

Computing the prefix sum is a straightforward algorithm that can be easily

adapted from the PRAM algorithm. The algorithm executes in two phases:

• an upwards phase, in which a node receives values from its children,

computes the sum and sends the result to its parent, and

• a downwards phase in which a node sends to the left child the value

that the upward phase sent to its parent (i.e., the sum of the values

received from its children; and to the right child the sum of the value

received from its parent plus the value of its left child

Figure 4.2 shows the two phases of the prescan algorithm.

49

3 1 2 0 4 1 1 3

3 1 2 0 4 1 1 3
3 2 4 1

4 2 5 4

4 2 5 4
4 5

6 9

6 9
6

0 3 4 6 6 10 11 12

0 3 4 6 6 10 11 12
3 2 4 1

0 4 6 11

0 4 6 11
4 5

0 6
0 6

6
 l r

m
u

u = l + r
m= l

l = u
r = m + u

Figure 4.2: Upwards phase (left) and downwards phase (right). The vari-
ables needed are shown in the middle of the figure.

Pseudocode

We will describe the two phases of the prescan algorithm, the upward phase

and the downward phase.

Upward phase.

for i = 1 to �lg(n + 1)� do

for each node at height i in parallel do

receive value form left child into l

receive value form right child into r

let m ← l

let u ← l ⊕ r

if current node is not the root then

send u to parent

end if

end for

end for

50

Downward phase.

for i = �lg n� downto 1 do

for each node at height i in parallel do

if current node is not the root then

receive from parent into u

end if

let l ← u

let r ← m ⊕ u

send l to left child

send r to right child

end for

end for

How do you declare a tree on the MasPar? One way would be to use the

router. However, for regular algorithms, one can use the whole machine as

a 1-D array.

4.3 Related networks

4.3.1 Fat trees

The CM-5 has two networks; a data network and a control network. The

control network is a tree, like the ones we just examined. The data network

is a fat tree, which is like a tree of meshes (Figure 4.3). (This is not exactly

right, it is actually a tree of butterflies, which we will examine in a later

chapter.) The characteristic of the fat tree is that its branches are getting

fatter as you get closer to the root, so the bisection width increases allowing

for more communication. This, along with the fact that are usually drawn

with the root at the bottom of the tree make them look closer to real-life

trees.

The advantages of the fat trees are:

51

Figure 4.3: A tree of meshes. The processors are at the leaves, and commu-
nicate via meshes.

1. Like a mesh, it occupies little area: n nodes occupy area O(n).

2. Like a mesh, it has lots of wires: n nodes have O(
√

n) wires.

3. Unlike a mesh, it has a small diameter: O(log n).

4. Unlike a mesh, it is area-universal, i.e., it can efficiently simulate any

network that occupies O(n) area.

Given all these nice features, it is not suprising that it was chosen as the

network for the expensive CM-5 parallel computer. Leiserson’s talk

52

Chapter 5

Mesh of Trees (MOTs)

5.1 Description and properties

In previous chapters we examined the mesh, a simple network with desirable

properties, i.e., large bisection width and low vertex degrees, but also with a

drawback: large diameter. we also examined the full binary trees, that have

nice recursive structure, low vertex degree and the desired low diameter, but

they also have a small bisection width.

So, the idea is to combine these two networks hoping that we can get the

best of both worlds. In fact, the mesh of trees accomplishes that. Imagine

of “planting” trees on each column and row of a mesh. This would have the

following effects: (Figure 5.1)

• 2n(n − 1) + n2 = 3n2 − 2n processors

• 2n bandwidth (i.e., the roots of the trees)

• 4 log n diameter

• n bisection width

• node degree 2 or 3 and

53

Figure 5.1: A mesh of trees: M2,4.

• 2n(2n− 2) wires, because each tree connects 2n− 1 nodes with (2n−
1) − 1 wires.

• a recursive structure: removing column and row roots you get 4 copies

of MOTs, each one-fourth in size of the originals.

These characteristics make it comparable to meshes, but with a much

smaller diameter, which makes it more powerful. In fact, MOTs are so nice

that is rather surprising that no manufacturer has already built one.

5.2 Algorithms

5.2.1 The Ideal Computer

To see the power of MOTs, we will examine how they can be used the

problem of creating what we called an “ideal computer”. So, let’s assume

that we have n processors and n memories connected. We would like to be

able to send n messages with minimal delay.

As we mentioned before, the best thing would be to connect them in a

complete bipartite graph Kn,n as in Figure 5.2, but this is rather expensive.

54

P

P

P

P M

M

M

M

11

22

3 3

4 4

Figure 5.2: A bipartite graph: K4,4.

It turn out that MOTs can simulate Kn,n with a delay of only 2 log n. We

have to view them, however, as in Figure 5.3.

As you can see, the delay is due to traversing the tree nodes. Since Kn,n

behaves as a PRAM machine, we have the following:

Theorem 3 Any CRCW PRAM algorithm can be simulated on a MOT

with a slowdown factor of 2 log n.

�

5.2.2 Sorting

Let us apply the last theorem to simulate the CRCW PRAM sorting algo-

rithm that uses log n time and n2 processors. Recall that the algorithm is

based on comparing every pair of the input numbers, counting how many

other numbers are, say, larger from each number, and then placing each

number in the array location that reflects the result of the count. On a

MOT, this algorithm is implemented as follows:

1. Input n distinct numbers at the n row- and n column-roots of the

MOT (takes constant time).

55

Figure 5.3: M2,4 mesh of trees simulating K4,4. The dark gray are the mesh
processors.

2. Broadcast the numbers from the roots to the mesh processors (takes

logarithmic time).

3. Each mesh processor compares the pair of numbers it received. It

stores 1 in some variable wins if the number that came from the row

root was larger than the number that came form the column root; it

stores 0 otherwise (takes constant time).

4. wins are being sent to the row roots. They are being counted on

their way up. Each row root processor receives the total wins, say

i; therefore its input number is the (i + 1)-st larger. This also takes

O(log n) steps.

5. Finally, each row root processor sends the input number to the (i+1)-

st column root processor in O(2 log n) steps. After that, the column

roots contain the sorted array.

56

The whole algorithm takes 4 log n+O(1) time using 3n2−2n processors.

Given the logarithmic running time, we see that it is a fast (i.e., in NC)

algorithm, but not an efficient one, because it performs O(n2 log n) work

versus O(n log n) of the best sequential algorithm.

57

Chapter 6

Hypercubic networks

6.1 The r-dimensional hypercube

6.1.1 Description and Properties

The hypercubic graphs are very versatile networks and have been used ex-

tensively to interconnect the processors of several parallel computers. The

reason that manufacturers have done that is that the hypercube is universal,

i.e., it can easily emulate all the networks we have discussed so far. We will

see later that linear arrays, trees, meshes, n-dimensional arrays, can all be

embedded on the hypercube, therefore the algorithms that have been devel-

oped for these networks can work on a hypercube in time O(log n). Also,

any PRAM algorithm could be adapted to run on a hypercube with a delay

of O(log N).

A hypercube Hr of dimension r has n = 2r nodes, each of which has

r = log n edges. We can number each node with a binary string of length r.

Two nodes are linked by an edge if and only if they differ by one bit. This

edge has dimension k if two nodes differ on the kth bit.

In general, it is easier to describe a hypercube than to draw it. Figure 6.1

shows hypercubes with r = 0, 1, 2, 3, 4. From this construction, we observe Stack
“Networks”that hypercubes have a simple recursive structure, i.e., the r+1-dimensional

58

r = 1 r = 2 r = 3

r = 4

0

1

00

01

10

11

001 011

100 110

101 111

010000

Figure 6.1: Hypercubes of dimension 1, 2, 3 and 4. The bold bits show the
numbering at each stage.

hypercube can be constructed from two r-dimensional hypercubes by con-

necting the corresponding nodes. Similarly, by ignoring the first bit of the

nodes of Hr, you get two Hr−1 hypercubes. Because of the recursive struc-

ture property, inductive proofs are useful (and common) for hypercubes. We

will see some of them later on.

As we mentioned before (page 37), an r-dimensional hypercube is an

r-dimensional 2-sided array. So, the bisection width is 2r−1. Consider the

distance from node 00...00 to 11...11 you see that the diameter is r.

To recap, the hypercube Hr has the following characteristics:

• diameter r = log n,

• vertex degree r = log n — small but not fixed.

• bisection width 2r−1 = n
2 ,

• symmetry,

59

• a nice recursive structure.

6.1.2 Routing on the Hypercube

The numbering of the hypercube nodes may seem as random, but that is

not so. An important fact about it is the following:

Lemma 4 Every pair of neighboring nodes differ exactly in one bit.

Proof. (sketch) We can prove it by induction on the number of nodes.

We know it holds in the base case. Now, by construction, when we connect

two hypercubes of dimension r−1 to get one of dimension r, we connect the

nodes with identical names and we add a 0 in front of the id of the one and

a 1 in front of the id of the other (the id’s are in binary). All the previous

connection remain the same. �

This provides a great routing scheme: To send data from node x to node

y, we compare the binary representation of the x and y id’s. In each routing

step, we move so that we “fix” one of the bits; at most log n moves are

required.

For example, to send data from node 1011 to node 0110, a possible path

is

1011 → 0011 → 0111 → 0110

It is interesting that there are many ways to send the data, in fact, if the

two nodes differ in k bits, there are k! different paths from x to y.

6.2 Embeddings

Hypercubes are powerful because they contain many simple networks as

subgraphs. So, algorithms designed for the simple nets can be implemented

on hypercubes without much modification. In particular, arrays of any size

and dimension can be embedded in hypercubes.

60

6.2.1 Linear arrays and the Gray code

A Hamiltonian cycle of a graph G is a tour that visits every node of G

exactly once. An r-bit Gray code is an ordering of all r-bit numbers in such

a way that consecutive numbers differ in exactly one position.

Example 1 The 3-bit Gray code is: 000, 001, 011, 010, 110, 111, 101, 100.

The Gray code of a hypercube is the sequence of nodes traversed by a

Hamiltonian cycle of a hypercube. We can inductively prove the following:

Lemma 5 The r-bit Gray code exists for every r-dimensional hypercube.

Proof For r = 1 the Gray code is v1 = 0, v2 = 1. Suppose for r = k, the

Gray node is v1, v2, . . . , vN , where N = 2k and vi is a binary string of length

k for 1 ≤ i ≤ N . Then the Gray node for the k + 1-dimensional hypercube

is 1|v1, 1|v2, . . . , 1|vN , 0|vN , 0|vN−1, ..., 0|v1, where “|” means concatenation.

This is because 1|vN and 0|vN , 1|vi and 1|vi+1, 0|vi and 0|vi+1 differ exactly

by 1 bit, since vi and vi+1 differ exactly by 1 bit for 1 ≤ i ≤ N − 1. �

The above observation of the Gray code proves that all the N -node linear

arrays a[1..N] can be embedded in the 2�log N�-dimensional hypercube by

mapping a[i] to the Gray code vi.

6.2.2 * Multidimensional arrays

It can be shown that

Theorem 4 An N1 × N2 × . . . × Nk array can be contained in an N -node

hypercube, where N = 2�log N1�+�log N2�+...+�log Nk�.

Theorem 4 is a direct consequence of the containment of linear arrays

and Lemma 6 of graph theory:

Lemma 6 If G = G1 ⊗ G2 ⊗ . . . ⊗ Gk and G
′
= G

′
1 ⊗ G

′
2 ⊗ . . . ⊗ G

′
k, and

each Gi is a subgraph of G
′
i, then G is a subgraph of G

′
.

61

G(V, E) = G1 ⊗ G2 ⊗ . . . ⊗ Gk stands for the cross-product of graphs

G1(V, E), G1(V, E), . . .Gk(V, E), where V (Vi) and E(Ei) are vertex sets

and edge sets, respectively, and the following conditions are satisfied:

V = {(v1, v2, . . . vk) where vi ∈ Vi for 1 ≤ i ≤ k}

E = {{(u1, u2, . . . uk), (v1, v2, . . . vk)} where

there exists a j such that (uj , vj) ∈ Ej and ui = vi∀i �= j}.

Example 2 The cross-product of linear arrays N1, N2, . . . , Nk is the k- di-

mensional array N1×N2× . . .×Nk, and the cross-product of the hypercubes

H1, H2, . . . Hk of dimensions r1, r2, . . . rk respectively is the (r1+r2+. . .+rk)-

dimensional hypercube H.

Since linear array Ni is contained in the 2�log Ni� -dimensional hypercube,

N1×N2× . . .×Nk is contained in the (�log N1�+ �log N2�+ . . .+ �log Nk�)-
dimensional hypercube.

6.3 Related networks

Although the hypercube is powerful in computing, it has weaknesses in

practice. One of them is that the node degree is not fixed, but grows with

the size, so machines are not scalable; you can not add wires on an existing

chip on demand. To overcome this disadvantage, networks such as butterfly

and cube-connected cycles have been designed. We will study the basic

architecture of these structures.

6.3.1 The butterfly

The r-dimensional butterfly has 2r(r + 1) nodes, each of which named

< w, l >, where w is the row number (where 0 ≤ w ≤ 2r − 1, expressed in

binary form) and l is the level number (where 0 ≤ l ≤ r). Nodes < w, l >

62

row 000

row 001

row 010

row 011

row 100

row 101

row 110

row 111

level 0 level 1 level 2 level 3

000

001

010

011

100

101

110

111

Figure 6.2: The 3-dimensional butterfly

and < w
′
, l

′
> are linked either by a straight edge (if l

′
= l + 1, w

′
= w), or

by a cross edge (if l
′
= l+1, and w

′
and w differ on the l

′
-th most significant

bit). Therefore, the r-dimensional butterfly has r · 2r+1 edges. Figure 6.2

shows the 3-dimensional butterfly.

Routing on the butterfly is similiar to routing on the hypercube, i.e. it

can be done by “bit fixing”: To route from node x to node y, we look at

the binary representation of their id’s. Starting from the most significant

bit, we choose the straight edge if the two bits are the same, and the cross

edge if the two bits differ. For example, to go from node 101 to node 011,

we follow two cross edges, then the straight one. Leighton’s talk

Hypercubes and butterflies are similar in structure even though they

look different. In fact, for many years it was believed that they were two

completely different networks, but recently it was proved that they are es-

sentially the same network, part of a large family called the Cosmic Cube.

63

The characteristics of the burrterfly are:

• diameter 2 log n = 2r

• node degree 2 or 4

• bisection width 2r = Θ(n
log n)

• recursive structure

Let us examine the recursive structure of the butterfly. Obviously, if the

nodes of level 0 from the r-dimensional butterfly are removed, the first 2r−1

rows and the last 2r−1 rows each form an (r − 1) -dimensional butterfly.

Deleting the first digit of the row numbers, we obtain the new row numbers

for the (r − 1)-dimensional butterflies. What is not so obvious is that the

removal of the level r nodes also yields two (r−1)-dimensional butterflies. In

this case the odd number rows and even number rows each form an (r − 1)-

dimensional butterfly. Deleting the last digit of the row numbers we obtain

the new row numbers for the (r − 1)-dimensional butterflies.

We can obtain the r-dimensional hypercube from the r-dimensional but-

terfly by removing straight edges, merging all the nodes in one row and

then deleting the extra copy of the cross edges. This allows us to prove

that 2r edges must be removed from the r-dimensional butterfly in order

to partition the rows into two equal-size sets, because partitioning rows in

butterflies is the same as bisecting hypercubes. We showed before that the

bisection width of the r-dimensional hypercube is 2r−1. Since each edge in

the hypercube corresponds to two cross edges in the butterfly, 2×2r−1 = 2r

edges in the butterfly must be removed (otherwise we would have a lower

bisection width for the hypercube).

* Properties of the Butterfly

We will now investigate the two interesting properties of every network, the

diameter and the bisection width.

64

row 00

row 01

row 10

row 11

row 00

row 01

row 10

row 11

row 00

row 00

row 01

row 01

row 10

row 10

row 11

row 11

Figure 6.3: The recursive structure of the 3-dimensional butterfly

Lemma 7 The diameter of the r-dimensional butterfly is Θ(r).

Proof: There is a unique path from node < w1, w2, . . . , wr, 0 > to

< w
′
1, w

′
2, . . . , w

′
r, r > defined as < w1, w2, . . . , wr, 0 > → < w

′
1, w2, . . . , wr, 1 >

→ < w
′
1, w

′
2, . . . , wr, 2 > → . . . → < w

′
1, w

′
2, . . . , w

′
r, r > where the transition

< w
′
1, w

′
2, . . . , w

′
i, wi+1, . . . wr, r > → < w

′
1, w

′
2, . . . , < w

′
i, w

′
i+1, . . . wr, r >

follows a straight edge if wi+1 = w
′
i+1, and follows a cross edges other-

wise. This shows that the diameter of the r-dimensional butterfly is at least

r. In general, the path from an arbitrary node < w1, w2, . . . , wr, l > to

< w
′
1, w

′
2, . . . , w

′
r, l

′
> (< w1, w2, . . . , wr, l > is smaller than < w

′
1, w

′
2, . . . , w

′
r, l

′
>

by the canonical order) is: < w1, w2, . . . , wr, l > → < w1, w2, . . . , wr, 0 > →
< w

′
1, w

′
2, . . . , w

′
r, r > → < w

′
1, w

′
2, . . . , w

′
r, l

′
>. The moves < w1, w2, . . . , wr, l >

→ < w1, w2, . . . , wr, 0 > and < w
′
1, w

′
2, . . . , w

′
r, r > → < w

′
1, w

′
2, . . . , w

′
r, l

′
>

are achieved by following the straight edges. If < w1, w2, . . . , wr, l > is

larger than < w
′
1, w

′
2, . . . , w

′
r, l

′
>, the path is < w1, w2, . . . , wr, l > →

65

< w1, w2, . . . , wr, r > → < w
′
1, w

′
2, . . . , w

′
r, 0 > → < w

′
1, w

′
2, . . . , w

′
r, l

′
>.

This shows that the diameter is at most 2r. Thus, the diameter of the r-

dimensional butterfly is Θ(r). �

Lemma 8 The bisection width of the N -node r-dimensional butterfly is

Θ(N/ log N).

Proof: We will use the similar embedding technique as before to prove

this lemma. We embed a complete directed graph G in the butterfly B by

embedding the edge from < w1, w2, . . . , wr, l > to < w
′
1, w

′
2, . . . , w

′
r, l

′
> of

G by the path in B described in the previous paragraph.

We first show that a cross edge (< w, l >, < w
′
, l + 1 >) of B is

contained in at most Θ(r2 · 2r) paths in G. A path going through edge

(< w, l >, < w
′
, l+1 >)) looks like < w0, l0 > → < w0, 0 > → < w, l > →

< w
′
, l+1 > → < w1, r > → < w1, l1 > where l0 ≤ l1. We have 2l choices

for w0, 2r−l−1 choices for w1, and
∑r+1

i=1 (i) = 1
2(r + 1)(r + 2) choices for l0

and l1. Since there are 2 directions, there are at most (r + 1)(r + 2)2r−1 =

Θ(r2 · 2r) paths going through the cross edge connecting node < w, l > and

< w
′
, l + 1 > of B. Similarly there are Θ(r2 · 2r) paths going through a

straight edge.

To divide G into 2 halves each with (r+1)·2r−1 nodes, 2·[(r+1)·2r−1]2 =

Θ(r2 · 2r) paths have to be removed. Since each edge of B is contained in

Θ(r2 ·2r) paths of G, at least Θ(r·22r)
Θ(r·22r)

= Θ(2r) edges of B have to be removed.

Thus, the bisection width of the r-dimensional butterfly is Ω(2e).

It is easy to check that if we remove the cross edges connecting level 0

and level 1 of the butterfly, we bisect the network. Thus we have proved that

the bisection width of the N -node r-dimensional (where N = 2r · (r + 1))

butterfly is Θ(N/ log N). �

66

level 1 level 2 level 3

Figure 6.4: The 3-dimensional wrapped butterfly

6.3.2 The wrapped butterfly and cube-connected cycles

The r-dimensional wrapped butterfly (Figure 6.4 is obtained by merging

the level 0 and level r nodes of the r-dimensional ordinary butterfly. Thus

r-dimensional wrapped butterfly consists of 2r · r nodes, each of which has

degree 4. Formally, the link between node < w, l > and < w
′
, l

′
> is:

1. a straight edge if l = l
′
+ 1 mod r and w = w

′
, or

2. a cross edge if l = l
′
+ 1 mod r and w, w

′
differ in the l

′
-bit.

The r-dimensional cube-connected cycle (CCC) is obtained from the r-

dimensional hypercube by replacing each node of the hypercube with a cycle

of r nodes (Figure 6.5). So the r-dimensional CCC has r ·2r nodes each with

node degree 3. Formally, the link between node < w, l > and < w
′
, l

′
> is:

67

(000,1)

(000,2)

(000,3)

(100,1)
(100,2)

(100,3)

(010,2)

(010,3)
(010,1)

Figure 6.5: The 3-dimensional cube-connected cycles

1. a cycle edge if l = l
′ ± 1 mod r and w = w

′
, or

2. a hypercube edge if l = l
′
and w, w

′
differ in the l-bit.

The CCC has the following characteristics:

• nodes N = r · 2r = n log n

• diameter 2r = 2 log n

• node degree 3

• bisection width n/2

• recursive structure

• can simulate any hypercube algorithm with a slowdown of log n.

It can be shown that the CCC and wraparound butterfly can be embed-

ded one-to-one in each other with dilation 2. The wraparound butterfly can

also be mapped onto the butterfly with dilation 2.

So we can treat the butterfly, wraparound butterfly and CCC identically.

It is true that

Theorem 5 The butterfly, wraparound butterfly and cube-connected cycles

can simulate most simple networks without slowdown.

68

1 2 3 4 5 6 7 8

1 2 3 4 5678

Figure 6.6: Embed the 8-element linear array one-to-one to the 8-element
ring with dilation 2

Figure 6.7: Processor assignment for canonical tree computation. Double
edges denote work by the same processor.

This theorem is important as it proves the existence of structures with

bounded node degrees and comparable computational power to hypercubes.

6.3.3 The Shuffle-Exchange Network

The last two networks succeeded in simulating the hypercube while contain-

ing only nodes with a small fixed degree. However, the number of processors

had to increase by a factor of log n in order to do so. Could we relax this

requirement? It turns out that most of the algorithms that one wants to

run on these networks are normal — algorithms that work in phases such

that in each phase separate sets of processors are active.

The prefix sum is an example of a normal algorithm. One does not really

need to have 1 processor per node in the tree, because in each phase of the

algorithm only one level of processors needs to work: in the beginning only

69

Figure 6.8: The shuffle-exchange network.

the leaves, in the second phase the parents of the leaves, and so on. So, we

can “recycle” processors by assigning the processor in each leaf to play the

role of all the processors in the left branches of the tree. Figure 6.7 shows

an example of processor assignment for this problem.

The question that naturally arises is: can we simulate normal algorithm

with a “cheaper” network than a hypercube? The answer is yes; the shuffle-

exchange network we describe next can achieve that.

Before we show a picture of it, let us describe how it is created from

the hypercube. Let’s assume we have a hypercube (Figure 6.9) which only

has the wires of dimension i, for some i: 1 ≤ i ≤ log n. If you rotate

this hypercube about two opposite points, it will appear as if only wires of

dimension i + 1 (or dimension i − 1, depending on the rotation direction)

exist.

Following this construction, a shuffle-exchange network is a hypercube

that contains edges of only one dimension, along with edges that simulate

that rotation just described. (Figure 6.8).

A normal algorithm can now be simulated on a shuffle-exchange net with

slowdown of 2 as follows:

1. Do the calculation; then, send data along the exchange i-wires.

2. Do the calculation; then, send data along shuffle wires, so dimensions

70

Figure 6.9: The way you get the shuffle-exchange network from the hyper-
cube by rotation. Compare it with its canonical drawing in the previous
figure.

71

Figure 6.10: In-shuffle and out-shuffle.

i + 1 or i − 1 can be used in the next phase.

The term shuffle comes from the fact that sending data along this wire

simulates a perfect in-shuffle of a deck of n cards. The term exchange comes

from the fact that crossing such an edge gets you to a node that has the

name of the starting node whose last bit is swapped.

As a matter of fact, on the shuffle exchange network you can simulate

both an in-shuffle and an out-shuffle as Figure 6.10 shows. This fact explains

a nice card trick: with lg n shuffles you can bring any card to any position

of a deck of n cards.

So, the characteristic of the shuffle-exchange network are:

• diameter 2 log n,

• vertex degree 3,

• n = 2r nodes and 3 · 2r−1 = 1.5n edges.

6.3.4 The de Bruijn network

The r-dimension de Bruijn graph is derived from the r+1-dimension shuffle-

exchange graph by the following algorithm:

1. Collapse nodes connected by exchange edges into a new node; name

this node with the common first r − 1 bits of the collapsed nodes.

72

01

00 11

10

1

11

0

00

1

0

0

1

1

0

000

001

010

011

100

101

110

111

1

1
1

10
0

0
0

01

0 1

Figure 6.11: The 2-dimensional and 3-dimensional de Bruijn graphs

2. Label the shuffle edges (v, w) by the last bit of the target vertex w.

The characteristics of the de Bruijn graph are

• node in-degree 2 and out-degree 2

• diameter log n

• 2r nodes and 2r+1 directed edges

• bisection width Θ(N/ log N)

• recursive structure

The de Bruijn graph has several interesting properties as described by

the following lemmas:

Lemma 9 The de Bruijn graph has an Eulerian tour which can be found

following the edges labeled by the bits in de Bruijn sequence.

73

0

1

00

1

11

0
000
001
011
111
110
101
010
100

Figure 6.12: The de Bruijn sequence for N = 8.

A de Bruijn sequence is an ordering of N bits, where every log N sequence

appears exactly once in the cyclic ordering.

Example 3 The sequence 00011101 is a de Bruijn sequence, since N = 8,

log N = 3 and every 3 consecutive digits in the circular ordering appears

exactly once. (Figure 6.12)

Note that we can start from any point of the 2-dimensional de Bruijn

graph and make an Euler tour by following the de Bruijn sequence: start at

some random point of the de Bruijn sequence, and follow the edges whose

labels appear on the sequence. Because of the in-degree and out-degree

property, there is an Euler tour. Because of the way the edges are labeled

and the property of the de Bruijn sequence, the sequence follows the tour.

�

Lemma 10 The de Bruijn graph has a Hamiltonian circuit. The concate-

nation of the edge labels visited by the Hamiltonian circuit produces de Bruijn

sequence.

�

Finally, the recursive structure of the de Bruihn graph can be seen by

the following construction.

74

x
y

z
u

v xy
u

zuIf create

Figure 6.13: Create edges for a de Bruijn graph.

• For each node labeled x and each edge out of x labeled y create a new

vertex called xy (by concatenating labels).

• Add edges as in Figure 6.13.

Example 4 See how the 3-dimensional graph can be derived from the 2-

dimensional graph.

A neat card trick based on the uniqueness of log N bits of de Bruijn

sequence can be done where one can guess log N cards given to people by

just asking them to raise hands if they hold a red card.

6.4 Bibliographic Notes

Part of the materials in this Chapter are from Leighton’s book [?] and its

exercises, and from Y.L. Zhang’s honors thesis.

75

