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Fuzzy and Neural Control Systems

Fuzzy and neural control systems are constructed directly from control data, but from different types
of control data. Fuzzy systems use a small number of structured linguistic input-output samples from an
expert or from some other adaptive estimator. Neural systems use a large number of numeric input-output
samples from the control process or from some other database.

Figure 1 illustrates this difference. The neural system estimates function f : X — Y from several
numerical point samples (z;,y;). The fuzzy system estimates f from a few fuzzy set samples or fuzzy
associations (4;, B;).

(a) (b)

FIGURE 1 Geometry of neural and fuzzy function estimation. The neural approach (a)
uses several numerical point samples. The fuzzy approach (b) uses a few fuzzy set samples.

The advantage of fuzzy and neural systems over traditional control approaches is model-free estimation.
The user need not specify how the controller’s output mathematically depends on its input. Instead the
user provides a few common-sense associations of how the control variables behave. Or the user provides a
statistically representative set of numerical training samples. Even if a math-model controller is available,
fuzzy or neural controllers may prove more robust and easier to modify.

Which approach, fuzzy or neural, is best for which type of control problem depends on the type and
availability of sample data. If structured knowledge of the control process is available, or if sufficient
numerical training samples are unavailable, the fuzzy approach is preferable. A fuzzy control system
is comparatively simple to construct and use when structured knowledge is available. A fuzzy control
system seems a reasonable benchmark in such cases, even if a neural controller or math-model controller
is developed.
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If representative numerical data is available and structured expertise is not, the neural approach is
preferable. Or a statistical regression approach may be more approapriate. The data simply tell their
own story — if there is a story to tell. Yet even here a hybrid fuzzy-neural system may be preferable.
The numerical data can always be used, perhaps by neural systems, to generate fuzzy assoctative memory
(FAM) rules. The FAM rules can then form the skeleton of a fuzzy control architecture. In other words, if
structured knowledge is unavailable, estimate it. This may be more practical than it would appear because
of the small number of control FAM rules needed to reliably control many realworld processes.

How can fuzzy and neural controllers be compared? Abstract comparison is difficult because both
approaches build a control black box in different ways. That they build black boxes distinguishes them from
math-model controllers. It also suggests they should be compared by their black-box control performance.

Each control system generates an output conirol surface as it ranges over the common input space
of parameter values. Figure 5 below shows a three-dimensional control surface for a fuzzy controller.
For control systems with few input parameters with moderately quantized ranges, both fuzzy and neural
controllers — or rather their quantized control surfaces — can be stored as decision look-up tables. The two
controllers are, after all, deterministic algorithms. Then once a system performance criterion is specified,
the controllers can in principle be quantitatively compared.

Comparing system trajectories is more complicated. In the case at hand, we are interested in backing
up a truck to a loading dock. The quality and quantity of the truck trajectory can be measured and
compared, perhaps with mean-squared error criteria. Intuitively, smooth short trajectories are preferred
to jagged long trajectories. Reaching the loading-dock goal is also important. In practice it is the most
important performance requirement. It is unclear how to ideally balance the trajectory type with the
trajectory destination. For this reduces to the pragmatic issue of balancing means and ends.

Below we develop a simple fuzzy control system and a simple neural control system for backing up a
truck in an open parking lot. Our choice of control problem was motivated by the recent, and successful,
neural network truck backer-upper simulation of Nguyen and Widrow [1989]. We were unable to exactly
replicate the neural network they used. Instead we built the best backpropagation network we could with
essentially the same kinematics and compared it to the best fuzzy controller we could develop.

The fuzzy controller compares favorably with the neural controller in terms of black-box development
effort, black-box computational load, smoothness of truck trajectories, and robustness.

We studied robustness of the fuzzy controller by both deliberately adding confusing FAM rules —
“sabotage” rules — to the system and by randomly removing different subsets of FAM rules. We studied
robustness of the neural controller by randomly removing different portions of the training data.

These simulations suggest fuzzy controllers may be a practical alternative to neural-architecture con-
trollers in many cases.

Backing up a truck

The simulated truck and loading zone are shown in Figure 2. The truck corresponds to the cab part of
the neural truck in the Nguyen-Widrow neural truck backer-upper system. The truck position is exactly
determined by the three state variables ¢, x, and y. ¢ is the angle of the truck with the horizontal. The
coordinate pair (x,y) specifies the position of the rear center of the truck in the plane.

The goal is to make the truck arrive at the loading dock at right angle (¢; = 90°) and to have the
position (x,y) of the truck be aligned with the desired loading dock (x;,ys). Only backing up is considered.
The truck moves backward by some fixed distance every stage. There are K-many such stages until the
truck hits the border of the loading zone. The loading zone is the plane {0, 100] x [0, 100], and (xy,y;) is
(50, 100).

The fuzzy and neural controllers should produce the appropriate steering angle 8 at every stage to
make the truck back up to the loading dock from any initial position and from any angle in the loading
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FIGURE 2  Diagram of simulated truck and loading zone.

zone.

Fuzzy Truck Backer-Upper System

The input and output parameters of the controller must be specified. The input parameters are the
truck angle ¢ and the z-position x. The output parameter is the steering signal 8. If we assume enough
clearance between the truck and the loading dock, y-position need not be considered as an input. The
parameter ranges are as follows: :

é: [ 0 360 ]
x: | 0, 100 ]
6: [ -30, 30 ]

Positive values of 8 are clockwise rotations of the steering wheel. Negative values are counterclockwise
rotations. All values are discretized to reduce computation. The resolution of ¢ and 6 is one degree each.
The resolution of x is 0.1.

Fuzzy subsets of the input and output parameters must be specified. The fuzzy sets numerically rep-
resent linguistic terms, the sort of linguistic terms an expert might give to describe the control system’s
behavior. Fuzzy subsets of parameter values are chosen to fit the problem at hand. The fuzzy subsets for
the truck backer-upper controller are chosen as follows:

Angle ¢ z-position x Steering signal 6

RB: Right Below LE: Left NB: Negative Big

RU: Right Upper LC: Left Center NM: Negative Medium
RV: Right Vertical CE: Center NS: Negative Small
VE: Vertical RC: Right Center ZE: Zero

LV: Left Vertical RI: Right PS: Positive Small
LU: Left Upper PM: Positive Medium
LB: Left Below PB: Positive Big
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FIGURE 3 Fuzzy membership functions for each linguistic fuzzy set. To allow finer con-
trol, the fuzzy sets that correspond to near the loading dock are narrower than the fuzzy sets
that correspond to far from the loading dock.

Fuzzy subsets have degrees of membership. A fuzzy membership function my : X — [0, 1] assigns
a real number between 0 and 1 to any object in the universe of discourse X. This number m4(z) is the
degree to which the object or data z belongs to the fuzzy set A.

Fuzzy membership functions can have different shapes depending on the designer’s preference or expe-
rience. In practice triangular and trapezoidal shapes have proven useful both in capturing the modeler’s
sense of fuzzy parameter numbers and in computational simplicity. Membership function graphs of the
fuzzy subsets above are shown in Figure 3. In the third graph, for example, 20° is Positive Medium to
degree 0.5 but is only Positive Big to degree 0.3.

In Figure 3 the vertical, center, and zero fuzzy sets are narrower than the other fuzzy sets. These
narrow fuzzy sets permit fine control near the loading dock. Wider fuzzy sets are used for describing the
endpoints of the range of the variables ¢, x, and 6. The wider fuzzy sets permit rough control far from
the loading dock.

The next step is to specify the fuzzy “rulebase” or bank of fuzzy associative memories (FAMs). Fuzzy
associations or “rules” (A, B) associate output fuzzy sets B of control values with input fuzzy sets A
of parameter values. The fuzzy associations can be written as antecedent-consequent pairs or IF-THEN
statements.

In the truck backer-upper case, the FAM bank is composed of 35 FAM rules as in Figure 4. TFor
example, the FAM rule of the left upper block is the following fuzzy association:

IF z-position x is Left AND angle ¢ is Right Below,
THEN steering signal 0 is Positive Big.

FAM rule 17 denotes that if the truck is in the right position, then the controller should not produce
positive or negative steering signal. The FAM rules in the FAM-bank matrix reflect the symmetry of the
controlled system.

The three-dimensional control surface in Figure 5 shows steering signal outputs corresponding to all
combinations of the two input state values ¢ and x. The control surface defines the fuzzy controller.
In this simulation it is determined by the min-max FAM inference procedure discussed in Kosko [1990].
If the control surface changes with sampled parameter values, the system behaves as an adaptive fuzzy
controller.

The final step is to determine the output action given the input conditions. One possibility is the
min-max fuzzy combination method. Each FAM rule produces the output fuzzy set clipped at the degree
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FIGURE 4 FAM-bank matrix for the fuzzy truck backer-upper controller.

Fuzzy control output

FIGURE 5 Control surface of the fuzzy controller. The output and input combination
corresponding to FAM rule 9 (If x is RI and ¢ is RU, then 6 is PB.) is illustrated.
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FIGURE 6 Min-max fuzzy inference with centroid defuzzification method. FAM rule
antecedents combined with AND use the minimum fit value to activate consequents. Those
combined with OR use the mazimum fit value.
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FIGURE 8  Topology of the neural controller.

FIGURE 9 Truck trajectory of the neural controller.

and y coordinate and any angle. The emulaior nelwork computes the next position of the truck. The
emulator network takes as input the previous truck position and the current steering output computed by
the controller network. The controller network uses 24 “hidden” neural units. The emulator network uses
20 hidden units.

There are K-many back-ups until the truck hits the loading zone. So K-many controller-emulator
blocks must be concatenated when the neural system backs up the truck. K depends on the initial truck
position and the backing distance of the truck. For example, if the backing distance at every iteration is
5.0 then K is 20 starting from ¢,=0°, x0=20, and y,=40.

The emulator network must be trained before the contro! network is trained. “Universal” synaptic
connection weights of the truck-emulator network were unobtainable since backpropagation learning does
not converge for many training patterns. The number of training samples was more than 3000. For
example, the combinations of training patterns of a given angle, z-position, y-position, and steering signal
might respectively correspond to 18 x 5 x 5 x 7 = 3150 samples.

Moreover, training patterns are numerically similar since the neuron signal values are restricted to [0, 1]
or [—1,1]. Close values such as 0.40 and 0.41 need to be considered as two distinct patterns.

Unlike the Nguyen-Widrow neural controller, our truck emulator network was repeatedly trained with
one training sample at every stage to properly back-propagate the error. This did not affect the post-
training performance of the neural truck backer-upper since the purpose of the truck-emulator network is
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FIGURE 7  Truck trajectory of the fuzzy controller.

of membership determined by the input conditions and the rule. Another possibility combines FAM rules
multiplicatively. We use the minimum combination method.

The controller outputs obtained by the FAM inference method are fuzzy sets. These sets must be
“defuzzified” to produce numerical (point-estimate) control outputs.

The simplest defuzzification scheme selects the value corresponding to the mazimum fuzzy unit (fit)
value [Kosko, 1986] in the fuzzy set. This mode-selection approach ignores most of the information in the
output fuzzy set.

A more effective procedure is centroid defuzzification. This method, used for example in servo-motor
control by Li and Lau [1989], uses as output the fuzzy centroid:

P
> moly;) vj
o j=1
centroid = —F———
mo(y;)
ji=1
where O is the output fuzzy set defined on the output-parameter universe of discourse Y = {y1,...,%,}-

Figure 6 shows the min-max combination and the centroid defuzzification method of the FAM rules 12
and 17. We used centroid defuzzification for all simulations.

With 35 FAM rules, the fuzzy truck controller produces successful truck backing-up trajectories start-
ing from any initial position. Figure 7 shows the truck trajectory by the fuzzy controller starting from the
initial position (xg,Yyo) of (30,20) and the initial angle ¢, of 30 degrees. All FAM rules are not used at
the decision at every stage. In most cases one or two FAM rules were used. At most 4 FAM rules were
used at any stage.

Neural Truck Backer-Upper System

The neural truck backer-upper of Nguyen and Widrow [1989] is composed of feedforward multilayer
neural networks trained with the backpropagation gradient-descent(stochastic-approximation) algorithm.
Figure 8 shows the network connection topology for the neural truck backer-upper considered.

The neural controller system consists of two neural networks: the controller network and the truck
emulator network. The controller network produces an appropriate steering signal output given any z
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to back-propagate errors.
The error was computed with simple kinematics. If the truck moves backward by the distance (dz, dy)
each iteration, then
(1", y)ncw = (1"1 y)old + (dI, dy)

where dz = r cos(¢ +8), dy = r sin(¢ + ), and r is the fixed driving distance of the truck for all backing
movements.

In the training of the truck-controller, ideal steering signal was estimated at each stage before training
the controller network. In the simulation, the arc-shaped truck trajectory produced by the fuzzy controller
was taken as the ideal trajectory.

Figure 9 shows a typical neural-controlled truck trajectory starting from the initial position (30,20)
and the angle 30 degree. Even though the neural network was trained to follow the smooth arc-shaped
path, the actual truck trajectory is clearly non-optimal.

Comparison of Fuzzy and Neural Systems

As shown in Figure 7, the fuzzy controller always succeeds at smoothly backing up the truck. The
neural controller does not. When it succeeds, the neural-controlled truck often follows an irregular path.

The central problem of the neural truck backer-upper system is its time-consuming training. Thousands
of back-ups were required to train both the controller and the emulator networks with the backpropagation
algorithm. In some cases, the training procedure did not converge.

The truck emulator network is redundant. It only propagates performance errors backward. As in the
Nguyen-Widrow neural truck backer-upper, the kinematic equation (z, y)new = (2, ¥)ota + (dz, dy) is used
to determine the performance error.

The fuzzy controller was “trained” by inspection and consistently performed well. Once the FAM
rule bank is established, control outputs can be obtained from the resulting FAM-bank matrix or control
surface. The fuzzy controller did not need a truck emulator. No math model of how outputs depend on
inputs was used.

The fuzzy controller is computationally lighter than the neural controller. Most computation opera-
tions in the neural controller are the multiplication, addition, or logarithm of two real numbers. In the
fuzzy controller, most computational operations were comparing and adding two real numbers.

Sensitivity Analysis

We studied the sensitivity of the fuzzy controller by replacing the FAM rules with “bad” or sabotage
FAM rules and by randomly removing FAM rules. Sabotage FAM rules were selected to deliberately
confound the system. Figure 10 shows the trajectory when the most important FAM rule — FAM rule 17:
the fuzzy controller should produce zero output when the truck is nearly in the correct parking position
— is replaced by two extreme bad rules. Figure 11 shows the truck trajectory when four randomly chosen
FAM rules (6, 12, 18, and 22) are removed. Such perturbations have little effect on the fuzzy controller’s
performance.

We studied robustness of each controller by examining failure rates. In the fuzzy control case, fixed
percentages of randomly selected FAM rules were removed from the system. In the neural control case,
training data was removed. Figure 12 shows performance errors averaged over ten back-ups with missing
FAM rules for the fuzzy controller and missing training data for the neural controller. The missing FAM
rules and training data ranged from 0 % to 100 % of the total. In Figure 12 (a), the error is Euclidean
distance from the actual final position (¢, x, y) to the desired final position (¢y, xs, y;). In part (b),
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(3) (b)

FIGURE 10  The fuzzy truck trajectory when the key FAM rule 17 (ZE) was replaced by
the two worst rules: (a) Positive extreme(PB) and (b) Negative extreme(NB).
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FIGURE 11 Fuzzy truck trajectory when FAM rules 6, 12, 18 and 22 are removed.

the trajectory error is the ratio of the actual trajectory length of the truck divided by the straight line
distance to the loading dock:

length of truck trajectory

Trajectory error = — — — - — .
) y distance(initial position, desired final position)

Conclusion

Fuzzy control shows optimal truck backing-up performance despite rough definition of fuzzy member-
ship functions and a small number of articulated FAM rules. Once the linguistic FAM rules are specified,
the control is efficient and robust. Structured knowledge of the control process is simply and immediately
represented as entries in a FAM-bank matrix. The user need not specify a mathematical transfer function
or provide a statistically representative set of numerical training data. If such data is provided, various
neural learning algorithms can be used to adaptively estimate, and re-estimate, the FAM rules.

The neural truck backer-upper requires extensive training. In large-scale systems, such training may
well be computationally prohibitive. Moreover sufficient numerical training data may not be available.
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FIGURE 12
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Comparison of robustness of the controllers: (a) Landing and Trajectory

error of the fuzzy controller, (b) Landing and Trajectory error of the neural controller.

Our neural truck backer-upper, with its comparatively fast failure rate, required hours of training time
on a SUN 3 workstation. Training was complicated by the many training samples with numerically close

values.

Structured knowledge of a control system seems difficult to directly encode in a neural controller. A
neural network simply may not be the appropriate architecture for many control problems. A more ap-
propriate architecture may be a fuzzy system or FAM-bank architecture, with embedded neural networks
to adaptively estimate individual FAM rules.
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