UNIVERSITY OF TÜBINGEN

WILHELM-SCHICKARD-INSTITUTE FOR COMPUTER SCIENCE

Department of Computer Architecture

JavaNNS

Java Neural Network Simulator User Manual, Version 1.1

Igor Fischer, Fabian Hennecke, Christian Bannes, Andreas Zell

Contents

1.	Introduction	.4
	1.1. How to read this manual	. 4
2.	Licensing and Acknowledgements	. 5
	2.1. License Agreement	. 5
	2.2. Acknowledgments	. 6
3.	Installation	. 8
	3.1. Running JavaNNS	. 8
4.	A Quick Tour of JavaNNS	. 9
	4.1. Starting JavaNNS	. 9
	4.2. Loading Files	. 9
	4.3. View Network	. 9
	4.4. Training Network	. 9
	4.5. Analyzing Network	10
	4.6. Creating a Network	10
	4.7. Graphical Network Display	10
	4.8. Training and Validation Pattern Sets	11
5.	Network Creation and Editing	12
	5.1. Network View and Display Settings	12
	5.2. Tools for Creating Networks	13
	5.3. Editing Units	14
6.	Pattern Management	15
7.	Training and Pruning Networks	16
8.	Analyzing Networks	18
	8.1. Projection Panel	18
	8.2. Weights Panel	18
	8.3. Analyzer	19
9.	Loading, Saving and Printing	20
Aţ	ppendix A: Kernel File Interface	21
	A.1. The ASCII Network File Format	21
	A.2. Form of the Network File Eries	21
	A.3. Grammar of the Network Files	22
	A.4. Grammar of the Pattern Files	27
A	ppendix B: Example Network File	30
	B.1. Example 1:	30
	B.2. Example 2:	32

1. Introduction

Java Neural Network Simulator (JavaNNS) is a simulator for neural networks developed at the Wilhelm-Schickard-Institute for Computer Science (WSI) in Tübingen, Germany. It is based on the Stuttgart Neural Network Simulator (SNNS) 4.2 kernel, with a new graphical user interface written in Java set on top of it. As a consequence, the capabilities of JavaNNS are mostly equal to the capabilities of the SNNS, whereas the user interface has been newly designed and -- so we hope -- become easier and more intuitive to use. Some complex, but not very often used features of the SNNS (e.g. three-dimensional display of neural networks) have been left out or postponed for a later version, whereas some new, like the log panel, have been introduced.

Besides the new user interface, a big advantage of JavaNNS is its increased platform independence. Whereas SNNS was developed with primarily Unix workstations in mind, JavaNNS also runs on PCs, provided that the Java Runtime Environment is installed. As of writing of this manual JavaNNS has been tested on:

- Windows NT
- Windows 2000
- RedHat Linux 6.1
- Solaris 7
- Mac OS X

with more to follow soon.

1.1. How to read this manual

Because of large similarities between SNNS and JavaNNS, this manual covers only the differences between the two. It should be read as a companion to the SNNS User Manual, available from the WSI web site:

http://www-ra.informatik.uni-tuebingen.de/SNNS/

We suggest that you first read the SNNS Manual, in order to become acquainted with the theory of neural networks, the way they are implemented in the SNNS kernel and to get a basic idea of the SNNS graphical user interface. If you are already familiar with SNNS, you can skip this step and start directly with this manual.

In the next chapter, you will find the license agreement. Please read it carefully and make sure that it is acceptable for you before installing and using JavaNNS. The installation process differs slightly for Windows and Unix machines and is described separately for each case. After installing, we suggest that you follow our quick tour through the simulator to get the first impression of how it is organized and used. The rest of the manual covers in more detail creating, manipulation and analyzing neural networks. You can skim it in the first reading and use it later as a reference.

2. Licensing and Acknowledgements

JavaNNS is Copyright (c) 1996-2001 JavaNNS Group, Wilhelm-Schickard-Institute for Computer Science (WSI), University of Tübingen, Sand 1, 72076 Tübingen, Germany. It uses the kernel of SNNS (Stuttgart Neural Network Simulator), which is Copyright (c) 1990-95 SNNS Group, Institute for Parallel and Distributed High-Performance Systems (IPVR), University of Stuttgart, Breitwiesenstrasse 20-22, 70565 Stuttgart, Germany.

Currently, JavaNNS is distributed by the University of Tübingen and only as a binary. Although it is distributed free of charge, please note that it is NOT PUBLIC DOMAIN.

The JavaNNS License is gives you the freedom to give away verbatim copies of the JavaNNS distribution (which include the license). We do not allow modified copies of our software or software derived from it to be distributed. You may, however, distribute your modifications as separate files along with our unmodified JavaNNS software. We encourage users to send changes and improvements which would benefit many other users to us so that all users may receive these improvements in a later version. The restriction not to distribute modified copies is also useful to prevent bug reports from someone else's modifications.

For our protection, we want to make certain that everyone understands that there is NO WAR-RANTY OF ANY KIND for the JavaNNS software.

2.1. License Agreement

- 1. This License Agreement applies to the JavaNNS program and all accompanying programs and files that are distributed with a notice placed by the copyright holder saying it may be distributed under the terms of the JavaNNS License. 'JavaNNS', below, refers to any such program or work, and a 'work based on JavaNNS' means either JavaNNS or any work containing JavaNNS or a portion of it, either verbatim or with modifications. Each licensee is addressed as 'you'.
- 2. You may copy and distribute verbatim copies of the JavaNNS distribution as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty, keep intact all the notices that refer to this License and to the absence of any warranty, and give any other recipients of JavaNNS a copy of this license along with JavaNNS.
- 3. You may modify your copy or copies of JavaNNS or any portion of it only for your own use. You may not distribute modified copies of JavaNNS. You may, however, distribute your modifications as separate files (e.,g. new network or pattern files) along with our unmodified JavaNNS software. We also encourage users to send changes and improvements which would benefit many other users to us so that all users may receive these improvements in a later version. The restriction not to distribute modified copies is also useful to prevent bug reports from someone else's modifications.
- 4. If you distribute copies of JavaNNS you may not charge anything except the cost for the media and a fair estimate of the costs of computer time or network time directly attributable to the copying.
- 5. You may not copy, modify, sublicense, distribute or transfer JavaNNS except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, distribute or transfer JavaNNS is void, and will automatically terminate your rights to use JavaNNS under this License. However, parties who have received copies, or rights to use copies, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

- 6. By copying, distributing or modifying JavaNNS (or any work based on javaNNS) you indicate your acceptance of this license to do so, and all its terms and conditions.
- 7. Each time you redistribute JavaNNS (or any work based on JavaNNS), the recipient automatically receives a license from the original licensor to copy, distribute or modify JavaNNS subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein.
- 8. Because JavaNNS is licensed free of charge, there is no warranty for it, to the extent permitted by applicable law. The copyright holders and/or other parties provide JavaNNS 'as is' without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of JavaNNS is with you. Should the program prove defective, you assume the cost of all necessary servicing, repair or correction.
- 9. In no event will any copyright holder, or any other party who may redistribute JavaNNS as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use JavaNNS (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of JavaNNS to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

2.2. Acknowledgments

JavaNNS is a joint effort of a large number of people, computer science students, research assistants as well as faculty members at the Institute for Parallel and Distributed High Performance Systems (IPVR) at University of Stuttgart, the Wilhelm Schickard Institute of Computer Science at the University of Tübingen, and the European Particle Research Lab CERN in Geneva.

The project to develop an efficient and portable neural network simulator which later became SNNS was lead since 1989 by Dr. Andreas Zell, who designed SNNS and acted as advisor for more than two dozen independent research and Master's thesis projects that made up SNNS, JavaNNS and some of its applications. Over time the source grew to a total size of now 5MB in 160.000+ lines of code. Research began under the supervision of Prof. Dr. Andreas Reuter and Prof. Dr. Paul Levi. We are grateful for their support and for providing us with the necessary computer and network equipment.

The following persons were directly involved in the SNNS project. They are listed in the order in which they joined the SNNS team.

Andreas Zell	Design of the SNNS simulator, SNNS project team leader.
Niels Mache	SNNS simulator kernel (really the heart of SNNS), parallel SNNS kernel on MasPar MP-1216.
Tilman Sommer	original version of the graphical user interface XGUI with integrated network editor, PostScript printing.
Ralf Hübner	SNNS simulator 3D graphical user interface, user interface development (version 2.0 to 3.0).
Thomas Korb	SNNS network compiler and network description language Nessus.

Table 1: SNNS and JavaNNS project members

Table 1: SNNS and JavaNNS project members

Michael Vogt	Radial Basis Functions. Together with Günter Mamier imple- mentation of Time Delay Networks. Definition of the new pat- tern format.
Günter Mamier	SNNS visualization and analyzing tools. Implementation of the batch execution capability. Together with Michael Vogt implementation of the new pattern handling. Compilation and continuous update of the user manual. Maintenance of the ftp server. Bugfixes and installation of external contributions.
Michael Schmalzl	SNNS network creation tool Bignet, implementation of Cas- cade Correlation, and printed character recognition with SNNS.
Kai-Uwe Herrmann	ART models ART1, ART2, ARTMAP and modification of the BigNet tool.
Artemis Hatzigeorgiou	documentation about the SNNS project, learning procedure Backpercolation 1.
Dietmar Posselt	ANSI-C translation of SNNS.
Sven Döring	ANSI-C translation of SNNS and source code maintenance. Implementation of distributed kernel for workstation clusters.
Tobias Soyez	Jordan and Elman networks, implementation of the network analyzer.
Tobias Schreiner	Network pruning algorithms.
Bernward Kett	Redesign of C-code generator snns2c.
Jens Wieland	Design and implementation of batchman.
Jürgen Gatter	Implementation of TACOMA and some modifications of Cas- cade Correlation.
Igor Fischer	Java user interface design and development.
Fabian Hennecke	Java user interface development.
Christian Bannes	Java user interface support
Hans Rudolph	JavaNNS kernel port for Mac OS X

There are a number of important external contributions by: Martin Reczko, Martin Riedmiller, Mark Seemann, Marcus Ritt, Jamie DeCoster Jochen Biedermann, Joachim Danz, Christian Wehrfritz Randolf Werner, Michael Berthold and Bruno Orsier.

3. Installation

To be able to use JavaNNS, you have to have Java Runtime Environment (or JDK, which contains it) installed. JavaNNS has been tested to work with Java 1.3, Java 1.2.2 might also work, though problems with file management have been reported in certain environments.

JavaNNS for Windows platforms is distributed as the zip file JavaNNS-Win.zip, and as gzipped tar archive, like JavaNNS-LinuxIntel.tar.gz and JavaNNS-Solaris.tar.gz for other operating systems. Unzip (unpack) the file into a folder of your choice. You should get:

- 1. JavaNNS.jar the Java archive file containing the JavaNNS user interface classes
- 2. examples folder with example networks, patterns etc.
- 3. manual folder containing this manual

JavaNNS needs the kernel library in order to work properly. If you run JavaNNS the first time on your machine a dialog will appear to ask you where to install the library.

JavaNNS then rememberes the location of the library by storing it in the file **JavaNNS.properties**, which is generated and placed into your home directory (*Personal* in Windows terminology). If you which to change properties, use *Properties* editor in the JavaNNS *View* menu.

You can delete the library or the **JavaNNS.properties** file any time you want. In that case the library installation dialog will appear the next time you start JavaNNS.

3.1. Running JavaNNS

That's all! Now you can start JavaNNS by typing:

```
java -jar JavaNNS.jar
```

from the command prompt or by clicking the JavaNNS.jar file from the graphical user interface.

4. A Quick Tour of JavaNNS

JavaNNS is a simulator for artificial neural networks, i.e. computational models inspired by biological neural networks. It enables you to use predefined networks or create your own, to train and to analyze them. If any of these terms is unknown to you, please refer to a book about neural networks or to the SNNS User Manual - this manual describes only the usage of JavaNNS.

4.1. Starting JavaNNS

To begin the tour, let's start JavaNNS, as described in "Installing": type java -jar JavaNNS.jar or, if using Windows, click the JavaNNS.bat file. After starting the program, its main window opens. As we have started the program no parameters in the command line, the window is empty, containing only the usual menu bar. Also, no network files have been loaded.

4.2. Loading Files

Use File/Open menu to open an example file: navigate to the examples directory and open the files xor_untrained.net, and xor.pat - a simple network and a corresponding pattern file.

4.3. View Network

The main window still remains empty, so choose View/Network to display the network. You should see a new window appearing, schematically showing a network, consisting of 4 units (neurons) and links between them, in its main part. Neurons and links have different colors, representing different values of unit activations and link weights. The colored bar on the left edge of the window shows which color corresponds to which value and can be used as reminder. The colors - and appearance in general - can be adjusted through View/Display Settings, which corresponds to the Display/Setup window in SNNS.

4.4. Training Network

Let us now train the network - reprogram its weights, so that it gives the desired output when presented an input pattern. For that purpose, open the Control Panel in the Tools menu. The Control Panel is, as in the SNNS, the most important window in the simulator, because almost all modifications and manipulations of the network are done through it. We shall also open the Error Graph window, in order to watch the training progress. Finally, to receive some textual and numerical information, we can open the Log window. Both are accessible through the View menu.

A sample screen shot with the windows open is shown in Figure 1.

The Control Panel is, contrary to the one in SNNS, divided into six tabs, each containing controls for specific purpose. For this introduction, let us switch directly to the learning tab. Here, the user can choose the learning function, set its parameters, number of learning cycles and update steps and finally perform network initialization and learning. The classic Backpropagation (equals Std_Backpropagation in SNNS) is the default learning function. As you can see, for each learning function default parameters are provided.

Learning is performed by pressing one of the buttons: "Learn current" which performs training with the currently selected pattern, and "Learn all", which trains the network with all patterns from the pattern set. During learning, the error graph displays the error curve - the type of error to be drawn is set on the left edge of the window. The error is also written into the log window.

Figure 1: JavaNNS with XOR network, error graph, control and log panel

4.5. Analyzing Network

For analyzing the network and its performance, tools like Analyzer (in the Tools menu) and Projection (in the View menu), already familiar to SNNS users, can be used. For Projection, two input units and a hidden or output unit have to be selected in order for the menu item to become enabled. The Projection Panel than displays the activation of the hidden or output unit as a function of the two inputs. The activation is represented by color, so a colored rectangle is obtained. Analyzer is used to show output or activation of a unit as a function of other unit's activation or of the input pattern. Its usage is similar to the Analyze panel in the SNNS.

4.6. Creating a Network

Now let's create a network of our own. Choose File/New to remove the current network from the simulator. Then, choose Create/Layers from the Tools menu. A window resembling the Bignet tool of SNNS appears. Choose width and height "1", unit type "Input" and click "Create" to create a new layer. For the next layer, set height to five and the unit type to "Hidden" and click "Create" again. Finally, create the output layer with the height of one and unit type "Output" and close the window. To connect the created units, use Create/Connections from the Tools menu. Simply choose "Connect feed-forward" and click "Crente". Doing that, you have created a simple feed-forward neural network, with one input, five hidden and one output unit. You can now close the Connections window, too.

4.7. Graphical Network Display

You can arrange units on the display manually, by clicking and dragging them with the mouse. In fact, clicking a unit selects it, and dragging moves all selected units. To deselect a unit, press the CTRL-Key on the keyboard and click it while still holding the key pressed. Using View/View Settings, tab Units and Links, you can choose what to display above and under each unit. Make sure that "Name" is selected as top label. Since the units have just been created, they are all called "noName". To change the names, choose "Names" from the Edit menu. The top labels turn to text fields. Use the mouse to place the caret into each one and enter some names. After you have finished, press "Enter" or click in an empty are of the display to turn the text fields to labels again.

4.8. Training and Validation Pattern Sets

To see how two pattern sets can be used for training and validation, load two pattern sets from "examples" directory: trainMAP.pat and validMAP.pat. In the Control Panel, tab "Patterns", select trainMap as the training set and validMAP as the validation set. Switch back to the "Learning" tab and train the network. During training two curves are displayed in the Error Graph: one, who's color depends on the number of already displayed curves and which represents the error of the training set, and the other, pink one, which represents the error of the validation set. The validation set is normally used to avoid overtraining of a network. For more information refer to the SNNS User Manual and other neural networks literature.

5. Network Creation and Editing

5.1. Network View and Display Settings

Although not necessary, it is recommended that a network view is open when creating and editing networks. Network view is opened through View/ Network menu. The network view displays a visual representation of the network, which comprises of units and connections (links) between them. Units are drawn as colored squares with 16 pixels side length, and connections as colored lines. For both units and links the color represents a value: activation for units and weight for links. The colored bar on the left edge of the net-

Figure 2: Network view

work view serves as a quick reminder for color-to-value correspondence. (Figure 2)

Units are placed along an invisible grid in the network view. Optionally, above and below each unit diverse unit properties can be displayed. Which ones, as well as grid size, chroma coding for units and links and some more data are set in the Display Settings panel, accessible from the View menu. This panel corresponds to the Display/Setup panel in SNNS.

Display settings of	view 2555	2 <2>		x
General Units & Links	3			
Grid size:	50			
Subnet:	0	Max, value o	olor: 📃	
z-Value:		Min. value c	olor: 📕	
Text color:		Zero value	color: 📃	
Background color		Selection c	olor:	
	. 1	1		1
OK Pr	eview	Default	Cancel	

Figure 3: Display Settings - General

Display Settings comprise of two tabs: General and Units&Links (or SOM for Kohonen tool). In tab General, grid size (in pixels), subnet number and chroma codes for different values can be set. In Units&Links, the user can set which properties, like name, unit activation etc. are to be shown above (Top label) and below (Base label) of each unit. Also, the user can decide if the connections are to be shown, if their weights are to be displayed numerically and if the direction arrows should be drawn. Sliders "Maximum expected value" and "Maximum expected weight" control the chroma coding for units and links, since they determine which value corresponds to the full color, as set in the "General" tab. Minimum values are simply taken to be negatives of the maximums, and for values between the color is interpolated. The Slider "Weakest visible link" is self-explanatory and helps keeping the network view more comprehensible.

Since more than one network view can be open at the same time, Display Settings refer to the currently selected one.

5.2. Tools for Creating Networks

Networks are created using two tools from the "Tools" menu, both from the "Create" submenu: "Layers" and "Connections". They together correspond to the "Bignet" tool in SNNS.

In JavaNNS layer has a different meaning as in the SNNS. In JavaNNS, layer corresponds to a physical layer of units that is being created. When creating layers, width and height determine the number of units in horizontal and vertical direction for the layer. Top left position is updated automatically, but can also be entered manually, and controls the layer's position in the display area. For all the data - width, height and coordinates of the top left position - the

Display settings of v	riew 25552 <2>			
Top label:	Maximum expected value:			
Base label: Output	0 0.5 1 1.5 2			
Links				
Show	Weakest visible link:			
🔲 Show weights				
E Show directions	0 2 4 6 8 10 Maximum expected weight:			
	······································			
OK Preview Default Cancel				

Figure 4: Display Settings - Units and Links

measuring unit is "grid size unit", which is set in the View/Display Settings panel.

In "Unit detail" segment of the window, the unit type (e.g. Input or Hidden), activation function of the units (Logistic by default), output function of the units (Identity by default), the layer number and the subnet number are set.

The "Connections" window provides for creating links (connections) between units. Three different ways are possible for creating links: by manually selecting units to connect ("Connect selected units"), by automatically connecting the whole network in a feed-forward style ("Connect feed-forward") and by interconnecting those in the same layer (Auto-associative). In case of feedforward networks, shortcut connections (links connecting units form non-adjacent layers) can optionally be created. For auto-associative networks, self-connections (feedback connections from the output to the input of a same unit) can be allowed.

Except for automatic generation of feed-forward con-

nections, the user has to select units to be connected. Units are selected using the mouse, either by clicking each unit, or by clicking the mouse and dragging a rectangle around units to be selected. Units are deselected by clicking them while holding the CTRL key pressed. A simple click in an empty area in a network view deselects all units.

🖉 Create layers	_ >
Size & Position	
Width: 1	Height: 1
Top left position:	11 1 1
Unit detail	
Unit type:	Unknown
Activation function:	Act_Logistic 💌
Output function:	Out_Identity
Layer number: 6	Subnet number: 0
Create	Close

Figure 5: Create Layers tool

Connecting selected units is a two-step process. In the first step, the user selects units where the connections are to originate (source units) and presses the button "Mark selected units as source". In the second step, the user selects the receiving units (targets) and presses the button, which is now labeled "Connect source with selected units". For auto-associative connections it suffices to select the desired units and press the "Connect selected units" button.

Selected units can be dragged with the mouse in order to change their positions.

5.3. Editing Units

Existing units can be edited by selecting them and then choosing Unit Properties from the Edit menu or Edit Units in the context-sensitive menu, which is accessed by pressing the right

Create links

Figure 6: Create Links tool

mouse button while over a unit. An extra window appears, displaying all editable unit properties, like name, type, activation etc. This method allows only for setting the same values for all selected units. Alternatively, the user can edit values displayed as top and base labels of each unit individually. For that purpose, the user has to choose from the Edit menu which property he or she wants to edit. The labels displaying the property turn to entry fields, which can now be edited. The fields are selected by the mouse and can be traversed by pressing the Tab key. Pressing Enter accepts changes and turns the fields back to labels.

Changing activation values of units is useful if patterns are created manually.

6. Pattern Management

Like in SNNS, patterns are organized in pattern sets, which are stored as text files. They can be loaded using the Open option and saved using "Save data" (not Save!) from the File menu. Further manipulation is primarily performed from the Control Panel (accessible from the Tools menu), in the "Patterns" tab. Some simple manipulations (adding, modifying, deleting) can be also performed from the Patterns menu in the main menu bar.

🛱 Control Panel 🗕	×
Initializing Updating Learning Pruning Patterns Subpatterns	
Remapping function: Linear scale 🔽	
Parameters	
m 1.0 C 0.0	
Training set: bdg_variable 💽 🔀 🏭 🎽	
Validation set: bdg_variable 💽 💥 🏭 🚺 🖣 📘 🕨	

Figure 7: Control Panel - Patterns

In the Control Panel, a pattern remapping function and its parameters can be selected.

The two combo boxes - Training set and Validation set - are used for selecting the active training and validation set, respectively. Also, when new pattern sets are created (by pressing the second button next to each of the combo boxes), the corresponding combo box becomes editable, so that the new pattern set can be given a name. The other button, adjacent to the combo box, deletes the current pattern set from the memory.

Near the right edge of the panel, in the pre-last row, three more buttons serve for modifying the current pattern set. Their function, from left to right, is: add, copy and delete pattern. Add creates a new pattern from current input and output unit activations and adds it to the current pattern set. Copy creates a new pattern, which is a verbatim copy of the currently selected one, and adds it to the pattern set. Finally, the delete button deletes the currently selected pattern.

The current pattern is identified by its ordinal number in the pattern set. This number is displayed in a text field between arrow buttons in the bottom right corner of the panel. The arrow buttons provide for navigating through the patterns in the currently selected set.

Some patterns can contain subpatterns of variable length. In that case, the tab "Subpatterns" is enabled and provides for defining size and shape of subpatterns, as well as for navigating through them. This corresponds to the Subpattern window in SNNS.

Propagating patterns through the network is done in the Update tab of the Control Panel. Same navigational controls are provided as in the Patterns tab. Besides, the button between the arrows propagates the current pattern through the network.

The same panel is also used for selecting the updating function and its parameters to be used in training.

Training is also performed through the Control Panel. In the Initializing tab, an initialization function and its parameters can be set. The Init button (also available in the Learning tab) performs the initialization.

Under the Learning tab, the user can choose the learning function, set its parameters, number of learning cycles and update steps and finally perform network initialization and learning. The classic Backpropagation (equals Std_Backpropagation in SNNS) is the default learning function. For each learning function default parameters are provided.

The "Learn current" button performs training with the currently selected pattern and "Learn all" with all patterns from the pattern set. In order to monitor learning progress, it is useful to open the Error Graph and/or Log window, both available from the View menu. During learning, the error graph displays the error curve. The type of the error to be drawn is set through the middle button located on the left edge of the window. The arrow buttons near the axes are used for scaling. The two buttons in the left bottom corner clear the error graph and toggle grid, respectively.

🖉 Control Panel	_ ×
Initializing Updating Learning Pruning Patterns Subpatterns	
Initializing function: Random Weights	
Parameters min 1.0 max 1.0	
Init	

Figure 8: Control Panel - Init

🖉 Control Panel	
Initializing Updating Learning Pruning Pa	tterns Subpatterns
Learning function: Rprop	▼ ?
Parameters õ0 0.35 õmax 30.0	α 3.0
Cycles: 500 Steps: 1	Shuffle
Init Learn current	Learn all

Figure 9: Control Panel - Learning

During training, the error is also written into the log window. Also, many other useful information about the network are written there on diverse occasions. The log window corresponds roughly to the command shell window from which SNNS is started in a Unix system.

Options and controls for pruning networks are found under the Pruning tab in the Control Panel. Its contents corresponds mostly to the Pruning window in SNNS. However, contrary to the SNNS, the user does not have to set the learning function to Pruning-FeedForward. In JavaNNS it is done automatically and transparently for him/her. The learning function, as set under the Learning tab, as well as number of cycles, correspond to the data entered in "General parameters for Training" section of the SNNS' Pruning window. In JavaNNS, pruning is performed by pressing the Prune button.

🛎 Control Panel		_ ×
Initializing Updating Learning	Pruning Patte	erns Subpatterns
Method: Optimal Brain Surg	eon 💌	
Maximum error increase [%]:	10	Recreate last element
Accepted error:	5	🗌 Refresh display
Cycles for retraining:	100	Prune input units
Minimum error to train:	1	Prune hidden units
Initial matrix value:	0.000001	
		Prune

Figure 10: Control Panel - Pruning

Cascade correlation and TACOMA learning are the only exceptions to the concept of the Control Panel being the central place for manipulating networks. Because of the large number of parameters needed by the two learning methods, a separate window, accessible from the Tools menu is used. Contrary to SNNS, where parameters for cascade correlation and TACOMA are dispersed between the Control Panel and the Cascade window, in JavaNNS the Cascade window alone covers all data and parameters needed for applying the two learning algorithms.

The window is divided into six tabs. Tabs "General", "Modification" and "Learn" cover the parameters set in SNNS in the section "General Parameters for Cascade" of the Cascade window. Under the "Lear" tab of the JavaNNS Cascade window, the learning function, together with its parameters and the maximal number of cascades (hidden units generated during learning) are set. The "Init" tab is introduced for convenience and provides for initializing network. Tabs "Candidates" and "Output" correspond to "Parameters for Candidate Units" and "Parameters for Output Units" sections in the SNNS window. The default learning method invoked from the window is cascade correlation,

Figure 11: Cascade Correlation and TACOMA - General

\Bigg Ca	scade Correlation & TACOMA			
Gene	eral Modification Candidates Output Init Learn			
Learr	ning function: Backpropagation			
⊢Par	ameters			
η1	0.1 µ1 0.1			
с	0.1 n² 0.1			
μ2	0.1			
Cascades: 10 Learn				

TACOMA can be set as a modification under the corresponding tab.

8. Analyzing Networks

Weights and Projection panels, accessible through the View menu, and Analyzer, accessible from the Tools menu, can be used for getting insight into a network. All the panels correspond to their SNNS counterparts and differ only in appearance.

8.1. Projection Panel

The Projection panel shows activation of a hidden or output unit as a function of activations of two input units. The panel can only be opened when the three units are selected in a network view. The activations of the input units are drawn on the x- and y-axis, while corresponding activations of the output unit are represented by different pixel colors. For the chroma coding, the same values as for the network view apply.

Arrows at the panel edges are used for moving the projection window in the input space. The two buttons on in the top left corner are used for zooming, and the buttons in the bottom left corner for adjusting the view resolution. Zooming can also be performed manually, by dragging a rectangle in the projection area.

8.2. Weights Panel

The Weights panel presents link weights as colored rectangles. The x-axis is used for source units and the y-axis for the target units of the links. The two buttons at the panel bottom are used for toggling grid and for auto zoom for optimal display. As in the projection panel, zooming can be performed manually.

Figure 13: Projection panel

Figure 14: Weights panel

8.3. Analyzer

The Analyzer is used to show output or activation of a unit as a function of other unit's activation or of the input pattern. Its usage is similar to the Analyze panel in the SNNS. The control buttons are also familiar and have the same function as in the Error Graph, Projection and Weights panel.

Figure 15: Analyzer panel

9. Loading, Saving and Printing

File loading, saving and printing of results is performed through the File menu. Whereas "Open" can be used for loading any type of file (network, pattern, text...), "Save", as well as "Save as" are used only for saving the current network. Other file types are saved through "Save data", by choosing the appropriate file type in the combo box at the bottom of the dialog window. For result files, additional options (start and end pattern, inclusion of input and output files and file creation mode) like in SNNS can be set.

Save				×
Look <u>i</u> n:	🚞 examples	•		¥
letters.res			Start patter	n: O
			End patterr	n: 4
			🗖 Include	input files
			🗖 Include	output files
				C append
File <u>n</u> ame:	myResult			<u>S</u> ave
Files of type:	Result files *.res		•	<u>C</u> ancel

Figure 16: File Save dialog

When choosing files for loading in the file dialog window it is possible to select multiple files, even of different types. That way, the user can load a network, configuration and multiple pattern files in only one step. (This currently doesn't work in the Linux implementation)

Print always refers to the currently active window. Therefore, anything that can be displayed in JavaNNS can also be printed by making the desired window active (i.e. clicking it with the mouse) and choosing "Print" from the File menu.

Appendix A: Kernel File Interface

A.1. The ASCII Network File Format

The ASCII representation of a network consists of the following parts:

- a header, which contains information about the net
- the definition of the teaching function
- the definition of the sites
- the definition of cell types
- the definition of the default values for cells
- the enumeration of the cells with all their characteristics
- the list of connections
- a list of subnet numbers
- a list of layer numbers

All parts, except the header and the enumeration of the cells, may be omitted. Each part may also be empty. It then consists only of the part title, the header line and the boarder marks (e.g.: ----|---|------).

Entries in the *site definition section* do not contain any empty columns. The only empty column in the *type definition section* may be the *sites* column, in which case the cells of this type do not have sites.

Entries in the *unit definition section* have at least the columns *no*. (cell number) and *position* filled. The entries (rows) are sorted by increasing cell number. If column *typeName* is filled, the columns *act func*, *out func*, and *sites* remain empty.

Entries in the *connection definition section* have all columns filled. The respective cell does not have a site, if the column *site* is empty. The entries are sorted by increasing number of the target cell (column *target*). Each entry may have multiple entries in the column *sources*. In this case, the entries (number of the source cell and the connection strength) are separated by a comma and a blank, or by a comma and a newline (see example in the Appendix B).

The file may contain comment lines. Each line beginning with # is skipped by the SNNS-kernel.

A.2. Form of the Network File Eries

Columns are separated by the string " " (without "). A row never exceeds 250 characters.

Strings may have arbitrary length. The compiler determines the length of each row containing strings (maximum string length + 2). Within the columns, the strings are stored left adjusted. Strings may not contain blanks, but all special characters except |. The first character of a string has to be a letter.

Integers may have an arbitrary number of digits. Cell numbers arealways positive and not zero. Position coordinates may be positive or negative. The compiler determines the length of each row containing integers (maximum digit number + 2). Within the columns, the numbers are stored right adjusted.

Floats are always stored in fixed length with the format **Vx.yyyy**, where **V** is the sign (+, - or blank), **x** is 0 or 1 and **y** is the rational part (5 digits behind the decimal point).

Rows containing floats are therefore always 10 characters long (8 + 1 blank on each side).

If a row contains several sites in the *type* or *unit definition section*, they are written below each other. They are separated in the following way: Directly after the first site follows a comma

and a newline n. The next line starts with an arbitrary number of blanks or tabs in front of the next site.

The source of a connection is described by a pair, the cell number and the strength of the connection. It always has the format **nnn:Vx.yyyy** with the following meaning:

- **nnn** Number of the source
- Vx.yyyyy Strength of the connection as a float value (format as discribed above)

The compiler determines the width of the column **nnn** by the highest cell number present. The cell numbers are written into the column right adjusted (according to the rules for integers). The column **Vx.yyyyy** has fixed width. Several source pairs in an entry to the *connection definition section*/ are separated by a comma and a blank. If the list of source pairs exceeds the length of one line, the line has to be parted after the following rule:

- Separation is always between pairs, never within them.
- The comma between pairs is always directly behind the last pair, i.e. remains in the old line.

After a newline (\mathbf{n}) an arbitrary number of blanks or tabs may precede the next pair.

A.3. Grammar of the Network Files

A.3.1.Conventions

A.3.1.1. Lexical Elements of the Grammar

The lexical elements of the grammar which defines network files are listed as regular expresions. The first column lists the name of the symbol, the second the regular expression defining it. The third column may contain comments.

- All terminals (characters) are put between "...".
- Elements of sets are put between square brackets. Within the brackets, the characters represent themselves (even without ", and defines a range of values. The class of digits is defined, e.g. as ["0"-"9"].
- Characters can be combined into groups with parenteses ().
- **x*** means, that the character or group x can occur zero or more times.
- **x**+ means, that the character or group x must occur at least once, but may occur several times.
- **x**? means, that x can be omitted.
- **x{n}** means, that x has to occur exactly n times.
- **x**|**y** means, that either x or y has to occur.
- *, + and {} bind
- strongest, ? is second, | binds weakest.
- Groups or classes of characters are treated like a single character with respect to priority.

A.3.1.2. Definition of the Grammar

The Grammar defining the interface is listed in a special form of EBNF.

- Parts between square brackets [] are facultative.
- | separates alternatives (like with terminal symbols).
- {**x**} means, that x may occur zero or more times.
- CSTRING is everything that is recognized as string by the C programming language.

A.3.2.Terminal Symbols

WHITESPACE	{ " " "\n" "\t" }	/* whitespaces */				
BLANKS_TABS	{ " " "\t"}	/* only blanks or tabs */				
W_COL_SEP	(" " "\n" "\t") {" " "	$("" "/n" "/t") {"" "/n" "/t"} " " {"" "/n" "/t"}$				
	/* at least one blank	c and the column separation */				
COL_SEP	${"" "/n" "/t"}" "{"$	" "\n" "\t"} /* column separation */				
COMMA	${"" "\n" "\t"}","{"$	" " "\n" "\t" } /* at least the comma */				
EOL	${"" "\n" "\t"} "\n" {$	{" " "\n" "\t"} /* at least "\n" */				
CUT	${" " " \ n" " \ t"} (" " " \ t")$	\n" "\t") {" " "\n" "\t"}				
	/* at least a blank, "	'\t", or "\n" */				
COLON	":"					

/* separation lines for different tables */

TWO_COLUMN_LINE	"-"+" ""-"+
THREE_COLUMN_LINE	"-"+" ""-"+" ""-"+
FOUR_COLUMN_LINE	"-"+" ""-"+" ""-"+
SIX_COLUMN_LINE	"-"+" ""-"+" ""-"+" ""-"+" ""-"+
SEVEN_COLUMN_LINE	"-"+" ""-"+" ""-"+" ""-"+" ""-"+" ""-"+" ""-"+
TEN_COLUMN_LINE	"-"+" ""-"+" ""-"+" ""-"+" ""-"+" ""-"+" ""-"+
	" ""-"+" ""-"+
COMMENT	$\{\{" " " n" " t"\} "#" CSTRING "\n" {" " " n" " t"} \}$
VERSION	"V1.4-3D" "V2.1" "V3.0" /* version of SNNS */
SNNS	"SNNS network definition file" /* output file header */

/* eleven different headers */

GENERATED_AT	"generated at"
NETWORK_NAME	"network name :"
SOURCE_FILES	"source files"
NO.OF_UNITES	"no. of unites :"
NO.OF_CONNECTIONS	"no. of connections :"
NO.OF_UNIT_TYPES	"no. of unit types :"
NO.OF_SITE_TYPES	"no. of site types :"
LEARNING_FUNCTION	"learning function :"
PRUNING_FUNCTION	"pruning function :"
FF_LEARNING_FUNCTION	"subordinate learning function :"
UPDATE_FUNCTION	"update function :"

/* titles of the different sections */

UNIT_SECTION_TITLE "unit definition section" DEFAULT_SECTION_TITLE "unit default section" SITE_SECTION_TITLE "site definition section" TYPE_SECTION_TITLE "type definition section" CONNECTION_SECTION_TITLE "connection definition section" LAYER_SECTION_TITLE "layer definition section" "subnet definition section" SUBNET_SECTION_TITLE TRANSLATION_SECTION_TITLE "3D translation section" TIME_DELAY_SECTION_TITLE "time delay section"

/* column-titles of the different tables */

NO	"no."
TYPE_NAME	"type name"
UNIT_NAME	"unit name"
ACT	"act"
BIAS	"bias"
ST	"st"
POSITION	"position"
SUBNET	"subnet"
LAYER	"layer"
ACT_FUNC	"act func"
OUT_FUNC	"out func"
SITES	"sites"
SITE_NAME	"site name"
SITE_FUNCTION	"site function"
NAME	"name"
TARGET	"target"
SITE	"site"
SOURCE:WEIGHT	"source:weight"
UNIT_NO	"unitNo."
DELTA_X	"delta x"
DELTA_Y	"delta y"
Z	"z"
LLN	"LLN"
LUN	"LUN"
TROFF	"Troff"
SOFF	"Soff"
СТҮРЕ	"Ctype"
INTEGER	["0"-"9"]+ /*integer */
SFLOAT	["+" " " "-"] ["1" "0"] "." ["0"-"9"]{5} /*signed float*/
STRING	("A"-"Z" "a"-"z" " ")+ /*string */

out_file

file_header

:= WHITESPACE COMMENT h_snns EOL COMMENT h_generated_at EOL COMMENT h_network_name EOL COMMENT h_source_files EOL COMMENT h_no.of_unites EOL COMMENT h_no.of_connections EOL COMMENT h_no.of_unit_types EOL COMMENT h_no.of_site_types EOL COMMENT h_learning_function EOL COMMENT h_update_function EOL COMMENT h_pruning_function EOL

/* parts of the file-header */

h_snns	::= SNNS BLANKS_TABS VERSION
h_generated_at	::= GENERATED_AT BLANKS_TABS CSTRING
h_network_name	::= NETWORK_NAME BLANKS_TABS STRING
h_source_files	::= SOURCE_FILES [BLANKS_TABS COLON BLANKS_TABS CSTRING]
h_no.of_unites	::= NO.OF_UNITES BLANKS_TABS INTEGER
h_no.of_connections	::= NO.OF_CONNECTIONS BLANKS_TABS INTEGER
h_no.of_unit_types	::= NO.OF_UNIT_TYPES BLANKS_TABS INTEGER
h_no.of_site_types	::= NO.OF_SITE_TYPES BLANKS_TABS INTEGER
h_learning_function	::= LEARNING_FUNCTION BLANKS_TABS STRING
h_pruning_function	::= PRUNING_FUNCTION BLANKS_TABS STRING
h_ff_learning_function	::= FF_LEARNING_FUNCTION BLANKS_TABS STRING
h_update_function	::= UPDATE_FUNCTION BLANKS_TABS STRING
sections	::= COMMENT unit section [COMMENT default section]
	[COMMENT site section] [COMMENT type_section]
	[COMMENT subnet section] [COMMENT conn_section]
	[COMMENT layer section] [COMMENT trans_section]
	[COMMENT time_delay_section] COMMENT
/* unit default section */	
default_section	::= DEFAULT_SECTION_TITLE CUT COMMENT WHITESPACE
	default_block
default_block	::= default_header SEVEN_COLUMN_LINE EOL
	{COMMENT default_def} SEVEN_COLUMN_LINE EOL
default_header	::= ACT COL_SEP BIAS COL_SEP ST COL_SEP SUBNET COL_SEP
	LAYER COL_SEP ACT_FUNC COL_SEP OUT_FUNC CUT
default_def	::= SFLOAT W_COL_SEP SFLOAT W_COL_SEP STRING W_COL_SEP
	INTEGER W_COL_SEP INTEGER W_COL_SEP STRING W_COL_SEP
	STRING CUT

/* site definition section */

site_section	$::= {\tt SITE_SECTION_TITLE\ CUT\ COMMENT\ WHITESPACE\ site_block}$
site_block	::= site_header TWO_COLUMN_LINE EOL {COMMENT site_def}
	TWO_COLUMN_LINE EOL
site_header	::= SITE_NAME SITE_FUNCTION CUT
site_def	::= STRING W_COL_SEP STRING CUT

/* type definition section */

= ITTE_SECTION_TITLE COT COMMENT WITTESTACE type_block
::= type_header FOUR_COLUMN_LINE EOL {COMMENT type_def}
FOUR_COLUMN_LINE EOL
::= NAME COL_SEP ACT_FUNC COL_SEP OUT_FUNC COL_SEP SITES
CUT
::= STRING W_COL_SEP STRING W_COL_SEP STRING W_COL_SEP
[{STRING COMMA} STRING] CUT

/* subnet definition section */

subnet_section	::= SUBNET_SECTION_TITLE CUT COMMENT WHITESPACE
	subnet_block
subnet_block	::= subnet_header TWO_COLUMN_LINE EOL {COMMENT subnet_def}
	TWO_COLUMN_LINE EOL
subnet_header	::= SUBNET COL_SEP UNIT_NO CUT
subnet_def	::= INTEGER W_COL_SEP {INTEGER COMMA} INTEGER CUT

/* unit definition section /*

unit_section::= UNIT_SECTION_TITLE CUT COMMENT WHITESPACE unit_blockunit_block::= unit_header TEN_COLUMN_LINE EOL {COMMENT unit_def}
TEN_COLUMN_LINE EOLunit_header::= NO COL_SEP TYPE_NAME COL_SEP UNIT_NAME COL_SEP
ACT COL_SEP BIAS COL_SEP ST COL_SEP POSITION COL_SEP
ACT_FUNC COL_SEP OUT_FUNC COL_SEP SITES CUTunit_def::= INTEGER W_COL_SEP ((STRING W_COL_SEP) | COL_SEP)
((STRING W_COL_SEP) | COL_SEP) | COL_SEP) | COL_SEP) | COL_SEP

[{STRING COMMA} STRING]

((SFLOAT W_COL_SEP) | COL_SEP) ((STRING W_COL_SEP) | COL_SEP) INTEGER COMMENT INTEGER COMMENT INTEGER W_COL_SEP ((STRING W_COL_SEP) | COL_SEP) ((STRING W_COL_SEP) | COL_SEP) /* connection definition section */

connection_section	::= CONNECTION_SECTION_TITLE CUT COMMENT WHITESPACE connection_block ::= connection_basedar_THREE_COLUMN_LINE_EOL
connection_block	{COMMENT connection_def} THREE_COLUMN_LINE EOL
connection_header	::= TARGET COL_SEP SITE COL_SEP SOURCE:WEIGHT CUT
connection_def	::= ((INTEGER W_COL_SEP) COL_SEP) STRING W_COL_SEP
	{INTEGER WHITESPACE COLON WHITESPACE SFLOAT COMMA}
	INTEGER WHITESPACE COLON WHITESPACE SFLOAT CUT
/* layer definition section */	
layer_section	::= LAYER_SECTION_TITLE CUT COMMENT WHITESPACE layer_block
layer_block	::= layer_header TWO_COLUMN_LINE EOL {COMMENT layer_def}
	TWO_COLUMN_LINE EOL
layer_header	::= LAYER COL_SEP UNIT_NO CUT
layer_def	::= INTEGER W_COL_SEP {INTEGER COMMENT} INTEGER CUT
/* 3D translation section */	
translation_section	::= TRANSLATION_SECTION_TITLE CUT
	COMMENT WHITESPACE translation_block
translation_block	::= translation_header THREE_COLUMN_LINE EOL
	{COMMENT translation_def} THREE_COLUMN_LINE EOL
translation_header	::= DELTA_X COL_SEP DELTA_Y COL_SEP Z CUT
translation_def	::= INTEGER W_COL_SEP INTEGER W_COL_SEP INTEGER
/* time delay section */	
td_section	::= TIME_DELAY_SECTION_TITLE CUT COMMENT WHITESPACE
	td_block
td_block	::= td_header SIX_COLUMN_LINE EOL {COMMENT td_def}
	SIX_COLUMN_LINE EOL
td_header	::= NO COL_SEP LLN COL_SEP LUN COL_SEP
	TROFF COL_SEP SOFF COL_SEP CTYPE CUT
td_def	$::= INTEGER \ W_COL_SEP \ INTEGER \ W_COL_SEP \ INTEGER \ W_COL_SEP$
	INTEGER W_COL_SEP INTEGER W_COL_SEP INTEGER W_COL_SEP

A.4. Grammar of the Pattern Files

The typographic conventions used for the pattern file grammar are the same as for the network file grammar (see section A.3.1.1).

A.4.1.Terminal Symbols

WHITE	{ " " "\t"}
FREE	$^{"\n"}$ /* anything up to EOL */
COMMENT	"#" FREE "\n"
L_BRACKET	"["
R_BRACKET	"]"
INT	["0"-"9"]
V_NUMBER	[Vv]{INT}+"."{INT}+ /* version number */
NUMBER	$[-+]?{\{INT\}+ \{INT\}+\{EXP\} \{INT\}+"."\{INT\}*(\{EXP\})? $
	{INT}*"."{INT}+({EXP})?}
EXP	[Ee][-+]?{INT}+
VERSION_HEADER	"SNNS pattern definition file"
GENERATED_AT	"generated at" {FREE}* "\n"
NO_OF_PATTERN	"No. of patterns" {WHITE}* ":"
NO_OF_INPUT	"No. of input units" {WHITE}* ":"
NO_OF_OUTPUT	"No. of output units" {WHITE}* ":"
NO_OF_VAR_IDIM	"No. of variable input dimensions" {WHITE}* ":"
NO_OF_VAR_ODIM	"No. of variable output dimensions" {WHITE}* ":"
MAXIMUM_IDIM	"Maximum input dimensions" {WHITE}* ":"
MAXIMUM_ODIM	"Maximum output dimensions" {WHITE}* ":"
NO_OF_CLASSES	"No. of classes" {WHITE}* ":"
CLASS_REDISTRIB	"Class redistribution" {WHITE}* ":"
REMAPFUNCTION	"Remap function" {WHITE}* ":"
REMAP_PARAM	"Remap parameters" {WHITE}* ":"
A.4.2.Grammar	
pattern_file	::= header pattern_list
header	::= VERSION_HEADER V_NUMBER GENERATED_AT NO_OF_PATTERN
	NUMBER
	i_head [o_head] [vi_head] [vo_head] [cl_head] [rm_head]
i_head	::= NO_OF_INPUT NUMBER
o_head	::= NO_OF_OUTPUT NUMBER
vi_head	::= NO_OF_VAR_IDIM NUMBER MAXIMUM_IDIM actual_dim
vo_head	::= NO_OF_VAR_ODIM NUMBER MAXIMUM_ODIM actual_dim
cl_head	::= NO_OF_CLASSES NUMBER [cl_distrib]
rm_head	::= REMAPFUNCTION NAME [rm_params]
actual_dim	::= L_BRACKET actual_dim_rest R_BRACKET
	L_BRACKET R_BRACKET
actual_dim_rest	::= NUMBER actual_dim_rest NUMBER
cl_distrib	::= CLASS_REDISTRIB L_BRACKET paramlist R_BRACKET
rm_params	::= REMAP_PARAM L_BRACKET paramlist R_BRACKET
paramlis	::= NUMBER paramlist NUMBER
pattern_list	::= pattern pattern_list pattern
pattern	::= pattern_start pattern_body pattern_class

pattern_start pattern_body pattern_class ::= [actual_dim]
::= NUMBER | pattern_body NUMBER
::= NUMBER | NAME

Appendix B: Example Network File

The lines in the connection definition section have been truncated to 80 characters per line for printing purposes.

B.1. Example 1:

```
network name : klass
source files :
no. of units : 71
no. of connections : 610
no. of unit types : 0
no. of site types : 0
```

learning function : Std_Backpropagation
update function : Topological_Order

unit default section :

act	bias	st	subnet	layer	act func	out func
	-					
0.00000	0.00000	h	0	1	Act_Logistic	Out_Identity
	-					

unit definition section :

	no.	typeName	unitName	act	bias	st	position	act	func	out func	sites
1 u11 1.00000 0.00000 i 1.1.1.0 1 2 u12 0.00000 0.00000 i 2.1.0 1 3 u13 0.00000 0.00000 i 3.1.0 1 4 u14 0.00000 0.00000 i 4.1.0 1 6 u21 1.00000 0.00000 i 5.1.0 1 7 u22 1.00000 0.00000 i 1.2.0 1 7 u22 1.00000 0.00000 i 4.2.0 1 8 u23 0.00000 i 5.2.0 1 10 u25 1.00000 0.00000 i 5.2.0 1 11 u31 1.00000 0.00000 i 5.3.0 1 12 u32 0.00000 0.00000 i 5.3.0 1 13 u33 1.00000 0.00000 i 5.3.0 1 14 u34 0.00000 0.00000 i 4.4.0 1 15											
2 u12 0.00000 0.00000 i 2, 1, 0 3 u13 0.00000 0.00000 i 4, 1, 0 4 u14 0.00000 0.00000 i 4, 1, 0 5 u15 1.00000 0.00000 i 4, 1, 0 6 u21 1.00000 0.00000 i 1, 2, 0 7 u22 1.00000 0.00000 i 3, 2, 0 8 u23 0.00000 0.00000 i 4, 2, 0 10 u24 1.00000 0.00000 i 4, 2, 0 11 u31 1.00000 0.00000 i 4, 3, 0 12 u32 0.00000 0.00000 i 4, 3, 0 13 u33 1.00000 0.00000 i 4, 3, 0 14 u34 0.00000 0.00000 i 1, 4, 4, 0 15 u35 1.00000 0.00000 i </td <td>1</td> <td></td> <td>u11</td> <td>1.00000</td> <td>0.00000</td> <td> i</td> <td>1, 1, 0</td> <td></td> <td></td> <td></td> <td></td>	1		u11	1.00000	0.00000	i	1, 1, 0				
3 u13 0.00000 0.00000 i 3, 1, 0 4 u14 0.00000 0.00000 i 4, 1, 0 5 u15 1.00000 0.00000 i 5, 1, 0 6 u21 1.00000 0.00000 i 1, 2, 0 7 u22 1.00000 0.00000 i 2, 0 8 u23 0.00000 0.00000 i 4, 2, 0 9 u24 1.00000 0.00000 i 4, 2, 0 10 u25 1.00000 0.00000 i 1, 3, 3, 0 11 u31 1.00000 0.00000 i 3, 3, 0 12 u32 0.00000 0.00000 i 3, 3, 0 13 u33 1.00000 0.00000 i 1, 4, 3, 0 14 u34 0.00000 0.00000 i 1, 4, 0 15 u35 1.00000 0.00000 i <td< td=""><td>2</td><td></td><td>u12</td><td>0.00000</td><td>0.00000</td><td> i</td><td>2, 1, 0</td><td></td><td></td><td></td><td></td></td<>	2		u12	0.00000	0.00000	i	2, 1, 0				
4 u14 0.00000 i 4, 1, 0 5 u15 1.00000 0.00000 i 1, 2, 0 6 u21 1.00000 0.00000 i 1, 2, 0 7 u22 1.00000 0.00000 i 1, 2, 0 8 u23 0.00000 0.00000 i 3, 2, 0 9 u24 1.00000 0.00000 i 4, 2, 0 10 u25 1.00000 0.00000 i 1, 3, 0 11 u31 1.00000 0.00000 i 1, 3, 0 11 u31 1.00000 0.00000 i 4, 3, 0 12 u32 0.00000 0.00000 i 1, 4, 3, 0 13 u33 1.00000 0.00000 i 1, 4, 3, 0 14 u34 0.00000 0.00000 i 1, 4, 3, 0 14 u42 0.00000 0.00000 i 1,	3		u13	0.00000	0.00000	i	3, 1, 0				
5 u15 1.00000 0.00000 i 5, 1, 0 0 6 u21 1.00000 0.00000 i 1, 2, 0 0 7 u22 1.00000 0.00000 i 3, 2, 0 0 8 u23 0.00000 0.00000 i 4, 2, 0 0 9 u24 1.00000 0.00000 i 4, 2, 0 0 10 u25 1.00000 0.00000 i 5, 2, 0 0 11 u31 1.00000 0.00000 i 3, 3, 0 0 0 12 u32 0.00000 0.00000 i 3, 3, 0 0 0 13 u33 1.00000 0.00000 i 3, 3, 0 0 0 14 u34 0.00000 0.00000 i 1, 4, 3, 0 0 0 15 u35 1.00000 0.00000 i 1, 4, 4, 0 0 0 16 u41 1.00000 0.00000 i 1, 5, 4, 0 0 0 1	4		u14	0.00000	0.00000	i	4, 1, 0				
6 u21 1.00000 0.00000 i 1, 2, 0 7 u22 1.00000 0.00000 i 2, 2, 0 8 u23 0.00000 0.00000 i 3, 2, 0 9 u24 1.00000 0.00000 i 4, 2, 0 10 u25 1.00000 0.00000 i 5, 2, 0 11 u31 1.00000 0.00000 i 1, 3, 0 12 u32 0.00000 0.00000 i 1, 3, 3, 0 13 u33 1.00000 0.00000 i 4, 3, 0 14 u34 0.00000 0.00000 i 1, 4, 0 15 u35 1.00000 0.00000 i 1, 4, 0 16 u41 1.00000 0.00000 i 5, 3, 0 18 u43 0.00000 0.00000 i 5, 4, 0 20 u52 0.00000 0.00000 i	5		u15	1.00000	0.00000	i	5, 1, 0				
7 u22 1.00000 0.00000 i 2, 2, 0 8 u23 0.00000 0.00000 i 3, 2, 0 9 u24 1.00000 0.00000 i 4, 2, 0 10 u25 1.00000 0.00000 i 4, 2, 0 11 u31 1.00000 0.00000 i 4, 2, 0 12 u32 0.00000 0.00000 i 1, 3, 0 13 u33 1.00000 0.00000 i 4, 3, 0 14 u34 0.00000 0.00000 i 1, 4, 0 15 u35 1.00000 0.00000 i 1, 4, 0 16 u41 1.00000 0.00000 i 3, 4, 0 18 u43 0.00000 i 0.00000 i 1, 5, 0 21 u51	6		u21	1.00000	0.00000	i	1, 2, 0				
8 u23 0.00000 i 3, 2, 0 9 u24 1.00000 0.00000 i 4, 2, 0 10 u25 1.00000 0.00000 i 4, 2, 0 11 u31 1.00000 0.00000 i 5, 2, 0 12 u32 0.00000 0.00000 i 2, 3, 0 13 u33 1.00000 0.00000 i 3, 3, 0 14 u34 0.00000 0.00000 i 4, 3, 0 15 u35 1.00000 0.00000 i 4, 4, 0 16 u41 1.00000 0.00000 i 3, 4, 0 18 u43 0.00000 0.00000 i 5, 4, 0 20 u45 1.00000 0.000000 i	7		u22	1.00000	0.00000	i	2, 2, 0				
9 u24 1.00000 i 4, 2, 0 10 u25 1.00000 0.00000 i 5, 2, 0 11 u31 1.00000 0.00000 i 1, 3, 0 12 u32 0.00000 i 2, 3, 0 13 u33 1.00000 0.00000 i 2, 3, 0 14 u33 1.00000 0.00000 i 4, 3, 0 15 u35 1.00000 0.00000 i 1, 4, 0 16 u41 1.00000 0.00000 i 1, 3, 4, 0 18 u43 0.00000 i 1, 5, 0	8		u23	0.00000	0.00000	i	3, 2, 0				
10 $ u25 $ 1.00000 0.00000 i5, 2, 0 11 $ u31 $ $ 1.00000 $ 0.00000 i1, 3, 0 12 $ u32 $ 0.00000 0.00000 i2, 3, 0 13 $ u33 $ 1.00000 0.00000 i3, 3, 0 14 $ u34 $ 0.00000 0.00000 i4, 3, 0 15 $ u35 $ 1.00000 0.00000 i1, 4, 0 17 $ u42 $ 0.00000 0.00000 i3, 4, 0 18 $ u43 $ 0.00000 0.00000 i3, 4, 0 20 $ u44 $ 0.00000 0.00000 i1, 5, 0 21 $ u51 $ 1.00000 0.00000 i1, 5, 0 22 $ u52 $ 0.00000 0.00000 i1, 5, 0 23 $ u53 $ 0.00000 0.00000 i3, 5, 0 24 $ u55 $ 1.00000 0.00000 i1, 6, 0 25 $ u55 $ 1.00000 0.00000 i1, 6, 0 26 $ u61 $ 1.00000 0.00000 i1, 7, 0 30 $ u64 $ 0.00000 0.00000 i1, 7, 0 31 $ u71 $ 1.00000 0.00000 i2, 7, 0 32 $ u72 $ 0.00000 0.00000 i2, 7, 0 33 $ u73 $ 0.00000 0.00000 i4, 7, 7, 0 34	9		u24	1.00000	0.00000	i	4, 2, 0				
11 u31 1.00000 0.00000 i 1, 3, 0 12 u32 0.00000 0.00000 i 2, 3, 0 13 u33 1.00000 0.00000 i 2, 3, 0 14 u34 0.00000 i 4, 3, 0 14 u35 1.00000 0.00000 i 4, 3, 0 15 u35 1.00000 0.00000 i 5, 3, 0 16 u41 1.00000 0.00000 i 1, 4, 0 17 u42 0.00000 0.00000 i 3, 4, 0 18 u43 0.00000 0.00000 i 4, 4, 0 20 u44 0.00000 0.00000 i 1, 5, 0 21 u51 1.00000 0.00000 i 1, 5, 5, 0 23 u53 0.00000 0.00000 i 1, 5, 5, 0 24 u54 0.00000 0.00000	10		u25	1.00000	0.00000	i	5, 2, 0				
12 $ u32 $ $0.0000 $ $0.0000 $ $i $ $2, 3, 0 $ $ $ 13 $ u33 $ $1.0000 $ $0.0000 $ $i $ $3, 3, 0 $ $ $ 14 $ u34 $ $0.0000 $ $0.0000 $ $i $ $4, 3, 0 $ $ $ 15 $ u35 $ $1.0000 $ $0.0000 $ $i $ $4, 3, 0 $ $ $ 16 $ u41 $ $1.0000 $ $0.0000 $ $i $ $4, 4, 0 $ $ $	11		u31	1.00000	0.00000	i	1, 3, 0				
13 $ u33 $ $1.00000 $ $0.00000 $ $i $ $3, 3, 0 $ $ $ 14 $ u34 $ $0.00000 $ $0.00000 $ $i $ $4, 3, 0 $ $ $ 15 $ u35 $ $1.00000 $ $0.00000 $ $i $ $5, 3, 0 $ $ $ 16 $ u41 $ $1.00000 $ $0.00000 $ $i $ $2, 4, 0 $ $ $ 17 $ u42 $ $0.00000 $ $0.00000 $ $i $ $2, 4, 0 $ $ $ 18 $ u43 $ $0.00000 $ $0.00000 $ $i $ $3, 4, 0 $ $ $ 20 $ u44 $ $0.00000 $ $0.00000 $ $i $ $4, 4, 0 $ $ $ 21 $ u51 $ $1.00000 $ $0.00000 $ $i $ $1, 5, 0 $ $ $ 22 $ u52 $ $0.00000 $ $0.00000 $ $i $ $3, 5, 0 $ $ $ 23 $ u53 $ $0.00000 $ $0.00000 $ $i $ $4, 5, 0 $ $ $ 24 $ u54 $ $0.00000 $ $0.00000 $ $i $ $5, 5, 0 $ $ $ 25 $ u55 $ $1.00000 $ $0.00000 $ $i $ $1, 6, 0 $ $ $ 26 $ u64 $ $0.00000 $ $0.00000 $ $i $ $4, 6, 0 $ $ $ 30 $ u64 $ $0.00000 $ $0.00000 $ $i $ $4, 6, 0 $ $ $ 31 $ u71 $ $1.00000 $ $0.00000 $ $i $ $2, 7, 0 $ $ $	12		u32	0.00000	0.00000	i	2,3,0				
14 u34 0.00000 0.00000 i 4, 3, 0 15 u35 1.00000 0.00000 i 5, 3, 0 16 u41 1.00000 0.00000 i 1, 4, 0 17 u42 0.00000 0.00000 i 2, 4, 0 18 u43 0.00000 0.00000 i 3, 4, 0 19 u44 0.00000 0.00000 i 4, 4, 0 20 u45 1.00000 0.00000 i 5, 4, 0 21 u52 0.00000 0.00000 i 1, 5, 0 22 u52 0.00000 0.00000 i 1, 5, 0 23 u53 0.00000 0.00000 i 4, 5, 0 24 u54 0.00000 0.00000 i 1, 6, 0 26 u61 1.00000 0.00000 i 1, 4, 6, 0 30 u64 0.00000 0.0000	13		u33	1.00000	0.00000	i	3, 3, 0				
15 $ $ u35 $ $ 1.00000 $ $ 0.00000 $ $ 5, 3, 0 $ $ 16 $ $ u41 $ $ 1.00000 $ $ 0.00000 $ $ 1, 4, 0 $ $ 17 $ $ u42 $ $ 0.00000 $ $ 0.00000 $ $ 2, 4, 0 $ $ 18 $ $ u43 $ $ 0.00000 $ $ 0.00000 $ $ 1 $ $ 3, 4, 0 $ $ 19 $ $ u44 $ $ 0.00000 $ $ 0.00000 $ $ 1 $ $ 4, 4, 0 $ $ 20 $ $ u45 $ $ 1.00000 $ $ 0.00000 $ $ 1 $ $ 5, 4, 0 $ $ 21 $ $ u51 $ $ 1.00000 $ $ 0.00000 $ $ 1 $ $ 5, 0 $ $ 22u52 $ $ 0.00000 $ $ 0.00000 $ $ 1 $ $ 5, 5, 0 $ $ 23 $ $ u53 $ $ 0.00000 $ $ 0.00000 $ $ 1 $ $ 4, 5, 0 $ $ 24 $ $ u54 $ $ 0.00000 $ $ 0.00000 $ $ 1 $ $ 5, 5, 0 $ $ 25 $ $ u61 $ $ 1.00000 $ $ 0.00000 $ $ 1 $ $ 6, 0 $ $ 26 $ $ u61 $ $ 1.00000 $ $ 0.00000 $ $ 1 $ $ 7, 6, 0 28 $ $ u63 $ $ 0.00000 $ $ 0.00000 $ $ 1 $ $ 7, 7, 0 31 $ $ u71 $ $ 1.00000 $ $ 0.00000 $ $ 1 $ $ 7, 7, 0 33 $ $ u72 $ $ 0.00000 $ $ 0.00000 $ $ 1 $ $ 7, 0 34 $ $ u74 $ $ 0.00000 $ $ 0.00000 $ $ 4, 7, 0	14		u34	0.00000	0.00000	i	4,3,0				
16 $ $ u411.00000 $ $ 0.00000 i 1 4 0 $ $ 17 $ $ u42 0.00000 0.00000 i 2 4 0 $ $ 18 $ $ u43 0.00000 0.00000 i 3 4 0 $ $ 19 $u44$ 0.00000 0.00000 i 4 4 0 $ $ 20 $u45$ 1.00000 0.00000 i 4 4 0 $ $ 21 $u51$ 1.00000 0.00000 i 1 5 4 0 $ $ 22 $u52$ 0.00000 0.00000 i 1 3 5 0 $ $ 23 $u53$ 0.00000 0.00000 i 3 5 0 $ $ 24 $u54$ 0.00000 0.00000 i 4 5 5 1 25 $u55$ 1.00000 0.00000 i 1 4 5 0 $ $ 26 $u61$ 1.00000 0.00000 i 1 4 6 0 $ $ 27 $u62$ 0.00000 0.00000 i 1 4 6 0 $ $ 28 $u63$ 0.00000 0.00000 i 1 4 6 0 $ $ 30 $u71$ 1.00000 0.00000 i 1 1 7 0 $ $ 33 $u73$ 0.00000 0.00000 <t< td=""><td>15</td><td></td><td>u35</td><td>1.00000</td><td>0.00000</td><td> i</td><td>5,3,0</td><td></td><td></td><td></td><td></td></t<>	15		u35	1.00000	0.00000	i	5,3,0				
17 u42 0.00000 1 2, 4, 0 18 u43 0.00000 0.00000 3, 4, 0 19 u44 0.00000 1 4, 4, 0 20 u45 1.00000 0.00000 i 4, 4, 0 21 u51 1.00000 0.00000 i 1, 5, 0 22 u52 0.00000 i 2, 5, 0 23 u53 0.00000 i 3, 5, 0 24 u54 0.00000 i 4, 5, 0 25 u55 1.00000 0.00000 i 1.0 26 u61 0.00000 i 3, 6, 0 2 <	16		u41	1.00000	0.00000	i	1, 4, 0				
18 u43 0.00000 0.00000 i 3, 4, 0 19 u44 0.00000 0.00000 i 4, 4, 0 20 u45 1.00000 0.00000 i 5, 4, 0 21 u51 1.00000 0.00000 i 1, 5, 0 22 u52 0.00000 0.00000 i 2, 5, 0 23 u53 0.00000 0.00000 i 3, 5, 0 24 u54 0.00000 0.00000 i 4, 5, 0 25 u55 1.00000 0.00000 i 5, 5, 0 26 u61 1.00000 0.00000 i 2, 6, 0 28 u63 0.00000 0.00000 i 3, 6, 0 30 u64 0.00000 0.00000 i 1, 7, 0 32 u72 0.00000 0.00000 i 2, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34	17		u42	0.00000	0.00000	i	2, 4, 0				
19 $ $ $u44$ 0.00000 0.00000 i $4, 4, 0$ $ $ 20 $u45$ 1.00000 0.00000 i $5, 4, 0$ $ $ 21 $u51$ 1.00000 0.00000 i $1, 5, 0$ $ $ 22 $u52$ 0.00000 0.00000 i $2, 5, 0$ $ $ 23 $u53$ 0.00000 0.00000 i $3, 5, 0$ $ $ 24 $u54$ 0.00000 0.00000 i $4, 5, 0$ $ $ 25 $u55$ 1.00000 0.00000 i $1, 6, 0$ $ $ 26 $u61$ 1.00000 0.00000 i $1, 6, 0$ $ $ 27 $u62$ 0.00000 0.00000 i $4, 6, 0$ $ $ 28 $u63$ 0.00000 0.00000 i $4, 6, 0$ $ $ 30 $u65$ 1.00000 0.00000 i $1, 7, 0$ $ $ 31 $u71$ 1.00000 0.00000 i $3, 7, 0$ $ $ 33 $u73$ 0.00000 0.00000 i $4, 7, 0$ $ $ 34 $u74$ 0.00000 0.00000 i $4, 7, 0$ $ $	18		u43	0.00000	0.00000	i	3, 4, 0				
20 u45 1.00000 0.00000 i 5, 4, 0 21 u51 1.00000 0.00000 i 1, 5, 0 22 u52 0.00000 0.00000 i 2, 5, 0 23 u53 0.00000 0.00000 i 3, 5, 0 24 u54 0.00000 0.00000 i 4, 5, 0 25 u55 1.00000 0.00000 i 1, 6, 0 26 u61 1.00000 0.00000 i 1, 6, 0 27 u62 0.00000 0.00000 i 2, 6, 0 28 u63 0.00000 0.00000 i 3, 6, 0 30 u64 0.00000 0.00000 i 1, 7, 0 31 u71 1.00000 0.00000 i 2, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34 u74 0.00000 0.00000 i 5, 7, 0	19		u44	0.00000	0.00000	i	4, 4, 0				
21 u51 1.00000 0.00000 i 1, 5, 0 22 u52 0.00000 0.00000 i 2, 5, 0 23 u53 0.00000 0.00000 i 3, 5, 0 24 u54 0.00000 0.00000 i 4, 5, 0 25 u55 1.00000 0.00000 i 5, 5, 0 26 u61 1.00000 0.00000 i 1, 6, 0 27 u62 0.00000 0.00000 i 2, 6, 0 28 u63 0.00000 0.00000 i 3, 6, 0 30 u64 0.00000 0.00000 i 5, 6, 0 31 u71 1.00000 0.00000 i 1, 7, 0 32 u72 0.00000 0.00000 i 3, 7, 0 33 u73 0.00000 0.00000 i 4, 7, 0 34 u74 0.00000 0.00000 i 5, 7, 0	20		u45	1.00000	0.00000	i	5, 4, 0				
22 u52 0.00000 0.00000 i 2, 5, 0 23 u53 0.00000 0.00000 i 3, 5, 0 24 u54 0.00000 0.00000 i 4, 5, 0 25 u55 1.00000 0.00000 i 5, 5, 0 26 u61 1.00000 0.00000 i 6, 0 27 u62 0.00000 0.00000 i 2, 6, 0 28 u63 0.00000 0.00000 i 4, 6, 0 30 u64 0.00000 0.00000 i 1, 7, 0 31 u71 1.00000 0.00000 i 2, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34 u74 0.00000 0.00000 i 4, 7, 0 35 u75 1.00000 0.00000 i 5, 7, 0	21		u51	1.00000	0.00000	i	1, 5, 0				
23 u53 0.00000 0.00000 i 3, 5, 0 24 u54 0.00000 0.00000 i 4, 5, 0 25 u55 1.00000 0.00000 i 5, 5, 0 26 u61 1.00000 0.00000 i 1, 6, 0 27 u62 0.00000 0.00000 i 2, 6, 0 28 u63 0.00000 0.00000 i 3, 6, 0 29 u64 0.00000 0.00000 i 4, 6, 0 30 u65 1.00000 0.00000 i 5, 6, 0 31 u71 1.00000 0.00000 i 2, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34 u74 0.00000 0.00000 i 5, 7, 0	22		u52	0.00000	0.00000	i	2,5,0				
24 u54 0.00000 0.00000 i 4,5,0 25 u55 1.00000 0.00000 i 5,5,0 26 u61 1.00000 0.00000 i 1,6,0 27 u62 0.00000 0.00000 i 2,6,0 28 u63 0.00000 0.00000 i 3,6,0 29 u64 0.00000 0.00000 i 4,6,0 30 u65 1.00000 0.00000 i 1,7,0 31 u71 1.00000 0.00000 i 2,7,0 32 u72 0.00000 0.00000 i 3,7,0 33 u73 0.00000 0.00000 i 4,7,0 34 u74 0.00000 0.00000 i 5,7,0	23		u53	0.00000	0.00000	i	3, 5, 0				
25 u55 1.00000 0.00000 i 5, 5, 0 26 u61 1.00000 0.00000 i 1, 6, 0 27 u62 0.00000 0.00000 i 2, 6, 0 28 u63 0.00000 0.00000 i 3, 6, 0 29 u64 0.00000 0.00000 i 4, 6, 0 30 u65 1.00000 0.00000 i 1, 7, 0 31 u71 1.00000 0.00000 i 2, 7, 0 32 u72 0.00000 0.00000 i 3, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34 u74 0.00000 0.00000 i 5, 7, 0	24		u54	0.00000	0.00000	i	4,5,0				
26 u61 1.00000 0.00000 i 1, 6, 0 27 u62 0.00000 0.00000 i 2, 6, 0 28 u63 0.00000 0.00000 i 3, 6, 0 29 u64 0.00000 0.00000 i 4, 6, 0 30 u65 1.00000 0.00000 i 5, 6, 0 31 u71 1.00000 0.00000 i 2, 7, 0 32 u72 0.00000 0.00000 i 3, 7, 0 33 u73 0.00000 0.00000 i 4, 7, 0 34 u75 1.00000 0.00000 i 5, 7, 0	25		u55	1.00000	0.00000	i	5, 5, 0				
27 u62 0.00000 0.00000 i 2, 6, 0 28 u63 0.00000 0.00000 i 3, 6, 0 29 u64 0.00000 0.00000 i 4, 6, 0 30 u65 1.00000 0.00000 i 5, 6, 0 31 u71 1.00000 0.00000 i 1, 7, 0 32 u72 0.00000 0.00000 i 2, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34 u74 0.00000 0.00000 i 5, 7, 0 35 u75 1.00000 0.00000 i 5, 7, 0	26		u61	1.00000	0.00000	i	1, 6, 0				
28 u63 0.00000 0.00000 i 3, 6, 0 29 u64 0.00000 0.00000 i 4, 6, 0 30 u65 1.00000 0.00000 i 5, 6, 0 31 u71 1.00000 0.00000 i 1, 7, 0 32 u72 0.00000 0.00000 i 2, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34 u74 0.00000 0.00000 i 5, 7, 0	27		u62	0.00000	0.00000	i	2,6,0				
29 u64 0.00000 0.00000 i 4,6,0 30 u65 1.00000 0.00000 i 5,6,0 31 u71 1.00000 0.00000 i 1,7,0 32 u72 0.00000 0.00000 i 2,7,0 33 u73 0.00000 0.00000 i 3,7,0 34 u74 0.00000 0.00000 i 5,7,0	28		u63	0.00000	0.00000	i	3, 6, 0				
30 u65 1.00000 0.00000 i 5, 6, 0 31 u71 1.00000 0.00000 i 1, 7, 0 32 u72 0.00000 0.00000 i 2, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34 u74 0.00000 0.00000 i 4, 7, 0 35 u75 1.00000 0.00000 i 5, 7, 0	29		u64	0.00000	0.00000	i	4,6,0				
31 u71 1.00000 0.00000 i 1, 7, 0 32 u72 0.00000 0.00000 i 2, 7, 0 33 u73 0.00000 0.00000 i 3, 7, 0 34 u74 0.00000 0.00000 i 4, 7, 0 35 u75 1.00000 0.00000 i 5, 7, 0	30		u65	1.00000	0.00000	i	5,6,0				
32 u72 0.00000 0.00000 i 2,7,0 33 u73 0.00000 0.00000 i 3,7,0 34 u74 0.00000 0.00000 i 4,7,0 35 u75 1.00000 0.00000 i 5,7,0	31		u71	1.00000	0.00000	i	1, 7, 0				
33 u73 0.00000 0.00000 3, 7, 0 34 u74 0.00000 0.00000 4, 7, 0 35 u75 1.00000 0.00000 5, 7, 0	32		u72	0.00000	0.00000	i	2, 7, 0				
34 u74 0.00000 0.00000 i 4, 7, 0 35 u75 1.00000 0.00000 i 5, 7, 0	33		u73	0.00000	0.00000	i	3, 7, 0				
35 u75 1.00000 0.00000 i 5, 7, 0	34		u74	0.00000	0.00000	i	4,7,0				
	35		u75	1.00000	0.00000	i	5, 7, 0	III -			

36	h1	0.99999	0.77763	h	8,0,0		
37	h2	0.19389	2.17683	h	8, 1, 0		
38	h3	1.00000	0.63820	h	8,2,0		
39	h4	0.99997	-1.39519	h	8,3,0		
40	h5	0.00076	0.88637	h	8,4,0		
41	h6	1.00000	-0.23139	h	8,5,0		
42	h7	0.94903	0.18078	h	8,6,0		
43	h8	0.00000	1.37368	h	8,7,0		
44	h9	0.99991	0.82651	h	8, 8, 0		
45	h10	0.00000	1.76282	h	8,9,0		
46	A	0.00972	-1.66540	0	11, 1, 0		
47	B	0.00072	-0.29800	0	12, 1, 0		
48	C	0.00007	-2.24918	0	13, 1, 0		
49	D	0.02159	-5.85148	0	14, 1, 0		
50	E	0.00225	-2.33176	0	11, 2, 0		
51	F	0.00052	-1.34881	0	12, 2, 0		
52	G	0.00082	-1.92413	0	13, 2, 0		
53	H	0.00766	-1.82425	0	14, 2, 0		
54	I	0.00038	-1.83376	0	11, 3, 0		
55	J	0.00001	-0.87552	0	12, 3, 0		
56	K	0.01608	-2.20737	0	13, 3, 0		
57	L	0.01430	-1.28561	0	14, 3, 0		
58	M	0.92158	-1.86763	0	11, 4, 0		
59	N	0.05265	-3.52717	0	12, 4, 0		
60	0	0.00024	-1.82485	0	13, 4, 0		
61	P	0.00031	-0.20401	0	14, 4, 0		
62	Q	0.00025	-1.78383	0	11, 5, 0		
63	R	0.00000	-1.61928	0	12, 5, 0		
64	S S	0.00000	-1.59970	0	13, 5, 0		
65	Т	0.00006	-1.67939	0	14, 5, 0		
66	U U	0.01808	-1.66126	0	11, 6, 0		
67	V	0.00025	-1.53883	0	12, 6, 0		
68	W	0.01146	-2.78012	0	13, 6, 0		
69	X	0.00082	-2.21905	0	14, 6, 0		
70	Y 1	0.00007	-2.31156	0	11, 7, 0		
71	Z	0.00002	-2.88812	0	12, 7, 0		
		-					

connection definition section :

target site	source:weight
36	1: 0.95093, 6: 3.83328, 11: 1.54422, 16: 4.18840, 21: 4.59526
	12: 2.30336, 17:-3.28721, 22:-0.43977, 27: 1.19506, 32:-0.84080
	23:-4.97246, 28:-3.30117, 33: 3.26851, 4:-0.19479, 9: 1.33412
	34:-1.02822, 5:-2.79300, 10:-1.97733, 15:-0.45209, 20:-0.61497
37	1:-0.93678, 6: 0.68963, 11:-0.94478, 16:-1.06968, 21:-0.47616
·	12: 2.62854, 17: 5.05391, 22:-0.37275, 27: 0.12598, 32: 0.27619
	23:-1.45917, 28:-1.97934, 33: 1.01118, 4: 4.39595, 9:-2.78858
	34:-0.14939, 5: 1.80792, 10: 3.66679, 15: 2.53150, 20:-1.07000
38	1: 2.44151, 6: 0.41693, 11: 2.12043, 16: 1.40761, 21: 1.83566
	12:-0.55002, 17: 2.08524, 22: 0.63304, 27: 0.27301, 32:-2.49952
	23: 3.14177, 28:-1.25889, 33:-6.35069, 4:-5.25082, 9: 0.01774
	34:-3.66092, 5: 3.24401, 10: 1.88082, 15: 6.44985, 20: 3.24165
39	1: 5.17748, 6:-4.45709, 11:-0.65733, 16:-2.26190, 21:-2.69957
	12:-1.43420, 17: 0.33409, 22:-0.74423, 27:-1.38010, 32: 3.08174
	23:-4.42961, 28:-1.09858, 33: 2.09879, 4:-1.30835, 9: 0.79940
	34: 1.99276, 5: 2.61433, 10:-3.56919, 15: 1.00952, 20: 2.86899
40	1: 3.03612, 6: 0.05247, 11:-3.20839, 16:-4.03382, 21:-3.55648
	12: 0.23398, 17: 1.33895, 22: 6.03206, 27:-0.01723, 32: 0.09160
	23:-1.07894, 28:-1.77930, 33: 1.59529, 4:-1.57236, 9: 0.74423
	34:-0.13875, 5: 5.30719, 10: 2.13168, 15:-2.34832, 20:-5.00616
41	1:-4.41380, 6:-1.48152, 11:-2.62748, 16:-1.00557, 21:-0.06430
	12: 3.93844, 17:-4.01591, 22: 0.76102, 27:-0.36823, 32: 0.54661
	23: 4.15954, 28: 2.96118, 33:-3.30219, 4:-0.24202, 9: 1.56077
	34:-0.20287, 5:-1.46062, 10: 1.79490, 15: 1.96920, 20: 3.72459
42	1: 1.97383, 6: 2.53253, 11: 2.04922, 16: 1.13969, 21: 1.81064
	12: 0.32565, 17: 4.64358, 22: 1.02883, 27:-1.05720, 32:-0.71916
	23:-1.00499, 28:-1.10925, 33:-3.18685, 4: 2.12575, 9: 0.36763

31

		34:-0.18372,	5:-4.93490,	10: 0.26375,	15:-2.02860,	20:-5.43881
43	1	1: 0.07183,	6:-2.69081,	11:-1.24533,	16:-2.01347,	21:-1.36689
		12:-2.11356,	17: 1.24788,	22: 1.23107,	27: 0.27674,	32:-2.45891
		23: 5 17387	28: 1 68170	33:-2 30420	4: 2 17011	9: 0 86340
		34:-2 23131	5:-0 11916	10:-4 39609	15:-2 92706	20:-5 43783
44	1	1:_1 27907	6: 1 89325	11:-0 60419	16: 3 60368	21: 4 24280
11	1	12. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	17. 1 01609	22. 1 07226	27. 1 20772	21. 1.24200
		122.77700,	17. 1.01098,	221.97230,	27. 1.30773,	322.55429
		23. 1.95544,	20. 2.05157,	330.33790,	40.04082,	9. 1.92937
		34:-2./1524,	5: 5.31087,	10:-2.08897,	15:-5./5332,	20: 2.43438
45		1:-1.22455,	6: 0.92594,	11: 1.13199,	16:-1.65062,	21:-1.41481
		12:-3.04575,	17:-3.21280,	22:-0.23726,	27: 2.11836,	32: 2.23237
		23: 5.96261,	28: 2.00822,	33: 2.97409,	4: 3.90943,	9: 1.54990
		34: 2.42877,	5:-3.58017,	10: 2.31309,	15:-4.01833,	20: 0.28834
46		45:-3.97560,	44: 0.45729,	43:-1.16526,	42: 0.38939,	41: 2.80876
		36:-4.04184				
47		45:-4.88750,	44:-3.33955,	43:-1.72110,	42: 0.94756,	41:-2.24993
		36: 0.14327				
48		45: 1.02597,	44:-1.82773,	43:-1.04974,	42: 2.09881,	41:-0.53220
		36: 2.75042				
49		45: 1.58579,	44:-3.38572,	43:-0.89166,	42: 2.86233,	41: 2.25429
		36: 1.92163				
50		45:-2.95134,	44: 2.39376,	43:-2.95486,	42:-0.11771,	41:-2.41775
		36:-0.73749				
51		45:-4.16732,	44: 2.19092,	43: 3.46879,	42: 0.44175,	41:-2.47295
		36:-0.40437				
52		45: 1.78256,	44: 4.64443,	43:-2.50408,	42: 0.65889,	41:-2.52796
		36:-1.73887				
53		45:-3.64449,	44: 2.60025,	43:-1.57915,	42:-0.18638,	41:-4.14214
		36:-4.29717				
54		45:-0.45205,	44:-1.44890,	43: 5.23345,	42:-0.35289,	41: 2.43160
		36:-1.99719				
55		45: 0.46855,	44:-2.84431,	43:-1.80938,	42:-4.49606,	41: 1.16736
56		45:-1.27961,	44: 0.81393,	43: 2.66027,	42:-1.05007,	41: 0.47655
		36: 0.72057				
57		45:-1.21679,	44:-3.13145,	43:-0.69538,	42: 0.05268,	41:-3.12564
		36: 2.16523				
58		45:-3.44107,	44: 2.18362,	43:-1.60547,	42:-0.50213,	41: 2.47751
		36: 1.05544				
59		45:-5.06022,	44:-5.08796,	43:-0.74552,	42:-0.67009,	41: 2.90942
		36: 1.10170				
60		45:-0.03838,	44:-2.59148,	43:-0.98185,	42:-4.97460,	41: 1.03714
		36: 4.49324				
61		45:-3.65178,	44:-2.61389,	43:-1.76429,	42: 1.01853,	41:-3.90286
		36: 0.46651				
62	1	45: 1.17767,	44:-3.70962,	43:-1.11298,	42:-2.77810,	41: 2.22540
		36:-0.65937				
63		45: 1.52270,	44:-2.42352,	43: 2.59287,	42: 0.19606,	41:-3.00602
		36:-3.14334				
64	1	45: 3.00298,	44:-3.65709,	43:-1.65150,	42: 1.44547,	41:-3.98775
		36:-4.02590				
65	1	45: 0.56820,	44: 2.37122,	43: 2.89143,	42:-4.22975,	41:-2.32045
		36:-2.17370				
66		45:-4.13007,	44:-0.30654,	43:-0.63380,	42:-5.63405,	41:-1.78425
		36: 1.46460				
67	1	45: 1.66534,	44: 1.99220,	43:-1.22676,	42:-4.09076,	41:-3.58451
		36: 1.40745				
68	1	45: 0.60032,	44: 2.75100,	43:-1.17663,	42:-4.25699,	41: 1.60600
		36:-4.23531				
69	1	45:-4.31415,	44:-3.41717,	43:-0.77030,	42:-1.36290,	41: 1.92319
		36: 0.28689				
70		45: 0.54085,	44: 1.80036,	43:-2.19014,	42:-1.20720,	41: 1.54519
		36:-2.79769				
71	1	45: 0.00018,	44:-4.11360,	43: 0.85345,	42: 1.19947,	41: 1.22067
		36:-3.29634				
	-					

B.2. Example 2:

SNNS network definition file V3.0

generated at Fri Aug 3 00:25:42 1992
network name : xor
source files :
no. of units : 4
no. of connections : 5

no. of unit types : 2

no. of site types : 2

learning function : Quickprop
update function : Topological_Order

site definition section :
 site name | site function
-----inhibit | Site_Pi
 excite | Site_WeightedSum

type definition section :

name	act func	out	func	sites
outType	Act_Logistic	Out_	_Identity	İ
LongeroutType	Act_Logistic	Out	_Identity	
		i		i

unit default section :

act	bias	st	subnet	layer	act func	out func
0.00000	0.00000	h	0	1	Act_Logistic	Out_Identity

unit definition section :

no. t	typeName	unitName	act	bias	st	position	act func
1		in_1	1.00000	0.00000	i	3,5,0	
2		in_2	1.00000	0.00000	i	9,5,0	
3		hidden	0.04728	-3.08885	h	6,3,0	
4		result	0.10377	-2.54932	0	6,0,0	11

connection definition section :

target	site	source:weight
3		1: 4.92521, 2:-4.83963
4		1:-4.67122, 2: 4.53903, 3:11.11523