
High-level Design and Synthesis of a Resource
Scheduler

João Paulo Pizani Flor, Tiago Rogério Mück, Antônio Augusto Fröhlich
Software/Hardware Integration Lab

Federal University of Santa Catarina
Florianópolis, Brazil

Email: {joaopizani,tiago,guto}@lisha.ufsc.br

Abstract—Given the increasing complexity of current em-
bedded systems, hardware design is being pushed to a higher
level of abstraction, with High-Level Synthesis tools enabling
hardware synthesis from untimed C++. Still, HLS technology
does not provide a clear methodology to derive both hardware
and software implementations from a single high-level code. This
paper describes the design, implementation and evaluation of
a resource scheduler that has a single C++ description and is
automatically implementable in both software and hardware.

Keywords-High-level synthesis; system-level design; resource
scheduling; reconfigurable computing

I. INTRODUCTION

Embedded systems are becoming increasingly complex as
the advances of the semiconductor industry allow the use
of sophisticated computational resources in a wider range
of applications. Often, the development of such systems en-
compasses an integrated hardware/software design that can
be realized by several computer architectures, ranging from
8-bit microcontrollers to complex Multiprocessor Systems-
on-Chip (MPSoCs). In order to deal with this complexity,
embedded system designs are being pushed to higher levels
of abstraction, such as system-level design. In this scenario,
a convergence between hardware and software modeling is
desirable, since a unified approach would allow one to decide
about hardware/software partitioning later in the design pro-
cess, maybe even automatically. In the last few years, advances
in electronic design automation (EDA) tools are allowing
hardware synthesis from descriptions at the behavioral level
[1]. These tools allow designers to describe hardware compo-
nents using languages like C++, and with untimed constructs.
The focus of these tools, however, is hardware synthesis,
and they do not provide a clear methodology for developing
components implementable in hardware and software.

In this paper, we aim to advance in the direction of
unified hardware/software design. Previous works [2] defined
guidelines for translating operating system components – such
as timers, schedulers, and synchronizers – from software to
hardware and vice versa. These components were designed
to allow their implementation to migrate between the hard-
ware and software domains without the need to modify their
client application. Nevertheless, these hybrid components are
defined only in terms of their interface and communication
structure, and the implementation of their behavior still follows

different methodologies. To narrow this gap, we describe
and evaluate a unified (single-code) resource scheduler. The
choice of such component as a case study is motivated by
its complex behavior. A scheduler may perform operations
both synchronously (upon request by another component)
or asynchronously (by preempting the execution of another
component). Furthermore, a hardware-implemented scheduler
has (in one possible microarchitecture) deterministic execution
time, eliminating jitter and improving the support of real time
applications.

Our design follows the principles defined by the
Application-driven Embedded System Design (ADESD) [3]
methodology. ADESD elaborates on OOP and Aspect-
Oriented Programming concepts, defining a domain engineer-
ing strategy focused on the production of scenario-independent
components. The C++ code of our scheduler leverages on
generic programming [4] techniques such as static metapro-
gramming in order to provide an efficient implementation for
both hardware and software.

II. RELATED WORK

Several design methodologies and tools were proposed in
order to provide more tightly coupled hardware and soft-
ware design flows [5]–[7]. Most of these methodologies
are based on the concept of building a system by assem-
bling pre-validated components. One example is Metro-II [7].
This framework follows the Platform-based design (PDB) [5]
methodology, and proposes the use of a metamodel with
formal semantics that developers can use to capture designs.
However, these methodologies do not define clear guidelines
to design new components which can be reused in a wide
range of applications. Also, the hardware/software partitioning
is defined in the early design phases and is limited by the
platform specification.

In order to overcome these issues, one must focus on closing
the gap between software and hardware design. State-of-the-
art EDA tools like Catapult C [1] support hardware synthesis
from high-level C++ constructs, and several works have al-
ready demonstrated the applicability of high-level synthesis for
implementing computation-intense hardware components [8].
The OSSS+R methodology [9] advances further and aims
at generating both hardware and software from the same
description. It raises the level of abstraction of RTL SystemC



by adding language constructs to support polymorphism and
high-level communication. However, hardware/software parti-
tioning must still be done early in the design process [10],
and the inclusion of non-standard language constructs reduces
compatibility with available compilers and synthesis tools. The
Saturn [11] design flow also contributes in this direction, but
follows a different approach. The authors propose SysML,
an extension of UML for system-level design, and a tool
which generates C++ for software and RTL SystemC for
hardware. However, Saturn has the same limitations described
previously: hardware and software cannot be generated from
the same specification. Additionally, it is not clear whether
their tool generates code only for the interface and integration
of components, or the behavior is also implemented in SysML.

The ADESD [3] methodology elaborates on commonality
and variability analysis to add the concept of aspect identi-
fication and separation at early stages of design. It defines
a domain engineering strategy focused on the production of
families of scenario-independent components. Dependencies
observed during domain engineering are captured as different
aspects, thus enabling components to be reused on a variety
of execution scenarios with the application of proper aspects.
In [2] ADESD’s design artifacts were explored to define
guidelines for the development of components which could
migrate between the hardware and software domains, and a
common architecture for communication between components
living in hardware and/or software. These hybrid components
provide more flexibility and allow for the postponement of the
hardware/software partitioning. However, hybrid components
still require duplicated descriptions (in a software program-
ming language and in a hardware description language). In the
next sections we demonstrate how ADESD’s design artifacts
can be used to overcome such limitations through the unified
(single code) design of a hybrid hardware/software resource
scheduler.

III. DEVELOPMENT AND IMPLEMENTATION OF A HYBRID
HW/SW RESOURCE SCHEDULER

As a case study we chose to modify the scheduler of the
EPOS operating system [3], making its C++ code unified and
suitable for automatic implementation in both hardware and
software. EPOS’s domain engineering simplified our work by
providing a good separation of concerns around the scheduler.
Figure 1 shows a simplified class diagram of the scheduling-
related classes in EPOS.

Scheduling_List

EDF PriorityFCFS ...

Criterion

SchedulerThread
1..*

Ordered_List

List

Figure 1. Simplified class diagram of scheduling-related classes in EPOS.

The Scheduler class is responsible only for keeping ordered

queues, with the ordering defined by the scheduling criterion.
An object of the Scheduler class also allows its callers to
insert and remove clients from the queues, as well as to
get the current and next owners of the resource. In our case
study, we implemented a scheduler for threads. However, the
Scheduler code is largely independent of the type of resource
being scheduled (in fact, Scheduler is a class template).
Furthermore, concerns such as timing interrupt generation and
context switching are handled by other classes (Alarm and
CPU, respectively).

Among all classes in figure 1, we adapted the code of the
Scheduler class (also of its base classes), so that it can now
serve as input for both hardware and software implementation
flows. Figure 2 summarizes both flows.

C++ Unified code

compiler: g++

assembler: gas

linker: ld

SW
(system image)

HW
(FPGA bitfile)

High-level synth: Catapult C

RTL synthesis: xst

Mapping: map

Place & route: par

Bitfile generation: bitgen

Xilinx® ISE

Figure 2. Implementation steps and tools used, for both HW and SW flows.

An important consideration about figure 2 is that the usage
of a unified code for the scheduler did not affect the software
implementation flow. The toolchain consists only of standard
open-source tools, and is exactly the same as the one used
with the software-only code. In the hardware implementation
flow, the only notable addition is the High-level synthesis
step, done by Catapult C of Mentor Graphics R©. Catapult C
takes untimed C++ as input, performs technology mapping,
resource allocation and scheduling, producing as its result a
RTL (VHDL or Verilog) description of the hardware block.

During our initial attempts at high-level synthesis we were
faced with three fundamental limitations imposed by the
toolchain, and these limitations have guided our development
from the very beginning. They are, namely:

1) Pointers have no intrinsic meaning in hardware. They
are mapped to indices of the storage structures to which
they point. Thus, no null or otherwise invalid pointers
are allowed in the source code.

2) There is no feature similar to dynamic memory allo-
cation in hardware. Therefore, in a synthesizable code,
all data structures must reside in statically allocated
memory.

3) The top-level interface of the resulting hardware block
(port directions and sizes) is inferred by Catapult C



from a single function signature. There must be only
one function in the code with the pragma “hls design
top”.

Limitation number 1 influenced our development deeply,
mainly because several methods of the Scheduler class used
null pointers to report failures. To overcome this limitation,
we changed the code of the scheduler (and of its internal data
structures) to utilize an option type.

An option type is a container for a generic value, and has
an internal state which represents the presence or absence
of this value. Option types are very popular in functional
programming as the return type of functions that can fail.
We implemented an option type in the C++ class template
Maybe<T>, which has the following constructors:

Maybe(): _exists(false), _thing(T()){}
Maybe(T obj): _exists(true), _thing(obj){}

One constructor represents the absence of a value in the con-
tainer while the other represents its presence. By replacing all
occurrences of simple pointers (T*) in the scheduler code with
Maybe<T*>values, we completely avoided passing invalid
pointers around. Still, the modified code was not significantly
larger, neither did it run significantly slower, as we clarify in
section IV.

The other two limitations of the hardware flow (no dynamic
memory and a single function as interface) were overcome by
wrapping the scheduler code with two C++ class templates:
they are responsible, respectively, for storage allocation and
method call dispatch. The functionality and architecture of
these wrappers are summarized in figure 3.

static void call(MethodId m, int par, int prio, Status& st, int& ret)

Dispatch

chosen

create

insert

destroy

remove

remove_head

size

get_id

Scheduler

size

chosen

insert

remove

choose

choose_another

choose(Element*)

Allocation
Management

...
Storage

Figure 3. Wrappers that adapt the Scheduler class to make it synthesizable.

The innermost block in the “onion-like” architecture of
figure 3 is the Scheduler C++ class template. This exact code
serves as input to the software implementation flow. The two
wrappers mentioned beforehand are represented by the two
outermost blocks in the diagram, with dashed bounding boxes.

In figure 3, we can also see that the interface of the storage
allocation wrapper is largely the same as the interface of
the Scheduler class. The only responsibility of the storage
allocator is, therefore, to provide storage space – reserving and
releasing it on demand – to the wrapped Scheduler instance.

The interface of the dispatch wrapper is radically different,
however, and has a single function with all input and output
parameters used by the wrapped class. One notable parameter
of type MethodId is present in the call function of the dispatch
wrapper. The responsibility of the dispatch wrapper is to
interpret the value of this parameter, perform the necessary
type conversions and call the appropriate method of the
wrapped class. The value returned by the called method is
also inspected, converted if necessary and assigned to one of
the wrapper’s output parameters.

Both wrappers developed are highly generic and were
purposefully designed to be able to wrap other components.
In fact, they are C++ class templates, parametrized by the
wrapped class and the size of the pre-allocated storage space.

IV. RESULTS

Our hybrid implementation of a resource scheduler was
evaluated in both software and hardware-based scenarios.
The high-level synthesis of the scheduler was performed
using Catapult-C R©, from Mentor Graphics, and for the RTL
synthesis and translation we used the ISE toolchain, from
Xilinx R©. The following three hardware microarchitectures
were investigated:

1) Fully automatic microarchitecture: The complete syn-
thesis process, from untimed C++ to FPGA bitfile,
happened with no human interaction. All directives and
flags were left at their default values.

2) Fully serial microarchitecture: Catapult C was instructed
to map data structures in the C++ code to memories
(BRAMs). Our goal in this case was to save device area.

3) Fully parallel microarchitecture: Data structures were
mapped to registers and all loops were unrolled, in
order to fully harness the available parallelism in the
algorithms.

We evaluated the performance of all three automatically-
generated microarchitectures by comparing them (both in
terms of area and critical path delay) with a handwritten
RTL scheduler implementation [12]. All implementations were
synthesized targeting a Virtex6 (XC6VLX240T) device from
Xilinx R©, and with a target clock frequency of 50MHz. Ta-
ble I summarizes the performance of all evaluated hardware
microarchitectures, both generated and handwritten.

Particularly interesting is the fully serial generated microar-
chitecture, which gets close to the handwritten RTL, both
in terms of area (+32%) and of maximum delay (+19%).
Furthermore, despite having greater area and maximum delay,
the fully parallel microarchitecture also has its advantage: all
operations (search, insert, remove, etc.) are done in parallel,
and therefore within a constant number n of cycles, which is
the same for all operations. This eliminates jitter in scheduling,
improving the support of hard real-time applications.



Scenario LUTs Device occupation Max. delay

Handwritten RTL 1250 0.83% 5.598 ns
Fully serial 1654 1.10% 6.672 ns

Fully automatic 3392 2.25% 7.341 ns
Fully parallel 5121 3.40% 10.597 ns

Table I
PERFORMANCE SUMMARY OF ALL EVALUATED HW

MICROARCHITECTURES

As already mentioned in section III, we changed the original
C++ source code of the scheduler (by introducing the option
type) in order to make it synthesizable. The introduction of the
option type happened in the unified code, affecting, therefore,
also the software implementation.

To measure the effect of these changes, we compared the
old (software-only) C++ scheduler code with the unified one,
in terms of code size and execution time. We chose MIPS32
as the target architecture for compilation, and measured the
resulting EPOS system image size and the execution time of
some methods for both scheduler implementations. Table II
summarizes these results.

Metric SW-only Unified difference

Code size 29580 B 29700 B 0.41%
insert execution time 51 ×10−1µs 53 ×10−1µs 3.92%

remove execution time 27 ×10−1µs 29 ×10−1µs 7.41%
suspend execution time 32 ×10−1µs 34 ×10−1µs 6.25%
resume execution time 42 ×10−1µs 43 ×10−1µs 2.38%
choose execution time 61 ×10−1µs 67 ×10−1µs 9.84%

Table II
COMPARISON OF GENERATED CODE SIZE AND EXECUTION TIME BETWEEN

SW-ONLY AND UNIFIED SCHEDULER VERSIONS

The execution time measurements were done by instru-
menting Scheduler methods with calls to a timestamp counter
that runs at the same frequency as the CPU. The resolution,
therefore, is 20 ns, and our measurements are in tenths of
microseconds. A dining philosophers application was used to
request the scheduler’s services. We took 100 sample runs of
this application, and table II shows the average execution times
of the methods.

V. CONCLUSION

In this paper we presented the unified design and imple-
mentation of a generic resource scheduler. The exact same
C++ source code serves as input for both the hardware and
software implementation flows. Furthermore, the performance
of this unified code in software and hardware execution
scenarios is close to the performance of software-only and
hardware-only implementations, respectively. No additional
tools were necessary to generate a software system image
from the unified code, and the adaptions necessary to hardware
synthesis were organized in a layered architecture, facilitating
automatic application.

Careful domain engineering and system design leads to
algorithm implementations that are largely separated from
execution scenario details. Our case study shows that code
following these guidelines (specially the ADESD method-
ology, as presented in section II) is suitable for automatic
implementation in both hardware and software scenarios.
During the development of the hardware scenario adapters,
we came across the hypothesis that these adapters could
be modeled as aspects [4]. The further investigation of this
hypothesis constitutes important future work related to the
research exposed in this paper.

As a last remark we emphasize the fact that programming
algorithms using unified source code, as we proposed, facili-
tates design space exploration through two mechanisms:

• Design choices regarding execution scenario (whether
hardware or software) can be postponed, with two advan-
tages: duplicated testbenches are avoided, and the fine-
tuning of parameters can be done in the unified code.

• The automatic derivation of hardware from the unified
code is guided by synthesis directives, which can be
optimized by design space exploration frameworks.

REFERENCES

[1] Mentor Graphics, “CatapultC Synthesis,”
http://www.mentor.com/esl/catapult.

[2] H. Marcondes and A. A. Fröhlich, “A Hybrid Hardware and Software
Component Architecture for Embedded System Design,” in IESS ’09,
Langenargen, Germany, 2009, pp. 259–270.

[3] A. A. Fröhlich, Application-Oriented Operating Systems, ser. GMD
Research Series. Sankt Augustin: GMD - Forschungszentrum Infor-
mationstechnik, Aug. 2001, no. 17.

[4] K. Czarnecki and U. W. Eisenecker, Generative programming: methods,
tools, and applications. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 2000.

[5] A. Sangiovanni-Vincentelli and G. Martin, “Platform-Based Design and
Software Design Methodology for Embedded Systems,” IEEE Design
& Test of Computers, vol. 18, no. 6, pp. 23–33, 2001.

[6] W. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. Jerraya,
L. Gauthier, and M. Diaz-Nava, “Multiprocessor SoC platforms: a
component-based design approach,” Design & Test of Computers, IEEE,
vol. 19, no. 6, pp. 52–63, 2002.

[7] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-
Vincentelli, G. Yang, H. Zeng, and Q. Zhu, “A Next-Generation Design
Framework for Platform-based Design,” in DVCon 2007, February 2007.

[8] M. Fingeroff, High-Level Synthesis Blue Book. Xlibris Corporation,
2010.

[9] E. Grimpe and F. Oppenheimer, “Extending the SystemC synthe-
sis subset by object-oriented features,” in Proceedings of the 1st
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, ser. CODES+ISSS ’03. New York, NY,
USA: ACM, 2003, pp. 25–30.

[10] K. Grüttner, F. Oppenheimer, W. Nebel, F. Colas-Bigey, and A.-
M. Fouilliart, “Systemc-based modelling, seamless refinement, and
synthesis of a jpeg 2000 decoder,” in Proceedings of the conference
on Design, automation and test in Europe, ser. DATE ’08. New
York, NY, USA: ACM, 2008, pp. 128–133. [Online]. Available:
http://doi.acm.org/10.1145/1403375.1403409

[11] W. Mueller, D. He, F. Mischkalla, A. Wegele, P. Whiston, P. Penil,
E. Villar, N. Mitas, D. Kritharidis, F. Azcarate, and M. Carballeda, “The
SATURN Approach to SysML-Based HW/SW Codesign,” in Proc. of the
2010 IEEE Annual Symposium on VLSI, ser. ISVLSI ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 506–511.

[12] H. Marcondes, R. Cancian, M. Stemmer, and A. A. Fröhlich, “On the
Design of Flexible Real-Time Schedulers for Embedded Systems,” in
Proceedings of the 2009 International Conference on Computational
Science and Engineering - Volume 02, ser. CSE ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 382–387.


