
Exercises Algorithms and Networks – Set 7 - 2012 /2013

Deadline: Monday, November 5, 2012.
In case you need to email about this exercise set, please put [AN7] in the

header.
The bonus question can give you extra points.

1. An exact algorithm for Capacitated Bipartite Domi-
nating Set (2 points)

In this problem, we are given a bipartite graph G = (S ∪ C,E). S is the
set of servers, C is the set of clients. Edges have one endpoint in S and one
endpoint in C. S ∩ C = ∅.

Each server has a capacity, i.e., we have a function d : S → Z+. So,
capacities are positive integers.

The capacity of a server is the number of clients it can serve.
For each server, we can either use it, or not use it. If we use a server v,

it can serve at most d(v) clients, and only clients it has an edge to. If we do
not use a server, it serves no clients, but also does not cost anything.

We consider the following problem:
Given is G with the function d, and an integer K. Can we use at most K

servers, and then assign each client to a server we use, such that no server v
has more than d(v) clients assigned to it?

Give an algorithm that solves this problem in O∗(2n) time.
Hint: use a result that was shown in the earlier part of the course. You

may also want to consult the slides of the first lecture in the course.

2. Dynamic Programming (2.5 points

Consider the following problem. Given is a graph G = (V,E). How many
Hamiltonian Circuits does G contain?

There is a detail that should be made clear with this question: when are
circuits different? Here, we fix a vertex v, and look to circuits that start and
end at v, but count circuits that are the same except that they go in the
opposite direction as different circuits.

(a) Fix a vertex v. Argue that the total number of circuits equals the
sum over all edges {v, w} ∈ E of the number of Hamiltonian paths that start
in v and end in w.

(b) Let v again be the fixed vertex. For a set of vertices W ⊆ V with
v ∈ W , and a vertex x ∈ V , let N(W,x) be the number of paths that

1



• start in v

• end in x

• visit each vertex in W exactly one time

• do not visit vertices outside W

Give a recursive formulation of N(W,x). (Hint: look at the Held-Karp algo-
rithm.)

(c) Show that for each vertex w ∈ V , N(V,w) can be computed in O∗(2n)
time.

(d) Show that the number of Hamiltonian circuits of a graph can be
computed in O∗(2n) time.

3. Analysing an Independent Set algorithm with a non-standard
measure (5.5 points)

In this exercise, we will do a special case of an analysis with a non-standard
measure. The method is a (somewhat simplified) form of the Measure and
Conquer technique, see

Fedor V. Fomin, Fabrizio Grandoni, Dieter Kratsch: A measure
& conquer approach for the analysis of exact algorithms. J.
ACM 56(5): (2009)

We will assume that G is a graph such that all vertices have degree at
most three.

Consider the following algorithm for Independent Set.
(i) Explain how we can compute in polynomial time the maximum size

of an independent set of a graph where all vertices have degree two.

(ii) Explain why the algorithm given on the next page (mis) is correct.

(iii) What can we say about the degree of the vertex x which is chosen
before branching?

In order to analyze the running time of the algorithm better, we will use
a nonstandard measure. Suppose we give every vertex of degree 0 or 1 a
weight 0, every vertex of degree two a weight 1

2
, and every vertex of weight

three a weight 1.

The measure of a graph G is the total weight of all vertices in G. We
denote this by m(G).

(iii) Consider the graph G1 from the algorithm, i.e., the graph obtained by
removing the vertex x in the branching step. Argue that m(G1) ≤ m(G)− 5

2
.

(Hint: look what happens to the weights of the neighbors of v.)

2



Algorithm 1 mis(G)

Input: A graph G = (V,E) with maximum degree three
Output: The maximum size of an independent set in G
if there exists a vertex v ∈ V with d(v) = 0 then
Return(1 + mis(G− {v});

end if
if there exists a vertex w ∈ V with d(w) = 1 then

Let G′ be obtained by removing w and its neighbor.
Return(1 + mis(G′))

end if
if all vertices in G have degree two then

Compute the size of a maximum independent set of G in polynomial
time, say this value is α
Return(α)

end if
Choose a vertex x ∈ V of maximum degree.
Let G1 be obtained from G by removing x.
Let G2 be obtained from G by removing x and all neighbors of x.
Return(max{mis(G1),mis(G2) + 1})

(iv) Consider the graph G2 from the algorithm, i.e., the graph obtained
by removing the vertex x and its neighbors in the branching step. Argue
that m(G2) ≤ m(G)− 5

2
.

(v) Prove that the algorithm uses O∗(cn) time with c the positive solution
of the equation

c
5
2 − 2 = 0

(vi) Give the upper bound on the running time of the algorithm that
follows from (v).

(vii) (Harder question.) Improve upon the claimed result of step (iv) by
a better case analysis, and looking at vertices at distance two from G. (It is
easy to make a mistake here; note that the neighbors of v can have edges to
each other . . . )

(viii) Use your improved result from (vii) and improve upon the upper
bound you obtained in (vi).

Bonus: can you get an even better bound by using a different measure?
(E.g., not using 1

2
but another value?)

3


