
Algorithms and Networks: Shortest paths 

Shortest paths 

Algorithms and Networks 



Algorithms and Networks: Shortest paths 2 

Contents 

• The shortest path problem:  
– Statement 

– Versions 

• Applications 

• Algorithms (for single source sp problem) 
– Reminders: relaxation, Dijkstra, Variants of Dijkstra, 

Bellman-Ford, Johnson … 

– Scaling technique (Gabow’s algorithm) 

• Variant algorithms: A*, bidirectional search 

• Bottleneck shortest paths 



Algorithms and Networks: Shortest paths 3 

Notation 

• In the entire course: 

– n = |V|, the number of vertices 

– m = |E| or m = |A|, the number of edges or the 

number of arcs 



Algorithms and Networks: Shortest paths 4 

1 

Definition and Applications 



Algorithms and Networks: Shortest paths 5 

Shortest path problem 

• (Directed) graph 

G=(V,E), length for 

each edge e in E, w(e) 

• Distance from u to v: 

length of shortest path 

from u to v 

• Shortest path problem: 

find distances, find 

shortest paths … 

• Versions: 

– All pairs 

– Single pair 

– Single source 

– Single destination 

– Lengths can be 

• All equal (unit lengths) 
(BFS) 

• Non-negative 

• Negative but no negative 
cycles 

• Negative cycles possible 



Notations 

• dw(s,t): distance of s to t: length of shortest 

path from s to t when using edge length 

function w 

• d(s,t): the same, but w is clear from context 

• d(s,s) = 0: we always assume there is a path 

with 0 edges from a vertex to itself: 

Algorithms and Networks: Shortest paths 6 

s 



Algorithms and Networks: Shortest paths 7 

Applications 

• Subroutine in other graph algorithms 

• Route planning 

• Difference constraints 

• Allocating Inspection Effort on a 

Production Line 



Application 1 

Allocating Inspection Efforts on a Production 

Line 

• Production line: ordered sequence of n production 

stages 

• Each stage can make an item defect 

• Items are inspected at some stages 

• Minimize cost… 

Algorithms and Networks: Shortest paths 8 

0 1 2 3 



Algorithms and Networks: Shortest paths 9 

Allocating Inspection Efforts on a 

Production Line 

• Production line: ordered sequence of n production 
stages. 

• Items are produced in batches of B > 0 items. 

• Probability that stage i produces a defect item is ai. 

• Manufacturing cost per item at stage i: pi. 

• Cost of inspecting at stage j, when last inspection 
has been done at stage i: 

– fij per batch, plus 

– gij per item in the batch 

• When should we inspect to minimize total costs? 



Algorithms and Networks: Shortest paths 10 

Solve by modeling as shortest 

paths problem 

0 1 2 3 

j

ik

kijij piBgiBfjiw
1

)()(),(

Where B(i) denotes the expected number 

of non-defective items after stage i 

i

k

kaBiB
1

)1()(



Idea behind model 

• w(i,j) is the cost of production and 

inspection from stage i to stage j, assuming 

we inspect at stage i, and then again at stage 

j 

• Find the shortest path from 0 to n 

Algorithms and Networks: Shortest paths 11 



Algorithms and Networks: Shortest paths 12 

Application 2: Difference 

constraints 
• Tasks with precedence constraints and running length 

• Each task i has 

– Time to complete bi > 0 

• Some tasks can be started after other tasks have been 
completed:  

– Constraint: sj + bj si 

• First task can start at time 0. When can we finish last task? 

• Shortest paths problem on directed acyclic graphs (see next 
dias)! 



Model 

• Take vertex for each task 

• Take special vertex v0 

• Vertex v0 models time 0 

• Arc (v0, i) for each task vertex i, with length 

0 

• For each precedence constraint sj + bj si an 

arc (j, i) with length bj 

 
Algorithms and Networks: Shortest paths 13 



Long paths give time lower 

bounds 

• If there is a path from v0 to vertex i with 

length x, then task i cannot start before time 

x 

• Proof with induction... 

• Optimal: start each task i at time equal to 

length of longest path from v0 to i. 

– This gives a valid scheme, and it is optimal by 

the solution 

 

 

Algorithms and Networks: Shortest paths 14 



Algorithms and Networks: Shortest paths 15 

Difference constraints as shortest 

paths 

• The longest path problem can be solved in 

O(n+m) time, as we have a directed acyclic 

graph. 

• Transforming to shortest paths problem: 

multiply all lengths and times by –1. 



Algorithms and Networks: Shortest paths 16 

2 

Algorithms for shortest path problems 

(reminders) 



Algorithms and Networks: Shortest paths 17 

Basis of single source algorithms 

• Source s. 

• Each vertex v has variable D[v] 

– Invariant: d(s,v)  D[v] for all v 

– Initially: D[s]=0; v s: D[v] = 

• Relaxation step over edge (u,v): 

– D[v] = min { D[v], D[u]+ w(u,v) } 



Algorithms and Networks: Shortest paths 18 

Maintaining shortest paths 

• Each vertex maintains a pointer to the 
`previous vertex on the current shortest 
path’ (sometimes NIL): p(v) 

• Initially: p(v) = NIL for each v 

• Relaxation step becomes: 

Relax (u,v,w) 

If D[v] > D[u]+ w(u,v) 
then D[v] = D[u] + w(u,v); p(v) = u 

p-values build 

paths of length D(v) 

Shortest paths tree 



Algorithms and Networks: Shortest paths 19 

Dijkstra 

• Initialize 

• Take priority queue Q, initially containing 
all vertices 

• While Q is not empty,  

– Select vertex v from Q of minimum value D[v] 

– Relax across all outgoing edges from v 

• Note: each relaxation can cause a change of a D-
value and thus a change in the priority queue 

• This happens at most |E| times 



Algorithms and Networks: Shortest paths 20 

On Dijkstra 

• Assumes all lengths are non-negative 

• Correctness proof (done in `Algoritmiek’) 

• Running time: 

– Depends on implementation of priority queue 

• O(n2): standard queue 

• O(m + n log n): Fibonacci heaps 

• O((m + n) log n): red-black trees, heaps 

• … 



Algorithms and Networks: Shortest paths 21 

Negative lengths 

• What if w(u,v) < 0? 

• Negative cycles, reachable from s … 

• Bellman-Ford algorithm: 

– For instances without negative cycles: 

• In O(nm) time: SSSP problem when no negative 

cycles reachable from s 

• Also: detects negative cycle 



Algorithms and Networks: Shortest paths 22 

Bellman-Ford 

• Initialize  

• Repeat |V|-1 times: 

– For every edge (u,v) in E do: Relax(u,v,w) 

• For every edge (u,v) in E do 

If D[v] > D[u] + w(u,v) 
then There exists a negative circuit! Stop 

• There is no negative circuit, and for all 
vertices v: D[v] = d(s,v). 

Clearly: 

O(nm) time 



Algorithms and Networks: Shortest paths 23 

Correctness of Bellman-Ford 

• Invariant: If no negative cycle is reachable from s, 

then after i runs of main loop, we have: 

– If there is a shortest path from s to u with at most i 

edges, then D[u]=d[s,u], for all u. 

• If no negative cycle reachable from s, then every 

vertex has a shortest path with at most n – 1 edges. 

• If a negative cycle reachable from s, then there 

will always be an edge with a relaxation possible. 



Algorithms and Networks: Shortest paths 24 

Finding a negative cycle in a 

graph 

• Reachable from s: 

– Apply Bellman-Ford, and look back with 

pointers 

• Or: add a vertex s with edges to each vertex 

in G. 

G 

0 

s 



Algorithms and Networks: Shortest paths 25 

All pairs 

• Dynamic programming: O(n3) (Floyd, 1962) 

• Johnson: improvement for sparse graphs with 

reweighting technique: 

– O(n2 log n + nm) time. 

– Works if no negative cycles 

– Observation: if all weights are non-negative we can run 

Dijkstra with each vertex as starting vertex: that gives 

O(n2 log n + nm) time.  

– What if we have negative lengths: reweighting… 



Algorithms and Networks: Shortest paths 26 

Reweighting 

• Let h: V  R be any function to the reals. 

• Write wh(u,v) = w(u,v) + h(u) – h(v). 

• Lemmas: 

– Let P be a path from x to y. Then:  

wh(P) = w(P) + h(x) – h(y). 

– dh(x,y) = d(x,y) + h(x) – h(y). 

– P is a shortest path from x to y with lengths w, if and only if 

it is so with lengths wh. 

– G has a negative-length circuit with lengths w, if and only if 

it has a negative-length circuit with lengths wh. 



Algorithms and Networks: Shortest paths 27 

What height function h is good? 

• Look for height function h with 

– wh(u,v)  0, for all edges (u,v). 

• If so, we can: 

– Compute wh(u,v) for all edges. 

– Run Dijkstra but now with wh(u,v). 

• Special method to make h with a SSSP 

problem, and Bellman-Ford. 



Algorithms and Networks: Shortest paths 28 

G 

s 

0 
0 

0 

0 



Algorithms and Networks: Shortest paths 29 

Choosing h 

• Set h(v) = d(s,v) (in new graph) 

• Solving SSSP problem with negative edge 

lengths; use Bellman-Ford. 

• If negative cycle detected: stop. 

• Note: for all edges (u,v): wh(u,v) = w(u,v) + 

h(u) – h(v) = w(u,v) + d(s,u) – d(s,v)  0  



Algorithms and Networks: Shortest paths 30 

Johnson’s algorithm 

• Build graph G’ (as shown) 

• Compute with Bellman-Ford d(s,v) for all v 

• Set wh(u,v) = w(u,v) + dG’(s,u) – dG’ (s,v) for 
all edges (u,v). 

• For all u do: 

– Use Dijkstra’s algorithm to compute dh(u,v) for 
all v. 

– Set d(u,v) = dh(u,v) + dG’(s,v) – dG’(s,u). 

O(n2 log n + nm) time 



Algorithms and Networks: Shortest paths 31 

3 

Shortest path algorithms  

“using the numbers” and scaling 



Algorithms and Networks: Shortest paths 32 

Using the numbers 

• Back to the single source shortest paths 

problem with non-negative distances 

– Suppose  is an upper bound on the maximum 

distance from s to a vertex v. 

– Let L be the largest length of an edge. 

– Single source shortest path problem is solvable 

in O(m + ) time. 



Algorithms and Networks: Shortest paths 33 

In O(m+ ) time 

• Keep array of doubly linked lists: L[0], …, L[ ], 

• Maintain that for v with D[v] ,  
– v in L[D[v]]. 

• Keep a current minimum  . 
– Invariant: all L[k] with k  are empty 

• Changing D[v] from x to y: take v from L[x] (with 
pointer), and add it to L[y]: O(1) time each. 

• Extract min: while L[ ] empty, ++; then take the 
first element from list L[ ]. 

• Total time: O(m+ ) 



Algorithms and Networks: Shortest paths 34 

Corollary and extension 

• SSSP: in O(m+nL) time. (Take =nL). 

• Gabow (1985): SSSP problem can be 

solved in O(m logR L) time, where 

– R = max{2, m/n} 

– L : maximum length of edge 

• Gabow’s algorithm uses scaling technique! 



Algorithms and Networks: Shortest paths 35 

Gabow’s algorithm 

Main idea 

• First, build a scaled instance: 

– For each edge e set w’(e) =  w(e) / R  . 

• Recursively, solve the scaled instance. 

• Another shortest paths instance can be used 

to compute the correction terms! 



Algorithms and Networks: Shortest paths 36 

How far are we off? 

• We want d(s,v) 

• R * dw’(s,v) is when we scale back our 
scaled instance: what error did we make 
when rounding? 

• Set for each edge (x,y) in E: 

– Z(x,y) = w(x,y) – R* dw’(s,x) + R * dw’(s,y) 

• Works like height function, so the same shortest 
paths! 

• Height of x is – R * dw’(s,x)  



Algorithms and Networks: Shortest paths 37 

A claim 

• For all vertices v in V: 

– d(s,v) = dZ(s,v) + R * dw’(s,v) 

• As with height functions (telescope): 

– d(s,v) = dZ(s,v) + h(s) – h(v) = dZ(s,v) – 
R*dw’(s,s) + R * dw’(s,v)  

– And dw’(s,s) = 0 

• Thus, we can compute distances for w by 
computing distances for Z and for w’ 



Algorithms and Networks: Shortest paths 38 

Gabow’s algorithm 

If L <= R, then  

• solve the problem using the O(m+nR) algorithm (Base 

case) 

Else 

• For each edge e: set w’(e) =  w(e) / R  . 

• Recursively, compute the distances but with the new length 

function w’. Set for each edge (u,v): 

– Z(u,v) = w(u,v) + R* dw’(s,u) – R * dw’(s,v). 

• Compute dZ(s,v) for all v (how? See next!) and then use 

– d(s,v) = dZ(s,v) + R * dw’(s,v) 



Algorithms and Networks: Shortest paths 39 

A Property of Z 

• For each edge (u,v)  E we have: 

– Z(u,v) = w(u,v) + R* dw’(s,u) – R * dw’(s,v)  0, 

because 

– w(u,v)  R * w’(u,v)  R * (dw’(s,v) – dw’(s,u)). 

• So, a variant of Dijkstra can be used to 

compute distances for Z. 

 



Algorithms and Networks: Shortest paths 40 

Computing distances for Z 

• For each vertex v we have 

– dZ(s,v)  nR for all v reachable from s 

• Consider a shortest path P for distance function w’ from s to v 

• For each of the less than n edges e on P, w(e) R + R*w’(e)  

• So, d(s,v) w(P) nR + R* w’(P) = nR + R* dw’(s,v) 

• Use that d(s,v) = dZ(s,v) + R * dw’(s,v) 

• So, we can use O(m+ nR) algorithm (Dijkstra with 

doubly-linked lists) to compute all values dZ(v). 



Algorithms and Networks: Shortest paths 41 

Gabow’s algorithm (analysis) 

• Recursive step: costs O( m logR L’) with 

L’=  L/R 

• SSSP for Z costs O(m + nR) = O(m). 

• Note: logR L’  (logR L) – 1. 

• So, Gabow’s algorithm uses O(m logR L) 

time. 



Algorithms and Networks: Shortest paths 42 

Example 

a 

b 

t 

191 

223 116 

180 

s 



Algorithms and Networks: Shortest paths 43 

4 

Variants: A* and bidirectional search 



Algorithms and Networks: Shortest paths 44 

A* (simplified exposition) 

• Practical importance: A* algorithm 

• Can be explained in terms of height functions 

• Consider a route planning problem with geographic data, and distances 
of arcs at least Euclidian distance of vertices 

• Suppose we have a single pair shortest path problem, with source s and 
target t 

• Use height function - h(v) =  - the Euclidian distance from v to t  
(notate: |vt|) 

• For all arcs (v,w)  E:  
– w’(v,w) = w(v,w) - |vt| + |wt|  |vw| - |vt| + |wt|  0 

• Note: arcs towards target get smaller length and arcs away from target 
larger length 

• Algorithm is faster in practice but still correct 



Algorithms and Networks: Shortest paths 45 

Bidirectional search 

• For a single pair shortest path problem: 

• Start a Dijkstra-search from both sides 
simultaneously 

• Analysis needed for stopping criterion 

• Faster in practice 

• Combines nicely with A* 

s t 
s t 



Algorithms and Networks: Shortest paths 46 

5 

Bottleneck shortest paths 



Algorithms and Networks: Shortest paths 47 

Bottleneck shortest path 

• Given: weighted graph G, weight w(e) for 

each arc, vertices s, t.  

• Problem: find a path from s to t such that 

the maximum weight of an arc on the path 

is as small as possible. 

– Or, reverse: such that the minimum weight is as 

large as possible: maximum capacity path 



Algorithms and Networks: Shortest paths 48 

Algorithms 

• On directed graphs: O((m+n) log m), 

– Or: O((m+n) log L) with L the maximum 

absolute value of the weights 

– Binary search and DFS 

• On undirected graphs: O(m+n) with divide 

and conquer strategy 



Algorithms and Networks: Shortest paths 49 

Bottleneck shortest paths on 

undirected graphs 
• Find the median weight of all weights of edges, say r. 

• Look to graph Gr formed by edges with weight at most r. 

• If s and t in same connected component of Gr, then the 

bottleneck is at most r: now remove all edges with weight 

more than r, and repeat (recursion). 

• If s and t in different connected components of Gr: the 

bottleneck is larger than r. Now, contract all edges with 

weight at most r, and recurse. 

• T(m) = O(m) + T(m/2)  



Algorithms and Networks: Shortest paths 50 

5 

Conclusions 



Algorithms and Networks: Shortest paths 51 

Conclusions 

• Applications 

• Several algorithms for shortest paths 

– Variants of the problem 

– Detection of negative cycles 

– Reweighting technique 

– Scaling technique 

• A*, bidirectional 

• Bottleneck shortest paths 


