Shortest paths

Algorithms and Networks

Universiteit Utrecht Algorithms and Networks: Shortest paths

Contents

The shortest path problem:
— Statement
— Versions

Applications

Algorithms (for single source sp problem)

— Reminders: relaxation, Dijkstra, VVariants of Dijkstra,
Bellman-Ford, Johnson ...

— Scaling technique (Gabow’s algorithm)
Variant algorithms: A*, bidirectional search
Bottleneck shortest paths

Universiteit Utrecht Algorithms and Networks: Shortest paths

Notation

* In the entire course:
— n = |V|, the number of vertices

— m = |E| or m = |A|, the number of edges or the
number of arcs

Universiteit Utrecht Algorithms and Networks: Shortest paths

Definition and Applications

Universiteit Utrecht Algorithms and Networks: Shortest paths

Shortest path problem

(Directed) graph * Versions:
G=(V,E), length for i g';gﬂi'sair
each edge e in E, w(e) _ Single source
Distance from u to v: - iingltehdestinstion
— Lengtns can be
::ength of shortest path - All squal (unit lengthe
romutov (BFS)
« Non-negative
Shortest path prObIem: Negative but no negative
find distances, find cycles

» Negative cycles possible

shortest paths ...

Universiteit Utrecht Algorithms and Networks: Shortest paths

Notations

* d,(s,t): distance of s to t: length of shortest
path from s to t when using edge length
function w

 d(s,t): the same, but w is clear from context

 d(s,s) = 0: we always assume there Is a path
with O edges from a vertex to itself:

iversiteit Utrecht Algorithms and Networks: Shortest paths

Applications

Subroutine in other graph algorithms
Route planning
Difference constraints

Allocating Inspection Effort on a
Production Line

iversiteit Utrecht Algorithms and Networks: Shortest paths

Application 1

Allocating Inspection Efforts on a Production
Line

» Production line: ordered sequence of n production
stages

Each stage can make an item defect

Iltems are inspected at some stages

@-@-

Universiteit Utrecht Algorithms and Networks: Shortest paths

e Minimize cost...

Allocating Inspection Efforts on a
Production Line

Production line: ordered sequence of n production
stages.

Items are produced in batches of B > 0 items.
Probability that stage I produces a defect item Is a..
Manufacturing cost per item at stage I: p..

Cost of inspecting at stage j, when last inspection
has been done at stage I:

— f;; per batch, plus

— @;; per item In the batch

When should we inspect to minimize total costs?

Universiteit Utrecht Algorithms and Networks: Shortest paths

10

Solve by modeling as shortest
paths problem

®-0- _
w(i, §) = f; +B(i)g, + BG) S p,

k=i+1

Where B(i) denotes the expected number
of non-defective items after stage |

B(i) = Bﬁ(l—ak)

Universiteit Utrecht Algorithms and Networks: Shortest paths

|dea behind model

* W(l,J) Is the cost of production and
Inspection from stage I to stage |, assuming
we Inspect at stage I, and then again at stage

J
 Find the shortest path from 0 to n

11 iversiteit Utrecht Algorithms and Networks: Shortest paths

12

Application 2: Difference
constraints

Tasks with precedence constraints and running length

Each task 1 has
— Time to complete b; >0

Some tasks can be started after other tasks have been
completed:

— Constraint: s;+ b; <s;
First task can start at time 0. When can we finish last task?

Shortest paths problem on directed acyclic graphs (see next
dias)!

Universiteit Utrecht Algorithms and Networks: Shortest paths

Model

 Take vertex for each task
 Take special vertex v,
 Vertex vomodels time O

 Arc (v, 1) for each task vertex 1, with length
0

» For each precedence constraint s; + b; <s;an
arc (J, 1) with length b;

13 Universiteit Utrecht Algorithms and Networks: Shortest paths

14

Long paths give time lower
bounds

If there Is a path from v, to vertex 1 with
length X, then task I cannot start before time
X

Proof with induction...

Optimal: start each task 1 at time equal to
length of longest path from v, to I.

— This gives a valid scheme, and it is optimal by
the solution

Universiteit Utrecht Algorithms and Networks: Shortest paths

Difference constraints as shortest
paths

* The longest path problem can be solved In

O(n+m) time, as we have a directed acyclic
graph.

« Transforming to shortest paths problem:
multiply all lengths and times by —1.

15

Universiteit Utrecht Algorithms and Networks: Shortest paths

16

Algorithms for shortest path problems
(reminders)

Universiteit Utrecht Algorithms and Networks: Shortest paths

Basis of single source algorithms

e Sources.

» Each vertex v has variable D[v]
— Invariant: d(s,v) < D[v] for all v
— Initially: D[s]=0; v s: D]v] =«
 Relaxation step over edge (u,v):
— D[v] = min { D]v], D[u]+ w(u,v) }

17

Universiteit Utrecht Algorithms and Networks: Shortest paths

Maintaining shortest paths

 Each vertex maintains a pointer to the
“previous vertex on the current shortest

path’ (sometimes NIL): p(v) o-values build
o Initially: p(v) = NIL for each v | paths of length D(v)
- Relaxation step becomes: Shortest paths tree

Relax (u,v,w)
If D[v] > D[u]+ w(u,V)
then D[v] = D[u] + w(u,v); p(v) = u

18 iversiteit Utrecht Algorithms and Networks: Shortest paths

Dijkstra

« |nitialize

 Take priority queue Q, initially containing
all vertices

« While Q is not empty,
— Select vertex v from Q of minimum value D[v]

— Relax across all outgoing edges from v

 Note: each relaxation can cause a change of a D-
value and thus a change in the priority queue

 This happens at most |E| times

19 Universiteit Utrecht Algorithms and Networks: Shortest paths

On Dijkstra

« Assumes all lengths are non-negative
 Correctness proof (done in "Algoritmiek’)
» Running time:
— Depends on implementation of priority queue
« O(n?): standard queue

« O(m + nlog n): Fibonacci heaps
e O((m + n) log n): red-black trees, heaps

20

Universiteit Utrecht Algorithms and Networks: Shortest paths

Negative lengths

« What if w(u,v) <07?
* Negative cycles, reachable from s ...

 Bellman-Ford algorithm:

— For instances without negative cycles:

* In O(nm) time: SSSP problem when no negative
cycles reachable from s

 Also: detects negative cycle

21

Universiteit Utrecht Algorithms and Networks: Shortest paths

Bellman-Ford
Clearly:

O(nm) time

e Initialize

» Repeat [V|-1 times:
— For every edge (u,v) in E do: Relax(u,v,w)

« Forevery edge (u,v) In E do

If D[v] > D[u] + w(u,V)
then There exists a negative circuit! Stop

« There is no negative circuit, and for all
vertices v: D[v] = d(s,v).

22 iversiteit Utrecht Algorithms and Networks: Shortest paths

23

Correctness of Bellman-Ford

Invariant: If no negative cycle Is reachable from s,
then after 1 runs of main loop, we have:

— If there Is a shortest path from s to u with at most |
edges, then D[u]=d[s,u], for all u.

If no negative cycle reachable from s, then every
vertex has a shortest path with at most n — 1 edges.

If a negative cycle reachable from s, then there
will always be an edge with a relaxation possible.

Universiteit Utrecht Algorithms and Networks: Shortest paths

Finding a negative cycle In a
graph

e Reachable from s:

— Apply Bellman-Ford, and look back with
pointers

« Or: add a vertex s with edges to each vertex
In G.

24 i iteit Utrecht Algorithms and Networks: Shortest paths

All pairs

« Dynamic programming: O(n3) (Floyd, 1962)
 Johnson: improvement for sparse graphs with
reweighting technique:
— O(n?log n + nm) time.
— Works if no negative cycles

— Observation: if all weights are non-negative we can run
Dijkstra with each vertex as starting vertex: that gives
O(n?log n + nm) time.

— What if we have negative lengths: reweighting...

25 Universiteit Utrecht Algorithms and Networks: Shortest paths

Reweighting

« Leth: V — R be any function to the reals.
* Write wy(u,v) = w(u,v) + h(u) — h(v).

 Lemmas:
— Let P be a path from x to y. Then:
W;,(P) = W(P) + h(x) — h(y).
— dp(xy) = d(xy) + h(x) —h(y).
— P Is a shortest path from x to y with lengths w, if and only if
It Is so with lengths w,,.

— G has a negative-length circuit with lengths w, if and only if
It has a negative-length circuit with lengths w;..

26 & Universiteit Utrecht Algorithms and Networks: Shortest paths

What height function h I1s good?

 Look for height function h with
— W (u,v) = 0, for all edges (u,v).

* |If so, we can.
— Compute wy(u,v) for all edges.
— Run Dijkstra but now with w,(u,v).

 Special method to make h with a SSSP
problem, and Bellman-Ford.

27 iversiteit Utrecht Algorithms and Networks: Shortest paths

28

Universiteit Utrecht

Algorithms and Networks: Shortest paths

Choosing h

 Set h(v) =d(s,v) (In new graph)

 Solving SSSP problem with negative edge
lengths; use Bellman-Ford.

» |If negative cycle detected: stop.

 Note: for all edges (u,v): wy(u,v) = w(u,v) +
h(u) — h(v) = w(u,v) + d(s,u) —d(s,v) >0

29

iversiteit Utrecht Algorithms and Networks: Shortest paths

Johnson’s algorithm

* Build graph G’ (as shown)

« Compute with Bellman-Ford d(s,v) for all v

« Set w,(u,v) =w(u,v) + dgs.(s,u) — dg: (s,v) for
all edges (u,v).

 For all u do:

— Use Dijkstra’s algorithm to compute d,(u,v) for
all v.

— Set d(u,v) = d,(u,v) + dg-(s,v) — dg-(s,U).

O(n?log n + nm) time

30 iversiteit Utrecht Algorithms and Networks: Shortest paths

31

Shortest path algorithms
“using the numbers” and scaling

Universiteit Utrecht Algorithms and Networks: Shortest paths

Using the numbers

 Back to the single source shortest paths
problem with non-negative distances

— Suppose A Is an upper bound on the maximum
distance from s to a vertex v.

— Let L be the largest length of an edge.

— Single source shortest path problem is solvable
In O(m + A) time.

32

Universiteit Utrecht Algorithms and Networks: Shortest paths

In O(M+A) time

Keep array of doubly linked lists: L[0], ..., L[A],

Maintain that for v with
— vin L[D[V]].

DJv] <A,

Keep a current minimum g .
— Invariant: all L[k] with k < @ are empty

Changing D[v] from x to y: take v from L[x] (with

pointer), and add it to L

Extract min: while L[u]
first element from list L

Total time: O(m+A)

= Universiteit Utrecht

y]: O(1) time each.
empty, pu++; then take the

]

Algorithms and Networks: Shortest paths

Corollary and extension

e SSSP: In O(m+nL) time. (Take A=nL).

» Gabow (1985): SSSP problem can be
solved in O(m logy L) time, where

— R =max{2, m/n}
— L : maximum length of edge
» Gabow’s algorithm uses scaling technigue!

34 iversiteit Utrecht Algorithms and Networks: Shortest paths

Gabow’s algorithm
Main idea

« First, build a scaled instance:
— For each edge e set w’(e) = w(e) /R .

» Recursively, solve the scaled instance.

« Another shortest paths instance can be used
to compute the correction terms!

35 iversiteit Utrecht Algorithms and Networks: Shortest paths

How far are we off?

« We want d(s,v)
R *d,(s,v) Is when we scale back our
scaled instance: what error did we make

when rounding?

 Set for each edge (x,y) In E:
— Z(xyy) = w(xy) - R* d,,(sx) + R* d(s,y)
» Works like height function, so the same shortest

paths!
« Heightof xis— R * d,.(s,X)

Algorithms and Networks: Shortest paths

= Universiteit Utrecht

36

A claim

 For all vertices v in V-
—d(s,v) =d,(s,v) + R *d,.(s,v)
 As with height functions (telescope):
— d(s,v) = d(s,v) + h(s) — h(v) = d,(s,v) —
R*d,.(s,s) + R * d,.(s,V)
— And d,.(s,s) =0
« Thus, we can compute distances for w by
computing distances for Z and for w’

37 iversiteit Utrecht Algorithms and Networks: Shortest paths

Gabow’s algorithm

If L <=R, then
 solve the problem using the O(m+nR) algorithm (Base
case)
Else
- For each edge e: setw’(e) = w(e) /R J.
» Recursively, compute the distances but with the new length
function w’. Set for each edge (u,v):
— Z(u,v) =w(u,v) + R*d,.(s,u) — R *d,.(s,v).
« Compute d,(s,v) for all v (how? See next!) and then use
— d(s,v) =d,(s,v) + R *d,.(s,v)

38 & Universiteit Utrecht Algorithms and Networks: Shortest paths

A Property of Z

 For each edge (u,v) € E we have:
- Z(u,v) =w(u,v) + R*d_.(s,u)— R *d_.(s,v) =2 0,
because
—w(u,v) 2R *w’(u,v) 2R * (d,-(s,v) — d_.(S,u)).
« S0, a variant of Dijkstra can be used to
compute distances for Z.

39 iversiteit Utrecht Algorithms and Networks: Shortest paths

Computing distances for Z

e For each vertex v we have

— d(s,v) < nR for all v reachable from s
 Consider a shortest path P for distance function w’ from s to v
 For each of the less than n edges e on P, w(e) <R + R*w’(e)
e S0,d(s,v) <W(P) <nR+R*w’(P)=nR+R*d .(s,v)
 Use that d(s,v) =d,(s,v) + R *d,;(s,v)
» S0, we can use O(m+ nR) algorithm (Dijkstra with
doubly-linked lists) to compute all values d_(v).

40

Universiteit Utrecht Algorithms and Networks: Shortest paths

Gabow’s algorithm (analysis)

 Recursive step: costs O(m logg L) with
L= L/R |

« SSSP for Z costs O(m + nR) = O(m).

* Note: logg L’ < (logg L) — 1.

* So, Gabow’s algorithm uses O(m logy L)
time.

41 i iteit Utrecht Algorithms and Networks: Shortest paths

42

Example

191 ‘%‘

223 /116'

Universiteit Utrecht Algorithms and Networks: Shortest paths

43

A

Variants: A* and bidirectional search

Universiteit Utrecht Algorithms and Networks: Shortest paths

44

A* (simplified exposition)

Practical importance: A* algorithm
Can be explained in terms of height functions

Consider a route planning problem with geographic data, and distances
of arcs at least Euclidian distance of vertices

Suppose we have a single pair shortest path problem, with source s and
target t

Use height function - h(v) = - the Euclidian distance from v to t
(notate: |vt|)

For all arcs (v,w) € E:

— w’(v,w) =w(v,w) - |vt| + |wt| > |vw| - |vt] + |wt| >0
Note: arcs towards target get smaller length and arcs away from target
larger length

Algorithm is faster in practice but still correct

Universiteit Utrecht Algorithms and Networks: Shortest paths

Bidirectional search

 For asingle pair shortest path problem:

» Start a Dijkstra-search from both sides
simultaneously

» Analysis needed for stopping criterion
 Faster in practice
» Combines nicely with A*

45 # Universiteit Utrecht Algorithms and Networks: Shortest paths

46

Bottleneck shortest paths

= Universiteit Utrecht

Algorithms and Networks: Shortest paths

Bottleneck shortest path

 Glven: weighted graph G, weight w(e) for
each arc, vertices s, t.

* Problem: find a path from s to t such that
the maximum weight of an arc on the path
IS as small as possible.

— Or, reverse: such that the minimum weight Is as
large as possible: maximum capacity path

47 i iteit Utrecht Algorithms and Networks: Shortest paths

Algorithms

« On directed graphs: O((m+n) log m),

— Or: O((m+n) log L) with L the maximum
absolute value of the weights

— Binary search and DFS

e On undirected graphs: O(m+n) with divide
and conquer strategy

48 i iteit Utrecht Algorithms and Networks: Shortest paths

49

Bottleneck shortest paths on
undirected graphs

Find the median weight of all weights of edges, say r.
Look to graph G' formed by edges with weight at most r.

If s and t in same connected component of G', then the
bottleneck is at most r: now remove all edges with weight
more than r, and repeat (recursion).

If s and t in different connected components of G': the
bottleneck is larger than r. Now, contract all edges with
weight at most r, and recurse.

T(m) =0O(m) + T(m/2)

Universiteit Utrecht Algorithms and Networks: Shortest paths

50

Conclusions

'...-:.: Universiteit Utrecht Algorithms and Networks: Shortest paths

Conclusions

 Applications
 Several algorithms for shortest paths
— Variants of the problem
— Detection of negative cycles
— Reweighting technique
— Scaling technique

« A*, bidirectional
» Bottleneck shortest paths

51 iversiteit Utrecht Algorithms and Networks: Shortest paths

