Shortest paths

Algorithms and Networks

Universiteit Utrecht

Contents

- The shortest path problem:
 - Statement
 - Versions
- Applications
- Algorithms (for *single source* sp problem)
 - Reminders: relaxation, Dijkstra, Variants of Dijkstra, Bellman-Ford, Johnson ...
 - Scaling technique (Gabow's algorithm)
- Variant algorithms: A*, bidirectional search
- Bottleneck shortest paths

Notation

- In the entire course:
 - -n = |V|, the number of vertices
 - $-m = |\mathbf{E}|$ or $m = |\mathbf{A}|$, the number of edges or the number of arcs

Universiteit Utrecht

Definition and Applications

1

Universiteit Utrecht

Shortest path problem

- (Directed) graph
 G=(V,E), length for
 each edge *e* in E, *w*(*e*)
- Distance from *u* to *v*: length of shortest path from *u* to *v*
- Shortest path problem: find distances, find shortest paths ...

Universiteit Utrecht

- Versions:
 - All pairs
 - Single pair
 - Single source
 - Single destination
 - Lengths can be
 - All equal (unit lengths) (BFS)
 - Non-negative
 - Negative but no negative cycles
 - Negative cycles possible

Algorithms and Networks: Shortest paths

5

Notations

- d_w(s,t): distance of s to t: length of shortest
 path from s to t when using edge length
 function w
- d(s, t): the same, but w is clear from context
- d(s,s) = 0: we always assume there is a path with 0 edges from a vertex to itself:

Universiteit Utrecht

Applications

- Subroutine in other graph algorithms
- Route planning
- Difference constraints
- Allocating Inspection Effort on a Production Line

Application 1

Allocating Inspection Efforts on a Production Line

- *Production line*: ordered sequence of *n* production stages
- Each stage can make an item *defect*
- Items are inspected at some stages
- Minimize cost...

Allocating Inspection Efforts on a Production Line

- Production line: ordered sequence of *n* production stages.
- Items are produced in batches of B > 0 items.
- Probability that stage *i* produces a defect item is a_i .
- Manufacturing cost per item at stage *i*: p_i .
- Cost of inspecting at stage *j*, when last inspection has been done at stage *i*:
 - $-f_{ij}$ per batch, plus
 - $-g_{ij}$ per item in the batch
- When should we inspect to minimize total costs?

Solve by modeling as shortest paths problem

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3$$

$$w(i, j) = f_{ij} + B(i)g_{ij} + B(i)\sum_{k=i+1}^{j} p_k$$

Where B(i) denotes the expected number of non-defective items after stage i

$$B(i) = B \prod_{k=1}^{i} (1 - a_k)$$

Universiteit Utrecht

Idea behind model

- w(*i*,*j*) is the cost of production and inspection from stage *i* to stage *j*, assuming we inspect at stage *i*, and then again at stage *j*
- Find the shortest path from 0 to n

Universiteit Utrecht

Application 2: Difference constraints

- Tasks with precedence constraints and running length
- Each task *i* has
 - Time to complete $b_i > 0$
- Some tasks can be started after other tasks have been completed:
 - Constraint: $s_j + b_j \le s_i$
- First task can start at time 0. When can we finish last task?
- Shortest paths problem on directed acyclic graphs (see next dias)!

Model

- Take vertex for each task
- Take special vertex v_0
- Vertex v_0 models time 0
- Arc (v_0, i) for each task vertex *i*, with length 0
- For each precedence constraint $s_j + b_j \le s_i$ an arc (*j*, *i*) with length b_j

Long paths give time lower bounds

- If there is a path from v_0 to vertex *i* with length *x*, then task *i* cannot start before time x
- **Proof** with induction...
- Optimal: start each task *i* at time equal to length of longest path from v_0 to *i*.
 - This gives a valid scheme, and it is optimal by the solution

Universiteit Utrecht

Difference constraints as shortest paths

- The longest path problem can be solved in O(n+m) time, as we have a directed acyclic graph.
- Transforming to shortest paths problem: multiply all lengths and times by –1.

Universiteit Utrecht

2

Algorithms for shortest path problems (reminders)

Universiteit Utrecht

Basis of single source algorithms

- Source s.
- Each vertex v has variable D[v]– Invariant: $d(s,v) \le D[v]$ for all v
 - Initially: $D[s]=0; v \neq s: D[v] = \infty$
- Relaxation step over edge (u,v): $-D[v] = \min \{ D[v], D[u] + w(u,v) \}$

Maintaining shortest paths

- Each vertex maintains a pointer to the `previous vertex on the current shortest path' (sometimes NIL): p(v)
- Initially: p(v) = NIL for each v

p-values build paths of length D(v) Shortest paths tree

• Relaxation step becomes:

Relax (u, v, w)If D[v] > D[u] + w(u, v)then D[v] = D[u] + w(u, v); p(v) = u

Dijkstra

- Initialize
- Take priority queue Q, initially containing all vertices
- While Q is not empty,
 - Select vertex v from Q of minimum value D[v]
 - Relax across all outgoing edges from v
 - Note: each relaxation can cause a change of a Dvalue and thus a change in the priority queue
 - This happens at most *|E|* times

Universiteit Utrecht

On Dijkstra

- Assumes all lengths are non-negative
- Correctness proof (done in `Algoritmiek')
- Running time:
 - Depends on implementation of priority queue
 - $O(n^2)$: standard queue
 - $O(m + n \log n)$: Fibonacci heaps
 - $O((m + n) \log n)$: red-black trees, heaps

Negative lengths

- What if w(u,v) < 0?
- Negative cycles, reachable from s ...
- Bellman-Ford algorithm:
 - For instances without negative cycles:
 - In O(*nm*) time: SSSP problem when no negative cycles reachable from *s*
 - Also: detects negative cycle

Bellman-Ford

Clearly: O(nm) time

- Initialize
- Repeat |V|-1 times:
 - For every edge (u,v) in E do: Relax(u,v,w)
- For every edge (u,v) in E do
 If D[v] > D[u] + w(u,v)
 then There exists a negative circuit! Stop
- There is no negative circuit, and for all vertices v: D[v] = d(s,v).

Correctness of Bellman-Ford

• Invariant: If no negative cycle is reachable from *s*, then after *i* runs of main loop, we have:

If there is a shortest path from *s* to *u* with at most *i* edges, then D[*u*]=d[*s*,*u*], for all *u*.

- If no negative cycle reachable from s, then every vertex has a shortest path with at most n 1 edges.
- If a negative cycle reachable from *s*, then there will always be an edge with a relaxation possible.

Finding a negative cycle in a graph

- Reachable from s:
 - Apply Bellman-Ford, and look back with pointers
- Or: add a vertex *s* with edges to each vertex

All pairs

- Dynamic programming: $O(n^3)$ (Floyd, 1962)
- Johnson: improvement for sparse graphs with reweighting technique:
 - $O(n^2 \log n + nm)$ time.
 - Works if no negative cycles
 - Observation: if all weights are non-negative we can run Dijkstra with each vertex as starting vertex: that gives $O(n^2 \log n + nm)$ time.
 - What if we have negative lengths: reweighting...

Reweighting

- Let $h: V \to R$ be any function to the reals.
- Write $w_h(u,v) = w(u,v) + h(u) h(v)$.
- Lemmas:
 - Let P be a path from x to y. Then: $w_h(P) = w(P) + h(x) - h(y).$
 - $d_{h}(x,y) = d(x,y) + h(x) h(y).$
 - P is a shortest path from x to y with lengths w, if and only if it is so with lengths w_h .
 - G has a negative-length circuit with lengths w, if and only if it has a negative-length circuit with lengths w_h.

Universiteit Utrecht

What height function h is good?

- Look for height function h with
 - $-w_h(u,v) \ge 0$, for all edges (u,v).
- If so, we can:
 - Compute $w_h(u,v)$ for all edges.

Universiteit Utrecht

- $-\mathbf{R}$ un Dijkstra but now with $w_h(u,v)$.
- Special method to make h with a SSSP problem, and Bellman-Ford.

Universiteit Utrecht

Choosing *h*

- Set h(v) = d(s, v) (in new graph)
- Solving SSSP problem with negative edge lengths; use Bellman-Ford.
- If negative cycle detected: stop.
- Note: for all edges (u,v): $w_h(u,v) = w(u,v) + h(u) h(v) = w(u,v) + d(s,u) d(s,v) \ge 0$

Universiteit Utrecht

Johnson's algorithm

- Build graph G' (as shown)
- Compute with Bellman-Ford d(*s*,*v*) for all *v*
- Set $w_h(u,v) = w(u,v) + d_{G'}(s,u) d_{G'}(s,v)$ for all edges (u,v).
- For all *u* do:

- $O(n^2 \log n + nm)$ time
- Use Dijkstra's algorithm to compute $d_h(u,v)$ for all *v*.
- $\operatorname{Set} d(u, v) = d_{h}(u, v) + d_{G'}(s, v) d_{G'}(s, u).$

Universiteit Utrecht

3

Shortest path algorithms "using the numbers" and scaling

Universiteit Utrecht

Using the numbers

- Back to the single source shortest paths problem with non-negative distances
 - Suppose Δ is an upper bound on the maximum distance from *s* to a vertex *v*.
 - Let L be the largest length of an edge.
 - Single source shortest path problem is solvable in $O(m + \Delta)$ time.

In O($m+\Delta$) time

- Keep array of doubly linked lists: $L[0], ..., L[\Delta]$,
- Maintain that for v with $D[v] \leq \Delta$, - v in L[D[v]].
- Keep a current minimum μ .
 - Invariant: all L[k] with $k < \mu$ are empty
- Changing D[v] from x to y: take v from L[x] (with pointer), and add it to L[y]: O(1) time each.
- Extract min: while L[μ] empty, μ++; then take the first element from list L[μ].
- Total time: $O(m+\Delta)$

Corollary and extension

- SSSP: in O(m+nL) time. (Take $\Delta=nL$).
- Gabow (1985): SSSP problem can be solved in O(m log_R L) time, where
 - $-\mathbf{R} = \max\{2, m/n\}$
 - L : maximum length of edge
- Gabow's algorithm uses scaling technique!

Gabow's algorithm Main idea

• First, build a scaled instance:

- For each edge *e* set $w'(e) = \lfloor w(e) / R \rfloor$.

- Recursively, solve the scaled instance.
- Another shortest paths instance can be used to compute the correction terms!

How far are we off?

- We want d(s, v)
- R * d_w,(s,v) is when we scale back our scaled instance: what error did we make when rounding?
- Set for each edge (*x*, *y*) in E:
 - $-Z(x,y) = w(x,y) R^* d_{w'}(s,x) + R^* d_{w'}(s,y)$
 - Works like height function, so the same shortest paths!
 - Height of x is $-\mathbf{R} * \mathbf{d}_{w'}(s,x)$

A claim

- For all vertices v in V: $- d(s,v) = d_Z(s,v) + R * d_{w'}(s,v)$
- As with height functions (telescope): $-d(s,v) = d_Z(s,v) + h(s) - h(v) = d_Z(s,v) - R*d_{w'}(s,s) + R*d_{w'}(s,v)$
 - $-\operatorname{And} \operatorname{d}_{W'}(s,s) = 0$
- Thus, we can compute distances for *w* by computing distances for Z and for *w*'

Gabow's algorithm

If $L \leq R$, then

• solve the problem using the O(m+nR) algorithm (Base case)

Else

- For each edge e: set $w'(e) = \lfloor w(e) / R \rfloor$.
- Recursively, compute the distances but with the new length function w'. Set for each edge (u,v):
 - $Z(u,v) = W(u,v) + R^* d_{w'}(s,u) R^* d_{w'}(s,v).$
- Compute $d_Z(s,v)$ for all v (how? See next!) and then use - $d(s,v) = d_Z(s,v) + R * d_{w'}(s,v)$

Universiteit Utrecht

A Property of Z

- For each edge $(u,v) \in E$ we have:
 - Z(*u*,*v*) = w(*u*,*v*) + R* $d_{w'}(s,u)$ R * $d_{w'}(s,v)$ ≥ 0, because
 - $-w(u,v) \ge \mathbf{R} * w'(u,v) \ge \mathbf{R} * (\mathbf{d}_{w'}(s,v) \mathbf{d}_{w'}(s,u)).$
- So, a variant of Dijkstra can be used to compute distances for Z.

Universiteit Utrecht

Computing distances for Z

- For each vertex *v* we have
 - $d_Z(s, v) \le nR$ for all *v* reachable from *s*
 - Consider a shortest path P for distance function *w*' from *s* to *v*
 - For each of the less than *n* edges *e* on P, $w(e) \le R + R^*w'(e)$
 - So, $d(s,v) \le w(P) \le nR + R^* w'(P) = nR + R^* d_{w'}(s,v)$
 - Use that $d(s,v) = d_Z(s,v) + R * d_{w'}(s,v)$
- So, we can use O(m + nR) algorithm (Dijkstra with doubly-linked lists) to compute all values $d_Z(v)$.

Gabow's algorithm (analysis)

- Recursive step: costs O($m \log_{R} L'$) with $L' = \lfloor L/R \rfloor$.
- **SSP** for Z costs O(m + nR) = O(m).
- Note: $\log_R L' \leq (\log_R L) 1$.
- So, Gabow's algorithm uses O(*m* log_R L) time.

Example

Universiteit Utrecht

Variants: A* and bidirectional search

Universiteit Utrecht

A* (simplified exposition)

- Practical importance: A* algorithm
- Can be explained in terms of height functions
- Consider a route planning problem with geographic data, and distances of arcs at least Euclidian distance of vertices
- Suppose we have a single pair shortest path problem, with source s and target t
- Use height function h(v) = the Euclidian distance from v to t (notate: |vt|)
- For all arcs $(v, w) \in E$:

 $- w'(v,w) = w(v,w) - |vt| + |wt| \ge |vw| - |vt| + |wt| \ge 0$

- Note: arcs towards target get smaller length and arcs away from target larger length
- Algorithm is faster in practice but still correct

Bidirectional search

- For a single pair shortest path problem:
- Start a Dijkstra-search from both sides simultaneously
- Analysis needed for stopping criterion
- Faster in practice
- Combines nicely with A*

5

Bottleneck shortest paths

Universiteit Utrecht

Bottleneck shortest path

- Given: weighted graph G, weight w(*e*) for each arc, vertices *s*, *t*.
- Problem: find a path from s to t such that the maximum weight of an arc on the path is as small as possible.
 - Or, reverse: such that the minimum weight is as large as possible: *maximum capacity path*

Universiteit Utrecht

Algorithms

- On directed graphs: $O((m+n) \log m)$,
 - Or: $O((m+n) \log L)$ with L the maximum absolute value of the weights
 - Binary search and DFS
- On undirected graphs: O(*m*+*n*) with divide and conquer strategy

Bottleneck shortest paths on undirected graphs

- Find the median weight of all weights of edges, say *r*.
- Look to graph G^r formed by edges with weight at most r.
- If *s* and *t* in same connected component of G^r, then the bottleneck is at most *r*: now remove all edges with weight more than *r*, and repeat (recursion).
- If *s* and *t* in different connected components of G^r: the bottleneck is larger than *r*. Now, contract all edges with weight at most *r*, and recurse.
- T(m) = O(m) + T(m/2)

5

Conclusions

Universiteit Utrecht

Conclusions

- Applications
- Several algorithms for shortest paths
 - Variants of the problem
 - Detection of negative cycles
 - Reweighting technique
 - Scaling technique
- A*, bidirectional
- Bottleneck shortest paths

