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Notation

* In the entire course:
— n = |V|, the number of vertices

— m = |E| or m = |A|, the number of edges or the
number of arcs

Universiteit Utrecht Algorithms and Networks: Shortest paths



Definition and Applications
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Shortest path problem

(Directed) graph * Versions:
G=(V,E), length for i g';gﬂi'sair
each edge e in E, w(e) _ Single source
Distance from u to v: - iingltehdestinstion
— Lengtns can be
::ength of shortest path - All squal (unit lengthe
romutov (BFS)
« Non-negative
Shortest path prObIem:  Negative but no negative
find distances, find cycles

» Negative cycles possible

shortest paths ...
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Notations

* d,(s,t): distance of s to t: length of shortest
path from s to t when using edge length
function w

 d(s,t): the same, but w is clear from context

 d(s,s) = 0: we always assume there Is a path
with O edges from a vertex to itself:
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Applications

Subroutine in other graph algorithms
Route planning
Difference constraints

Allocating Inspection Effort on a
Production Line
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Application 1

Allocating Inspection Efforts on a Production
Line

» Production line: ordered sequence of n production
stages

Each stage can make an item defect

Iltems are inspected at some stages

@-@-

Universiteit Utrecht Algorithms and Networks: Shortest paths

e Minimize cost...




Allocating Inspection Efforts on a
Production Line

Production line: ordered sequence of n production
stages.

Items are produced in batches of B > 0 items.
Probability that stage I produces a defect item Is a..
Manufacturing cost per item at stage I: p..

Cost of inspecting at stage j, when last inspection
has been done at stage I:

— f;; per batch, plus

— @;; per item In the batch

When should we inspect to minimize total costs?
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Solve by modeling as shortest
paths problem

®-0- _
w(i, §) = f; +B(i)g, + BG) S p,

k=i+1

Where B(i) denotes the expected number
of non-defective items after stage |

B(i) = Bﬁ(l—ak)
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|dea behind model

* W(l,J) Is the cost of production and
Inspection from stage I to stage |, assuming
we Inspect at stage I, and then again at stage

J
 Find the shortest path from 0 to n
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Application 2: Difference
constraints

Tasks with precedence constraints and running length

Each task 1 has
— Time to complete b; >0

Some tasks can be started after other tasks have been
completed:

— Constraint: s;+ b; <s;
First task can start at time 0. When can we finish last task?

Shortest paths problem on directed acyclic graphs (see next
dias)!
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Model

 Take vertex for each task
 Take special vertex v,
 Vertex vomodels time O

 Arc (v, 1) for each task vertex 1, with length
0

» For each precedence constraint s; + b; <s;an
arc (J, 1) with length b;
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Long paths give time lower
bounds

If there Is a path from v, to vertex 1 with
length X, then task I cannot start before time
X

Proof with induction...

Optimal: start each task 1 at time equal to
length of longest path from v, to I.

— This gives a valid scheme, and it is optimal by
the solution
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Difference constraints as shortest
paths

* The longest path problem can be solved In

O(n+m) time, as we have a directed acyclic
graph.

« Transforming to shortest paths problem:
multiply all lengths and times by —1.

15
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Algorithms for shortest path problems
(reminders)
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Basis of single source algorithms

e Sources.

» Each vertex v has variable D[v]
— Invariant: d(s,v) < D[v] for all v
— Initially: D[s]=0; v s: D]v] =«
 Relaxation step over edge (u,v):
— D[v] = min { D]v], D[u]+ w(u,v) }

17
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Maintaining shortest paths

 Each vertex maintains a pointer to the
“previous vertex on the current shortest

path’ (sometimes NIL): p(v) o-values build
o Initially: p(v) = NIL for each v | paths of length D(v)
- Relaxation step becomes: Shortest paths tree

Relax (u,v,w)
If D[v] > D[u]+ w(u,V)
then D[v] = D[u] + w(u,v); p(v) = u
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Dijkstra

« |nitialize

 Take priority queue Q, initially containing
all vertices

« While Q is not empty,
— Select vertex v from Q of minimum value D[v]

— Relax across all outgoing edges from v

 Note: each relaxation can cause a change of a D-
value and thus a change in the priority queue

 This happens at most |E| times
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On Dijkstra

« Assumes all lengths are non-negative
 Correctness proof (done in "Algoritmiek’)
» Running time:
— Depends on implementation of priority queue
« O(n?): standard queue

« O(m + nlog n): Fibonacci heaps
e O((m + n) log n): red-black trees, heaps

20
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Negative lengths

« What if w(u,v) <07?
* Negative cycles, reachable from s ...

 Bellman-Ford algorithm:

— For instances without negative cycles:

* In O(nm) time: SSSP problem when no negative
cycles reachable from s

 Also: detects negative cycle

21
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Bellman-Ford
Clearly:

O(nm) time

e Initialize

» Repeat [V|-1 times:
— For every edge (u,v) in E do: Relax(u,v,w)

« Forevery edge (u,v) In E do

If D[v] > D[u] + w(u,V)
then There exists a negative circuit! Stop

« There is no negative circuit, and for all
vertices v: D[v] = d(s,v).
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Correctness of Bellman-Ford

Invariant: If no negative cycle Is reachable from s,
then after 1 runs of main loop, we have:

— If there Is a shortest path from s to u with at most |
edges, then D[u]=d[s,u], for all u.

If no negative cycle reachable from s, then every
vertex has a shortest path with at most n — 1 edges.

If a negative cycle reachable from s, then there
will always be an edge with a relaxation possible.
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Finding a negative cycle In a
graph

e Reachable from s:

— Apply Bellman-Ford, and look back with
pointers

« Or: add a vertex s with edges to each vertex
In G.
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All pairs

« Dynamic programming: O(n3) (Floyd, 1962)
 Johnson: improvement for sparse graphs with
reweighting technique:
— O(n?log n + nm) time.
— Works if no negative cycles

— Observation: if all weights are non-negative we can run
Dijkstra with each vertex as starting vertex: that gives
O(n?log n + nm) time.

— What if we have negative lengths: reweighting...
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Reweighting

« Leth: V — R be any function to the reals.
* Write wy(u,v) = w(u,v) + h(u) — h(v).

 Lemmas:
— Let P be a path from x to y. Then:
W;,(P) = W(P) + h(x) — h(y).
— dp(xy) = d(xy) + h(x) —h(y).
— P Is a shortest path from x to y with lengths w, if and only if
It Is so with lengths w,,.

— G has a negative-length circuit with lengths w, if and only if
It has a negative-length circuit with lengths w;..
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What height function h I1s good?

 Look for height function h with
— W (u,v) = 0, for all edges (u,v).

* |If so, we can.
— Compute wy(u,v) for all edges.
— Run Dijkstra but now with w,(u,v).

 Special method to make h with a SSSP
problem, and Bellman-Ford.
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Choosing h

 Set h(v) =d(s,v) (In new graph)

 Solving SSSP problem with negative edge
lengths; use Bellman-Ford.

» |If negative cycle detected: stop.

 Note: for all edges (u,v): wy(u,v) = w(u,v) +
h(u) — h(v) = w(u,v) + d(s,u) —d(s,v) >0

29
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Johnson’s algorithm

* Build graph G’ (as shown)

« Compute with Bellman-Ford d(s,v) for all v

« Set w,(u,v) =w(u,v) + dgs.(s,u) — dg: (s,v) for
all edges (u,v).

 For all u do:

— Use Dijkstra’s algorithm to compute d,(u,v) for
all v.

— Set d(u,v) = d,(u,v) + dg-(s,v) — dg-(s,U).

O(n?log n + nm) time
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Shortest path algorithms
“using the numbers” and scaling
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Using the numbers

 Back to the single source shortest paths
problem with non-negative distances

— Suppose A Is an upper bound on the maximum
distance from s to a vertex v.

— Let L be the largest length of an edge.

— Single source shortest path problem is solvable
In O(m + A) time.

32
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In O(M+A) time

Keep array of doubly linked lists: L[0], ..., L[A],

Maintain that for v with
— vin L[D[V]].

DJv] <A,

Keep a current minimum g .
— Invariant: all L[k] with k < @ are empty

Changing D[v] from x to y: take v from L[x] (with

pointer), and add it to L

Extract min: while L[u]
first element from list L

Total time: O(m+A)

= Universiteit Utrecht

y]: O(1) time each.
empty, pu++; then take the

]
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Corollary and extension

e SSSP: In O(m+nL) time. (Take A=nL).

» Gabow (1985): SSSP problem can be
solved in O(m logy L) time, where

— R =max{2, m/n}
— L : maximum length of edge
» Gabow’s algorithm uses scaling technigue!
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Gabow’s algorithm
Main idea

« First, build a scaled instance:
— For each edge e set w’(e) = w(e) /R .

» Recursively, solve the scaled instance.

« Another shortest paths instance can be used
to compute the correction terms!
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How far are we off?

« We want d(s,v)
R *d,(s,v) Is when we scale back our
scaled instance: what error did we make

when rounding?

 Set for each edge (x,y) In E:
— Z(xyy) = w(xy) - R* d,,(sx) + R* d(s,y)
» Works like height function, so the same shortest

paths!
« Heightof xis— R * d,.(s,X)
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A claim

 For all vertices v in V-
—d(s,v) =d,(s,v) + R *d,.(s,v)
 As with height functions (telescope):
— d(s,v) = d(s,v) + h(s) — h(v) = d,(s,v) —
R*d,.(s,s) + R * d,.(s,V)
— And d,.(s,s) =0
« Thus, we can compute distances for w by
computing distances for Z and for w’
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Gabow’s algorithm

If L <=R, then
 solve the problem using the O(m+nR) algorithm (Base
case)
Else
- For each edge e: setw’(e) = w(e) /R J.
» Recursively, compute the distances but with the new length
function w’. Set for each edge (u,v):
— Z(u,v) =w(u,v) + R*d,.(s,u) — R *d,.(s,v).
« Compute d,(s,v) for all v (how? See next!) and then use
— d(s,v) =d,(s,v) + R *d,.(s,v)
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A Property of Z

 For each edge (u,v) € E we have:
- Z(u,v) =w(u,v) + R*d_.(s,u)— R *d_.(s,v) =2 0,
because
—w(u,v) 2R *w’(u,v) 2R * (d,-(s,v) — d_.(S,u)).
« S0, a variant of Dijkstra can be used to
compute distances for Z.
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Computing distances for Z

e For each vertex v we have

— d(s,v) < nR for all v reachable from s
 Consider a shortest path P for distance function w’ from s to v
 For each of the less than n edges e on P, w(e) <R + R*w’(e)
e S0,d(s,v) <W(P) <nR+R*w’(P)=nR+R*d .(s,v)
 Use that d(s,v) =d,(s,v) + R *d,;(s,v)
» S0, we can use O(m+ nR) algorithm (Dijkstra with
doubly-linked lists) to compute all values d_(v).

40
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Gabow’s algorithm (analysis)

 Recursive step: costs O( m logg L) with
L= L/R |

« SSSP for Z costs O(m + nR) = O(m).

* Note: logg L’ < (logg L) — 1.

* So, Gabow’s algorithm uses O(m logy L)
time.
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Example

191 ‘%‘

223 /116'
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A

Variants: A* and bidirectional search
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A* (simplified exposition)

Practical importance: A* algorithm
Can be explained in terms of height functions

Consider a route planning problem with geographic data, and distances
of arcs at least Euclidian distance of vertices

Suppose we have a single pair shortest path problem, with source s and
target t

Use height function - h(v) = - the Euclidian distance from v to t
(notate: |vt|)

For all arcs (v,w) € E:

— w’(v,w) =w(v,w) - |vt| + |wt| > |vw| - |vt] + |wt| >0
Note: arcs towards target get smaller length and arcs away from target
larger length

Algorithm is faster in practice but still correct
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Bidirectional search

 For asingle pair shortest path problem:

» Start a Dijkstra-search from both sides
simultaneously

» Analysis needed for stopping criterion
 Faster in practice
» Combines nicely with A*
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Bottleneck shortest paths
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Bottleneck shortest path

 Glven: weighted graph G, weight w(e) for
each arc, vertices s, t.

* Problem: find a path from s to t such that
the maximum weight of an arc on the path
IS as small as possible.

— Or, reverse: such that the minimum weight Is as
large as possible: maximum capacity path
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Algorithms

« On directed graphs: O((m+n) log m),

— Or: O((m+n) log L) with L the maximum
absolute value of the weights

— Binary search and DFS

e On undirected graphs: O(m+n) with divide
and conquer strategy
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Bottleneck shortest paths on
undirected graphs

Find the median weight of all weights of edges, say r.
Look to graph G' formed by edges with weight at most r.

If s and t in same connected component of G', then the
bottleneck is at most r: now remove all edges with weight
more than r, and repeat (recursion).

If s and t in different connected components of G': the
bottleneck is larger than r. Now, contract all edges with
weight at most r, and recurse.

T(m) =0O(m) + T(m/2)
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Conclusions
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Conclusions

 Applications
 Several algorithms for shortest paths
— Variants of the problem
— Detection of negative cycles
— Reweighting technique
— Scaling technique

« A*, bidirectional
» Bottleneck shortest paths
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