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insertion heuristics 

– Improvement heuristics, a.o.: 2-opt, 3-opt, Lin-

Kernighan  
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Problem definition 

Applications 
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Problem 

• Instance: n vertices 

(cities), distance 

between every pair of 

vertices 

• Question: Find 

shortest (simple) cycle 

that visits every city 
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Applications 

• Collection and delivery problems 

• Robotics 

• Board drilling 
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NP-complete 

• Instance: cities, distances, K 

• Question: is there a TSP-tour of length at 

most K? 

– Is an NP-complete problem 

– Relation with Hamiltonian Circuit problem 
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Assumptions 

• Lengths are non-negative (or positive) 

• Symmetric: w(u,v) = w(v,u) 

– Not always: painting machine application 

• Triangle inequality: for all x, y, z: 

w(x,y) + w(y,z)  w(x,z) 

• Always valid? 
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If triangle inequality does not hold 

Theorem: If P NP, then there is no polynomial time 
algorithm for TSP without triangle inequality that 
approximates within a ratio c, for any constant c. 

Proof: Suppose there is such an algorithm A. We build a 
polynomial time algorithm for Hamiltonian Circuit (giving 
a contradiction): 

– Take instance G=(V,E) of HC 

– Build instance of TSP:  

• A city for each v  V 

• If (v,w)  E, then d(v,w) = 1, otherwise d(v,w) = nc+1 

– A finds a tour with distance at most nc, if and only if G has a 
Hamiltonian circuit 
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Heuristics and approximations 

• Two types 

– Construction heuristics 

• A tour is built from nothing 

– Improvement heuristics 

• Start with `some’ tour, and continue to change it into 

a better one as long as possible 
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Construction heuristics 
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1st Construction heuristic: 

Nearest neighbor 

• Start at some vertex s; v=s; 

• While not all vertices visited 

– Select closest unvisited neighbor w of v 

– Go from v to w; 

– v=w 

• Go from v to s. 

Can have performance 

ratio O(log n) 



A&N: TSP 12 

Heuristic with ratio 2 

• Find a minimum spanning tree 

• Report vertices of tree in preorder 
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Christofides 

• Make a Minimum Spanning Tree T 

• Set W = {v | v has odd degree in tree T} 

• Compute a minimum weight matching M in 

the graph G[W]. 

• Look at the graph T+M. (Note: Eulerian!) 

• Compute an Euler tour C’ in T+M. 

• Add shortcuts to C’ to get a TSP-tour 
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Ratio 1.5 

• Total length edges 

in T: at most OPT 

• Total length edges 

in matching M: at 

most OPT/2. 

• T+M has length at 

most 3/2 OPT. 

• Use D-inequality. 
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Closest insertion heuristic 

• Build tour by starting with one vertex, and 

inserting vertices one by one. 

• Always insert vertex that is closest to a 

vertex already in tour. 
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Closest insertion heuristic has 

performance ratio 2 

• Build tree T: if v is added to tour, add to T 

edge from v to closest vertex on tour. 

• T is a Minimum Spanning Tree (Prim’s 

algorithm) 

• Total length of T  OPT 

• Length of tour  2* length of T 
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Many variants 

• Closest insertion: insert vertex closest to vertex in the tour 

• Farthest insertion: insert vertex whose minimum distance 
to a node on the cycle is maximum 

• Cheapest insertion: insert the node that can be inserted 
with minimum increase in cost 

– Gives also ratio 2  

– Computationally expensive 

• Random insertion: randomly select a vertex 

• Each time: insert vertex at position that gives minimum 
increase of tour length 
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Cycle merging heuristic 

• Start with n cycles of length 1 

• Repeat: 

– Find two cycles with minimum distance 

– Merge them into one cycle 

• Until 1 cycle with n vertices 

• This has ratio 2: compare with algorithm of 

Kruskal for MST. 
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Savings 

• Cycle merging heuristic where we merge 

tours that provide the largest “savings”: can 

be merged with the smallest additional cost 

/ largest savings 
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Some test results 

• In an overview paper, Junger et al report on tests on set of 
instances (105 – 2392 vertices; city-generated TSP 
benchmarks) 

• Nearest neighbor: 24% away from optimal in average 

• Closest insertion: 20%; 

• Farthest insertion: 10%; 

• Cheapest insertion: 17%;  

• Random Insertion: 11%  

• Preorder of min spanning tress: 38% 

• Christofides: 19% with improvement 11% / 10% 

• Savings method: 10% (and fast) 
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Improvement heuristics 
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Improvement heuristics 

• Start with a tour (e.g., from heuristic) and 
improve it stepwise 

– 2-Opt 

– 3-Opt 

– K-Opt 

– Lin-Kernighan 

– Iterated LK 

– Simulated annealing, … 

Iterative improvement 

Local search 
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Scheme 

• Rule that modifies solution to different 
solution 

• While there is a Rule(sol, sol’) with sol’ a 
better solution than sol 

– Take sol’ instead of sol 

• Cost decrease 

• Stuck in `local minimum’ 

• Can use exponential time in theory… 
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Very simple 

• Node insertion 

– Take a vertex v and put it in a different spot in 

the tour 

• Edge insertion 

– Take two successive vertices v, w and put these 

as edge somewhere else in the tour 
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2-opt 

• Take two edges (v,w) 

and (x,y) and replace 

them by (v,x) and 

(w,y) OR (v,y) and 

(w,x) to get a tour 

again. 

• Costly: part of tour 

should be turned 

around 
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2-Opt improvements 

• Reversing shorter part of the tour 

• Clever search to improving moves 

• Look only to subset of candidate 

improvements 

• Postpone correcting tour 

• Combine with node insertion 

• On R2 : get rid of crossings of tour 
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3-opt 

• Choose three edges from tour 

• Remove them, and combine the three parts 

to a tour in the cheapest way to link them 
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3-opt 

• Costly to find 3-opt improvements: O(n3) 

candidates 

• k-opt: generalizes 3-opt 
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Lin-Kernighan 

• Idea: modifications that are bad can lead to 

enable something good 

• Tour modification: 

– Collection of simple changes 

– Some increase length 

– Total set of changes decreases length 
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LK 

• One LK step: 

– Make sets of edges X = {x1, …, xr}, Y = 

{y1,…,yr} 

• If we replace X by Y in tour then we have another 

tour 

– Sets are built stepwise 

• Repeated until … 

• Variants on scheme possible 
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One LK step 

• Choose vertex t1, and edge x1 = (t1,t2) from tour.  

• i=1 

• Choose edge y1=(t2, t3) not in tour with g1 = w(x1) – w(y1) > 0 (or, as 
large as possible) 

• Repeat a number of times, or until … 

– i++; 

– Choose edge xi = (t2i-1,t2i) from tour, such that 

• xi not one of the edges yj 

• oldtour – X + (t2i,t1) +Y is also a tour 

– if oldtour – X + (t2i,t1) +Y has shorter length than oldtour, then 
take this tour: done 

– Choose edge yi = (t2i, t2i+1) such that 

• gi = w(xi) – w(yi) > 0 

• yi is not one of the edges xj . 

• yi not in the tour 
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Iterated LK 

• Construct a start tour 

• Repeat the following r times: 

– Improve the tour with Lin-Kernighan until not 

possible 

– Do a random 4-opt move that does not increase 

the length with more than 10 percent 

• Report the best tour seen 

Cost much time 

Gives excellent results 
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Other methods 

• Simulated annealing and similar methods 

• Problem specific approaches, special cases 

• Iterated LK combined with treewidth/branchwidth 

approach: 

– Run ILK a few times (e.g., 5) 

– Take graph formed by union of the 5 tours 

– Find minimum length Hamiltonian circuit in graph with 

clever dynamic programming algorithm 
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A dynamic programming algorithm 
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Held-Karp algorithm for TSP 

• O(n22n) algorithm for TSP 

• Uses Dynamic programming 

• Take some starting vertex s 

• For set of vertices R (s  R), vertex w  R, let 

– B(R,w) = minimum length of a path, that 

• Starts in s 

• Visits all vertices in R (and no other vertices) 

• Ends in w 
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TSP: Recursive formulation 

• B({s},s) = 0 

• If |S| > 1, then 

– B(S,x) = minv  S – {x}B(S-{x}, v}) + w(v,x) 

• If we have all B(V,v) then we can solve 

TSP. 

• Gives requested algorithm using DP-

techniques. 
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Conclusions 

• TSP has many applications 

• Also many applications for variants of TSP 

• Heuristics: construction and improvement 

• Further reading:  

– M. Jünger, G. Reinelt, G. Rinaldi, The Traveling 

Salesman Problem, in: Handbooks in Operations 

Research and Management Science, volume 7: Network 

Models, North-Holland Elsevier, 1995. 


