
The Traveling Salesperson

Problem

Algorithms and Networks

A&N: TSP 2

Contents

• TSP and its applications

• Heuristics and approximation algorithms

– Construction heuristics, a.o.: Christofides,

insertion heuristics

– Improvement heuristics, a.o.: 2-opt, 3-opt, Lin-

Kernighan

1

Problem definition

Applications

A&N: TSP 4

Problem

• Instance: n vertices

(cities), distance

between every pair of

vertices

• Question: Find

shortest (simple) cycle

that visits every city

1 2

3 4

4

5

2

2
3

2

1 2

3 4

4

5

2

2
3

2

1 2

3 4

4

5

2

2
3

2

11

A&N: TSP 5

Applications

• Collection and delivery problems

• Robotics

• Board drilling

A&N: TSP 6

NP-complete

• Instance: cities, distances, K

• Question: is there a TSP-tour of length at

most K?

– Is an NP-complete problem

– Relation with Hamiltonian Circuit problem

A&N: TSP 7

Assumptions

• Lengths are non-negative (or positive)

• Symmetric: w(u,v) = w(v,u)

– Not always: painting machine application

• Triangle inequality: for all x, y, z:

w(x,y) + w(y,z)  w(x,z)

• Always valid?

A&N: TSP 8

If triangle inequality does not hold

Theorem: If P NP, then there is no polynomial time
algorithm for TSP without triangle inequality that
approximates within a ratio c, for any constant c.

Proof: Suppose there is such an algorithm A. We build a
polynomial time algorithm for Hamiltonian Circuit (giving
a contradiction):

– Take instance G=(V,E) of HC

– Build instance of TSP:

• A city for each v  V

• If (v,w)  E, then d(v,w) = 1, otherwise d(v,w) = nc+1

– A finds a tour with distance at most nc, if and only if G has a
Hamiltonian circuit

A&N: TSP 9

Heuristics and approximations

• Two types

– Construction heuristics

• A tour is built from nothing

– Improvement heuristics

• Start with `some’ tour, and continue to change it into

a better one as long as possible

2

Construction heuristics

A&N: TSP 11

1st Construction heuristic:

Nearest neighbor

• Start at some vertex s; v=s;

• While not all vertices visited

– Select closest unvisited neighbor w of v

– Go from v to w;

– v=w

• Go from v to s.

Can have performance

ratio O(log n)

A&N: TSP 12

Heuristic with ratio 2

• Find a minimum spanning tree

• Report vertices of tree in preorder

A&N: TSP 13

Christofides

• Make a Minimum Spanning Tree T

• Set W = {v | v has odd degree in tree T}

• Compute a minimum weight matching M in

the graph G[W].

• Look at the graph T+M. (Note: Eulerian!)

• Compute an Euler tour C’ in T+M.

• Add shortcuts to C’ to get a TSP-tour

A&N: TSP 14

Ratio 1.5

• Total length edges

in T: at most OPT

• Total length edges

in matching M: at

most OPT/2.

• T+M has length at

most 3/2 OPT.

• Use D-inequality.

A&N: TSP 15

Closest insertion heuristic

• Build tour by starting with one vertex, and

inserting vertices one by one.

• Always insert vertex that is closest to a

vertex already in tour.

A&N: TSP 16

Closest insertion heuristic has

performance ratio 2

• Build tree T: if v is added to tour, add to T

edge from v to closest vertex on tour.

• T is a Minimum Spanning Tree (Prim’s

algorithm)

• Total length of T  OPT

• Length of tour  2* length of T

A&N: TSP 17

Many variants

• Closest insertion: insert vertex closest to vertex in the tour

• Farthest insertion: insert vertex whose minimum distance
to a node on the cycle is maximum

• Cheapest insertion: insert the node that can be inserted
with minimum increase in cost

– Gives also ratio 2

– Computationally expensive

• Random insertion: randomly select a vertex

• Each time: insert vertex at position that gives minimum
increase of tour length

A&N: TSP 18

Cycle merging heuristic

• Start with n cycles of length 1

• Repeat:

– Find two cycles with minimum distance

– Merge them into one cycle

• Until 1 cycle with n vertices

• This has ratio 2: compare with algorithm of

Kruskal for MST.

A&N: TSP 19

Savings

• Cycle merging heuristic where we merge

tours that provide the largest “savings”: can

be merged with the smallest additional cost

/ largest savings

A&N: TSP 20

Some test results

• In an overview paper, Junger et al report on tests on set of
instances (105 – 2392 vertices; city-generated TSP
benchmarks)

• Nearest neighbor: 24% away from optimal in average

• Closest insertion: 20%;

• Farthest insertion: 10%;

• Cheapest insertion: 17%;

• Random Insertion: 11%

• Preorder of min spanning tress: 38%

• Christofides: 19% with improvement 11% / 10%

• Savings method: 10% (and fast)

3

Improvement heuristics

A&N: TSP 22

Improvement heuristics

• Start with a tour (e.g., from heuristic) and
improve it stepwise

– 2-Opt

– 3-Opt

– K-Opt

– Lin-Kernighan

– Iterated LK

– Simulated annealing, …

Iterative improvement

Local search

A&N: TSP 23

Scheme

• Rule that modifies solution to different
solution

• While there is a Rule(sol, sol’) with sol’ a
better solution than sol

– Take sol’ instead of sol

• Cost decrease

• Stuck in `local minimum’

• Can use exponential time in theory…

A&N: TSP 24

Very simple

• Node insertion

– Take a vertex v and put it in a different spot in

the tour

• Edge insertion

– Take two successive vertices v, w and put these

as edge somewhere else in the tour

A&N: TSP 25

2-opt

• Take two edges (v,w)

and (x,y) and replace

them by (v,x) and

(w,y) OR (v,y) and

(w,x) to get a tour

again.

• Costly: part of tour

should be turned

around

A&N: TSP 26

2-Opt improvements

• Reversing shorter part of the tour

• Clever search to improving moves

• Look only to subset of candidate

improvements

• Postpone correcting tour

• Combine with node insertion

• On R2 : get rid of crossings of tour

A&N: TSP 27

3-opt

• Choose three edges from tour

• Remove them, and combine the three parts

to a tour in the cheapest way to link them

A&N: TSP 28

3-opt

• Costly to find 3-opt improvements: O(n3)

candidates

• k-opt: generalizes 3-opt

A&N: TSP 29

Lin-Kernighan

• Idea: modifications that are bad can lead to

enable something good

• Tour modification:

– Collection of simple changes

– Some increase length

– Total set of changes decreases length

A&N: TSP 30

LK

• One LK step:

– Make sets of edges X = {x1, …, xr}, Y =

{y1,…,yr}

• If we replace X by Y in tour then we have another

tour

– Sets are built stepwise

• Repeated until …

• Variants on scheme possible

A&N: TSP 31

One LK step

• Choose vertex t1, and edge x1 = (t1,t2) from tour.

• i=1

• Choose edge y1=(t2, t3) not in tour with g1 = w(x1) – w(y1) > 0 (or, as
large as possible)

• Repeat a number of times, or until …

– i++;

– Choose edge xi = (t2i-1,t2i) from tour, such that

• xi not one of the edges yj

• oldtour – X + (t2i,t1) +Y is also a tour

– if oldtour – X + (t2i,t1) +Y has shorter length than oldtour, then
take this tour: done

– Choose edge yi = (t2i, t2i+1) such that

• gi = w(xi) – w(yi) > 0

• yi is not one of the edges xj .

• yi not in the tour

A&N: TSP 32

Iterated LK

• Construct a start tour

• Repeat the following r times:

– Improve the tour with Lin-Kernighan until not

possible

– Do a random 4-opt move that does not increase

the length with more than 10 percent

• Report the best tour seen

Cost much time

Gives excellent results

A&N: TSP 33

Other methods

• Simulated annealing and similar methods

• Problem specific approaches, special cases

• Iterated LK combined with treewidth/branchwidth

approach:

– Run ILK a few times (e.g., 5)

– Take graph formed by union of the 5 tours

– Find minimum length Hamiltonian circuit in graph with

clever dynamic programming algorithm

4

A dynamic programming algorithm

A&N: TSP 35

Held-Karp algorithm for TSP

• O(n22n) algorithm for TSP

• Uses Dynamic programming

• Take some starting vertex s

• For set of vertices R (s  R), vertex w  R, let

– B(R,w) = minimum length of a path, that

• Starts in s

• Visits all vertices in R (and no other vertices)

• Ends in w

A&N: TSP 36

TSP: Recursive formulation

• B({s},s) = 0

• If |S| > 1, then

– B(S,x) = minv  S – {x}B(S-{x}, v}) + w(v,x)

• If we have all B(V,v) then we can solve

TSP.

• Gives requested algorithm using DP-

techniques.

A&N: TSP 37

Conclusions

• TSP has many applications

• Also many applications for variants of TSP

• Heuristics: construction and improvement

• Further reading:

– M. Jünger, G. Reinelt, G. Rinaldi, The Traveling

Salesman Problem, in: Handbooks in Operations

Research and Management Science, volume 7: Network

Models, North-Holland Elsevier, 1995.

