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Algorithms and Networks 
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Today 

• Maximum flow problem 

• Variants 

• Applications 

• Briefly: Ford-Fulkerson; min cut max flow 

theorem 

• Preflow push algorithm 

• Lift to front algorithm 



1 

The problem 
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Problem 

• Directed graph G=(V,E) 

• Source s  V, sink t  V. 

• Capacity c(e)  Z+ for each e. 

• Flow: function f: E  N such that 

– For all e: f(e)  c(e) 

– For all v, except s and t: flow into v equals flow out of v 

• Flow value: flow out of s 

• Question: find flow from s to t with maximum 
value 

Variants in 

notation, e.g.: 

Write f(u,v) = -f(v,u) 
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Maximum flow 

• Ford-Fulkerson method 

– Possibly (not likely) exponential time 

– Edmonds-Karp version: O(nm2): augment over 
shortest path from s to t 

• Max Flow Min Cut Theorem 

• Improved algorithms: Preflow push; scaling 

• Applications 

• Variants of the maximum flow problem 

Algoritmiek 
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Variants: 

Multiple sources and sinks 

Lower bounds 
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Variant 

• Multiple sources, 

multiple sinks 

• Possible 

maximum flow 

out of certain 

sources or into 

some sinks 

• Models logistic 

questions 

G 

s1 

sk 

t1 

tr 

s 
t 
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Lower bounds on flow 

• Edges with minimum and maximum 

capacity 

– For all e: l(e)  f(e)  c(e) 

l(e) 

c(e) 
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Flow with Lower Bounds 

• Look for maximum flow with for each e: 

l(e)  f(e)  c(e) 

• Problem solved in two phases 

– First, find admissible flow 

– Then, augment it to a maximum flow 

• Admissible flow: any flow f, with 

– Flow conservation  

• if v {s,t}, flow into v equals flow out of v 

– Lower and upper capacity constraints fulfilled: 

• for each e: l(e)  f(e)  c(e) 

 

Transshipment 
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Finding admissible flow 1 

• First, we transform the question to: find an 

admissible circulation 

• Finding admissible circulation is 

transformed to: finding maximum flow in 

network with new source and new sink 

• Translated back 
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Circulations 

• Given: digraph G, lower bounds l, upper 

capacity bounds c 

• A circulation fulfills: 

– For all v: flow into v equals flow out of v 

– For all (u,v): l(u,v)  f(u,v)  c(u,v) 

• Existence of circulation: first step for 

finding admissible flow 
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Circulation vs. Flow 

• Model flow network 

with circulation 

network: add an arc 

(t,s) with large 

capacity (e.g., sum 

over all c(s,v) ), and 

ask for a circulation 

with f(t,s) as large as 

possible 

s t 

s t 

f (t,s) = value( f ) 

G 

G 
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Finding admissible flow 

• Find admissible circulation in network with 

arc (t,s) 

– Construction: see previous sheet 

• Remove the arc (t,s) and we have an 

admissible flow 
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Finding admissible circulation 

• Is transformed to: finding a maximum flow 

in a new network 

– New source  

– New sink 

– Each arc is replaced by three arcs 
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Finding admissible circulation 

S’ 

T’ 

a b Lower bounds: 0 
c(e)-l(e) 

a b 

l(e) 

c(e) 

l(e) 

l(e) 

Do this for 

each edge 

New source 

New sink 
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Finding admissible flow/circulation 

• Find maximum flow from S’ to T’ 

• If all edges from S’ (and hence all edges to 

T’) use full capacity, we have admissible 

flow: 

– f’(u,v) = f(u,v) + l(u,v) for all (u,v) in G 
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From admissible flow to 

maximum flow 

• Take admissible flow f (in original G) 

• Compute a maximum flow f’ from s to t in Gf 

– Here cf (u,v) = c(u,v) – f(u,v) 

– And cf (v,u) = f(u,v) – l(u,v)  

• If (u,v) and (v,u) both exist in G: add … (details omitted) 

• f + f’ is a maximum flow from s to t that fulfills 

upper and lower capacity constraints 

• Any flow algorithm can be used 



Recap: Maximum flow with  

Lower bounds 
• Find admissible flow f in G: 

– Add the edge (t,s) and obtain G’ 

– Find admissible circulation in G’: 

• Add new supersource s’ and supersink t’ 

• Obtain G’’ by changing each edge as shown three slides ago 

• Compute with any flow algorithm a maximum flow in G’’ 

• Translate back to admissible circulation in G’ 

– Translate back to admissible flow in G by ignoring (t,s) 

• Comput Gf 

• Compute a maximum flow f’ in G’ with any flow algorithm 

• Output f+f’ 
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Applications 
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Applications 

• Logistics (transportation of goods) 

• Matching 

• Matrix rounding problem 

• … 
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Matrix rounding problem 

• p * q matrix of real numbers D = {dij}, with 
row sums ai and column sums bj. 

• Consistent rounding: round every dij up or 
down to integer, such that every row sum 
and column sum equals rounded sum of 
original matrix 

• Can be modeled as flow problem with lower 
and upper bounds on flow through edges 
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t 
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1 
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rounded down, 
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Sum rounded up 

[ bij , bij 
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Reminder: Ford-Fulkerson and the 

min-cut max flow theorem 
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Ford-Fulkerson 

• Residual network Gf 

• Start with 0 flow  

• Repeat 

– Compute residual network 

– Find path P from s to t in residual network 

– Augment flow across P 

Until no such path P exists 
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Max flow min cut theorem 

• s-t-cut: partition vertices in sets S, T such 
that s in S, t in T. Look to edges (v,w) with v 
in S, w in T. 

• Capacity of cut: sum of capacities of edges 
from S to T 

• Flow across cut 

• Theorem: minimum capacity of s-t-cut 
equals maximum flow from s to t. 
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The preflow push algorithm 
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Preflow push 

• Simple implementation: O(n2m) 

• Better implementation: O(n3) 

• Algorithm maintains preflow: some flow 

out of s which doesn’t reach t 

• Vertices have height 

• Flow is pushed to lower vertex 

• Vertices sometimes are lifted 
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Preflow 

• Function f: V * V  R 

– Skew symmetry: f(u,v) = - f(v,u) 

– Capacity constraints: f(u,v)  c(u,v) 

– Notation: f(V,u)  

– For all u, except s: f(V,u)  0 (excess flow) 

– u is overflowing when f(V,u) > 0. 

– Maintain: e(u) = f(V,u). 

Notation from 

Introduction to 

Algorithms 
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Height function 

• h: V  N: 

– h(s) = n 

– h(t) = 0 

– For all (u,v)  Ef (residual network): 

h(u)  h(v)+1 



A&N: Maximum flow 30 

Initialize 

• Set height function h 

– h(s) = n 

– h(t) = 0 

– h(v) = 0 for all v except s 

• for each edge (s,u) do 

– f(s,u) = c(s,u); f(u,s) = – c(s,u) 

– e[u] = c(s,u); 

Do not change 

Initial preflow 
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Basic operation 1: Push 

• Suppose e(u) > 0, cf (u,v)>0, and  
h[u]= h[v]+1 

• Push as much flow across (u,v) as possible 

r = min {e[u], cf (u,v)} 

f(u,v) = f(u,v) + r; 

f(v,u) = – f(u,v); 

e[u] = e[u] – r; 

e[v] = e[v] + r. 
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Basic operation 2: Lift 

• When no push can be done from 

overflowing vertex (except s,t) 

• Suppose e[u]>0, and for all (u,v)  Ef : h[u] 

 h[v], u  s, u  t 

• Set h[u] = 1 + min {h[v] | (u,v)  Ef} 
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Preflow push algorithm 

• Initialize 

• while push or lift operation possible do  

– Select an applicable push or lift operation and 

perform it 

To do: correctness proof and time analysis 
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Lemmas / Invariants 

• If there is an overflowing vertex (except t), 

then a lift or push operation is possible 

• The height of a vertex never decreases 

• When a lift operation is done, the height 

increases by at least one. 

• h remains a height function during the 

algorithm 
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Another invariant and the 

correctness 

• There is no path in Gf from s to t 

– Proof: the height drops by at most one across 

each of the at most n-1 edges of such a path 

• When the algorithm terminates, the preflow 

is a maximum flow from s to t 

– f is a flow, as no vertex except t has excess 

– As Gf has no path from s to t, f is a maximum 

flow 
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Time analysis 1: Lemma 

• If u overflows then there is a simple path 

from u to s in Gf 

• Intuition: flow must arrive from s to u: 

reverse of such flow gives the path 

• Formal proof skipped 



A&N: Maximum flow 37 

Number of lifts 

• For all u: h[u] < 2n 

– h[s] remains n. When vertex is lifted, it has 

excess, hence path to s, with at most n – 1 

edges, each allowing a step in height of at most 

one up. 

• Each vertex is lifted less than 2n times 

• Number of lift operations is less than 2n2 
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Counting pushes 

• Saturating pushes and not saturating pushes 

– Saturating: sends cf(u,v) across (u,v) 

– Non-saturating: sends e[u] < cf(u,v) 

• Number of saturating pushes 

– After saturating push across (u,v), edge (u,v) disappears 
from Gf. 

– Before next push across (u,v), it must be created by 
push across (v,u) 

– Push across (v,u) means that a lift of v must happen 

– At most 2n lifts per vertex: O(n) sat. pushes across edge 

– O(nm) saturating pushes 
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Non-saturating pushes 

• Look at                      

• Initially  = 0. 

•  increases by lifts in total at most 2n2 

•  increases by saturating pushes at most by 2n per push, 
in total O(n2m) 

•  decreases at least one by a non-saturating push across 
(u,v) 

– After push, u does not overflow 

– v may overflow after push 

– h(u) > h(v) 

• At most O(n2m) pushes 

0)(

][
ve

vh
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Algorithm 

• Implement 

– O(n) per lift operation 

– O(1) per push 

• O(n2m) time 
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Preflow-push fastened: 

The lift-to-front algorithm 
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Lift-to-front algorithm 

• Variant of preflow push using O(n3) time 

• Vertices are discharged: 

– Push from edges while possible 

– If still excess flow, lift, and repeat until no excess flow 

• Order in which vertices are discharge:  

– list,  

– discharged vertex placed at top of list 

– Go from left to right through list, until end, then start 

anew 
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Definition and Lemma 

• Edge (u,v) is admissible 

– cf(u,v) > 0, i.e., (u,v)  Ef 

– h(u) = h(v)+1 

• The network formed by the admissible edges is 
acyclic. 

– If there is a cycle, we get a contradiction by looking at 
the heights 

• If (u,v) is admissible and e[u] > 0, we can do a push across 
it. Such a push does not create an admissible edge, but 
(u,v) can become not admissible. 
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Discharge procedure 

• Vertices have adjacency list N[u]. Pointer 

current[u] gives spot in adjacency list. 

• Discharge(u) 

– While e[u] > 0 do 

v = current[u]; 

if v = NIL then {Lift(u); current[u] = head(N[u]);} 

elseif cf(u,v) > 0 and h[u] = h[v]+1 then Push(u,v); 

else current[u] = next-neighbor[v]; 
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Discharge indeed discharges 

• If u is overflowing, then we can do either a 

lift to u, or a push out of u  

• Pushes and Lifts are done when Preflow 

push algorithm conditions are met. 
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Lift-to-front algorithm 

• Maintain linked list L of all vertices except s, t. 

• Lift-to-front(G,s,t) 
– Initialize preflow and L 

– for all v do current[v] = head[N(v)]; 

– u is head of L 

– while u not NIL do  

oldheight = h[u]; 

Discharge(u); 

if h[u] > oldheight then move u to front of list L 

u = next[u]; 
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Remarks 

• Note how we go through L. 

• Often we start again at almost the start of 

L… 

• We end when the entire list is done. 

• For correctness: why do we know that no 

vertex has excess when we are at the end of 

L? 
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A definition: Topological sort 

• A directed acyclic graph is a directed graph 

without cycles. It has a topological sort: 

– An ordering of the vertices : V  {1, 2, … , 

n} (bijective function), such that for all edges 

(v,w)  E: (v) < (w) 
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L is a topological sort of the 

network of admissible edges 

• If (u,v) is an admissible edge, then u is 

before v in the list L. 

– Initially true: no admissible edges 

– A push does not create admissible edges 

– After a lift of u, we place u at the start of L 

• Edges (u,v) will be properly ordered 

• Edges (v,u) will be destroyed 
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Lift-to-front algorithm correctly 

computes a flow 

• The algorithm maintains a preflow. 

• Invariant of the algorithm: all vertices before the 

vertex u in consideration have no excess flow. 

– Initially true. 

– Remains true when u is put at start of L. 

– Any push pushes flow towards the end of L. 

• L is topological sort of network of admissible edges. 

• When algorithm terminates, no vertex in L has 

excess flow. 
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Time analysis - I 

• O(n2) lift operations. (As in preflow push.) 

• O(nm) saturating pushes. 

• Phase of algorithm: steps between two 

times that a vertex is placed at start of L, 

(and before first such and last such event.) 

• O(n2) phases; each handling O(n) vertices. 

• All work except discharges: O(n3). 
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Time of discharging 

• Lifts in discharging: O(n) each, 

O(n3) total 

• Going to next vertex in adjacency 

list 

– O(degree(u)) work between two lifts 

of u 

– O(nm) in total 

• Saturating pushes: O(nm) 

• Non-saturating pushes: only once 

per discharge, so O(n3) in total. 

Conclusion: 

O(n3) time for the 

Lift to front algorithm 
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Conclusions 
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Many other flow algorithms 

• Push-relabel (variant of preflow push) 

O(nm log (n2/m)) 

• Scaling (exercise) 
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A useful theorem 

• Let f be a circulation. Then f is a nonnegative 
linear combination of cycles in G. 

– Proof. Ignore lower bounds. Find a cycle c, with 
minimum flow on c r, and use induction with f – r * c. 

• If f is integer, `integer scalared’ linear 
combination. 

• Corollary: a flow is the linear combination of 
cycles and paths from s to t. 

– Look at the circulation by adding an edge from t to s 
and giving it flow value(f). 
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Next 

• Minimum cost flow 


