Maximum flow

Algorithms and Networks

Today

- Maximum flow problem
- Variants
- Applications
- Briefly: Ford-Fulkerson; min cut max flow theorem
- Preflow push algorithm
- Lift to front algorithm

Universiteit Utrecht

The problem

1

Problem

- Directed graph G=(V,E)
- Source $s \in V$, sink $t \in V$.

Variants in notation, e.g.: Write f(u,v) = -f(v,u)

- Capacity $c(e) \in \mathbb{Z}^+$ for each *e*.
- Flow: function f: $E \rightarrow N$ such that
 - For all e: f(e) \leq c(e)
 - For all v, except s and t: flow into v equals flow out of v
- Flow value: flow out of s
- Question: find flow from *s* to *t* with maximum value

Maximum flow

Algoritmiek

- Ford-Fulkerson method
 - Possibly (not likely) exponential time
 - Edmonds-Karp version: O(*nm*²): augment over shortest path from *s* to *t*
- Max Flow Min Cut Theorem
- Improved algorithms: Preflow push; scaling
- Applications
- Variants of the maximum flow problem

Universiteit Utrecht

Variants: Multiple sources and sinks Lower bounds

1

Variant

- Multiple sources, multiple sinks
- Possible maximum flow out of certain sources or into some sinks
- Models logistic questions

Universiteit Utrecht

Lower bounds on flow

Edges with *minimum* and maximum capacity

- For all $e: l(e) \le f(e) \le c(e)$

$$\begin{array}{c} l(e) \\ c(e) \end{array}$$

Universiteit Utrecht

Flow with Lower Bounds

- Look for maximum flow with for each *e*: $l(e) \le f(e) \le c(e)$
- Problem solved in two phases
 - First, find *admissible* flow
 - Then, augment it to a maximum flow
- Admissible flow: any flow *f*, with
 - Flow conservation
 - if $v \notin \{s,t\}$, flow into v equals flow out of v
 - Lower and upper capacity constraints fulfilled:
 - for each $e: l(e) \le f(e) \le c(e)$

Universiteit Utrecht

A&N: Maximum flow

Transshipment

Finding admissible flow 1

- First, we transform the question to: find an admissible *circulation*
- Finding admissible circulation is transformed to: finding maximum flow in network with new source and new sink
- Translated back

Circulations

- Given: digraph G, lower bounds *l*, upper capacity bounds *c*
- A circulation fulfills:
 - For all v: flow into v equals flow out of v
 - $-\mathbf{F}$ or all (u,v): $l(u,v) \le f(u,v) \le c(u,v)$
- Existence of circulation: first step for finding admissible flow

Circulation vs. Flow

Model flow network with circulation network: add an arc (*t*,*s*) with large capacity (e.g., sum over all c(s, v)), and ask for a circulation with f(t,s) as large as possible

f(t,s) = value(f)

Universiteit Utrecht

Finding admissible flow

• Find admissible circulation in network with arc (*t*,*s*)

– Construction: see previous sheet

• Remove the arc (*t*,*s*) and we have an admissible flow

Finding admissible circulation

- Is transformed to: finding a maximum flow in a new network
 - New source
 - New sink
 - Each arc is replaced by three arcs

Finding admissible circulation

Finding admissible flow/circulation

- Find maximum flow from S' to T'
- If all edges from S' (and hence all edges to T') use full capacity, we have admissible flow:

 $-\mathbf{f}'(u,v) = \mathbf{f}(u,v) + l(u,v) \text{ for all } (u,v) \text{ in } \mathbf{G}$

Universiteit Utrecht

From admissible flow to maximum flow

- Take admissible flow f (in original G)
- Compute a maximum flow f' from s to t in G_f
 - Here $c_f(u,v) = c(u,v) f(u,v)$
 - And $c_f(v, u) = f(u, v) l(u, v)$
 - If (u, v) and (v, u) both exist in G: add ... (details omitted)
- f + f' is a maximum flow from s to t that fulfills upper and lower capacity constraints
- Any flow algorithm can be used

Recap: Maximum flow with Lower bounds

- Find admissible flow f in G:
 - Add the edge (t,s) and obtain G'
 - Find admissible circulation in G':
 - Add new supersource s' and supersink t'
 - Obtain G'' by changing each edge as shown three slides ago
 - Compute with any flow algorithm a maximum flow in G"
 - Translate back to admissible circulation in G'
 - Translate back to admissible flow in G by ignoring (t,s)
- Comput G_f
- Compute a maximum flow f' in G' with any flow algorithm
- Output <mark>f+f</mark>

3

Applications

Applications

- Logistics (transportation of goods)
- Matching

. . .

• Matrix rounding problem

Matrix rounding problem

- p * q matrix of real numbers $D = \{d_{ij}\}$, with row sums a_i and column sums b_i .
- Consistent rounding: round every d_{ij} up or down to integer, such that every row sum and column sum equals rounded sum of original matrix
- Can be modeled as flow problem with lower and upper bounds on flow through edges

Universiteit Utrecht

Universiteit Utrecht

Reminder: Ford-Fulkerson and the min-cut max flow theorem

Ford-Fulkerson

- Residual network G_f
- Start with 0 flow
- Repeat
 - Compute residual network
 - Find path P from *s* to *t* in residual network
 - Augment flow across P
 - Until no such path P exists

Max flow min cut theorem

- *s*-*t*-cut: partition vertices in sets S, T such that *s* in S, *t* in T. Look to edges (*v*, *w*) with *v* in S, *w* in T.
- Capacity of cut: sum of capacities of edges from S to T
- Flow across cut
- **Theorem**: minimum capacity of *s*-*t*-cut equals maximum flow from *s* to *t*.

Universiteit Utrecht

5

The preflow push algorithm

Preflow push

- Simple implementation: $O(n^2m)$
- Better implementation: $O(n^3)$
- Algorithm maintains *preflow*: some flow out of *s* which doesn't reach *t*
- Vertices have *height*
- Flow is pushed to lower vertex
- Vertices sometimes are *lifted*

Universiteit Utrecht

Preflow

Notation from Introduction to Algorithms

- Function f: $V * V \rightarrow \mathbf{R}$
 - Skew symmetry: f(u,v) = -f(v,u)
 - Capacity constraints: $f(u,v) \le c(u,v)$
 - Notation: f(V,u)
 - For all *u*, except s: $f(V,u) \ge 0$ (*excess flow*)
 - -u is *overflowing* when f(V,u) > 0.
 - Maintain: e(u) = f(V,u).

Height function

- h: $V \rightarrow N$:
 - -h(s)=n
 - -h(t)=0
 - For all $(u,v) \in E_f$ (residual network): h(u) ≤ h(v)+1

Initialize

• Set height function h -h(s) = nDo not change -h(t) = 0-h(v) = 0 for all v except s • for each edge (s, u) do -f(s,u) = c(s,u); f(u,s) = -c(s,u)Initial preflow -e[u] = c(s,u);

Universiteit Utrecht

Basic operation 1: Push

- Suppose e(u) > 0, $c_f(u,v) > 0$, and h[u] = h[v] + 1
- Push as much flow across (u,v) as possible $\mathbf{r} = \min \{e[u], c_f(u,v)\}$ $f(u,v) = f(u,v) + \mathbf{r};$ f(v,u) = -f(u,v); $e[u] = e[u] - \mathbf{r};$ $e[v] = e[v] + \mathbf{r}.$

Basic operation 2: Lift

- When no push can be done from overflowing vertex (except s,t)
- Suppose e[u] > 0, and for all $(u, v) \in E_f : h[u] \le h[v], u \neq s, u \neq t$
- Set $h[u] = 1 + \min \{h[v] | (u,v) \in E_f\}$

Preflow push algorithm

- Initialize
- while push or lift operation possible do
 - Select an applicable push or lift operation and perform it

To do: correctness proof and time analysis

Universiteit Utrecht

Lemmas / Invariants

- If there is an overflowing vertex (except *t*), then a lift or push operation is possible
- The height of a vertex never decreases
- When a lift operation is done, the height increases by at least one.
- *h* remains a height function during the algorithm

Another invariant and the correctness

- There is no path in G_f from s to t
 - Proof: the height drops by at most one across
 each of the at most *n*-1 edges of such a path
- When the algorithm terminates, the preflow is a maximum flow from *s* to *t*
 - -f is a flow, as no vertex except *t* has excess
 - As G_f has no path from *s* to *t*, *f* is a maximum flow

Time analysis 1: Lemma

- If *u* overflows then there is a simple path from *u* to *s* in G_f
- Intuition: flow must arrive from *s* to *u*: reverse of such flow gives the path
- Formal proof skipped

Number of lifts

- For all u: h[u] < 2n
 - h[s] remains *n*. When vertex is lifted, it has excess, hence path to *s*, with at most n - 1edges, each allowing a step in height of at most one up.
- Each vertex is lifted less than 2*n* times
- Number of lift operations is less than $2n^2$

Counting pushes

- Saturating pushes and not saturating pushes
 - Saturating: sends $c_f(u,v)$ across (u,v)
 - Non-saturating: sends $e[u] < c_f(u,v)$
- Number of saturating pushes
 - After saturating push across (u,v), edge (u,v) disappears from G_f .
 - Before next push across (u,v), it must be created by push across (v,u)
 - Push across (*v*,*u*) means that a lift of *v* must happen
 - At most 2n lifts per vertex: O(n) sat. pushes across edge
 - O(nm) saturating pushes

Universiteit Utrecht

Non-saturating pushes

• Look at
$$\Phi = \sum_{v \in V} h[v]$$

- Initially $\Phi = 0$. e(v) > 0
- Φ increases by lifts in total at most $2n^2$
- Φ increases by saturating pushes at most by 2n per push, in total $O(n^2m)$
- Φ decreases at least one by a non-saturating push across (u,v)
 - After push, *u* does not overflow
 - v may overflow after push
 - -h(u) > h(v)
- At most $O(n^2m)$ pushes

Universiteit Utrecht

Algorithm

- Implement
 - -O(n) per lift operation
 - O(1) per push
- $O(n^2m)$ time

6

Preflow-push fastened: The lift-to-front algorithm

Lift-to-front algorithm

- Variant of preflow push using $O(n^3)$ time
- Vertices are discharged:
 - Push from edges while possible
 - If still excess flow, lift, and repeat until no excess flow
- Order in which vertices are discharge:
 - <mark>– lis</mark>t,
 - discharged vertex placed at top of list
 - Go from left to right through list, until end, then start anew

Universiteit Utrecht

Definition and Lemma

- Edge (*u*,*v*) is *admissible*
 - $c_f(u,v) > 0$, i.e., $(u,v) \in E_f$
 - h(u) = h(v) + 1
- The network formed by the admissible edges is **acyclic**.
 - If there is a cycle, we get a contradiction by looking at the heights
- If (u,v) is admissible and e[u] > 0, we can do a push across it. Such a push does not create an admissible edge, but (u,v) can become not admissible.

Discharge procedure

- Vertices have adjacency list N[*u*]. Pointer *current*[*u*] gives spot in adjacency list.
- **D**ischarge(u)
 - -While e[*u*] > 0 do

 $\mathbf{v} = current[u];$

if v = NIL then {Lift(*u*); current[*u*] = head(N[*u*]);} elseif $c_f(u,v) > 0$ and h[u] = h[v]+1 then Push(u,v); else current[*u*] = next-neighbor[*v*];

Discharge indeed discharges

- If *u* is overflowing, then we can do either a lift to *u*, or a push out of *u*
- Pushes and Lifts are done when Preflow push algorithm conditions are met.

Lift-to-front algorithm

- Maintain linked list L of all vertices except s, t.
- Lift-to-front(G,*s*,*t*)
 - Initialize preflow and L
 - **for** all v **do** current[v] = head[N(v)];
 - -u is head of L
 - while *u* not NIL do
 - oldheight = h[u];
 - Discharge(u);
 - **if** h[u] > oldheight**then**move*u*to front of list L
 - u = next[u];

Remarks

- Note how we go through L.
- Often we start again at almost the start of L...
- We end when the entire list is done.
- For correctness: why do we know that no vertex has excess when we are at the end of L?

Universiteit Utrecht

A definition: Topological sort

- A directed acyclic graph is a directed graph without cycles. It has a *topological sort*:
 - An ordering of the vertices $\tau: V \rightarrow \{1, 2, ..., n\}$ (bijective function), such that for all edges $(v,w) \in E: \tau(v) < \tau(w)$

L is a topological sort of the network of admissible edges

- If (*u*,*v*) is an admissible edge, then *u* is before *v* in the list L.
 - Initially true: no admissible edges
 - A push does not create admissible edges
 - -A fter a lift of *u*, we place *u* at the start of L
 - Edges (*u*,*v*) will be properly ordered
 - Edges (*v*,*u*) will be destroyed

Lift-to-front algorithm correctly computes a flow

- The algorithm maintains a preflow.
- Invariant of the algorithm: all vertices before the vertex *u* in consideration have no excess flow.
 - Initially true.
 - Remains true when *u* is put at start of *L*.
 - Any push pushes flow towards the end of L.
 - L is topological sort of network of admissible edges.
- When algorithm terminates, no vertex in L has excess flow.

Time analysis - I

- $O(n^2)$ lift operations. (As in preflow push.)
- O(*nm*) saturating pushes.
- Phase of algorithm: steps between two times that a vertex is placed at start of *L*, (and before first such and last such event.)
- $O(n^2)$ phases; each handling O(n) vertices.
- All work except discharges: $O(n^3)$.

Time of discharging

- Lifts in discharging: O(n) each,
 O(n³) total
- Going to next vertex in adjacency list
 - O(degree(u)) work between two lifts of u
 - O(*nm*) in total
- Saturating pushes: O(*nm*)
- Non-saturating pushes: only once per discharge, so $O(n^3)$ in total.

Universiteit Utrecht

A&N: Maximum flow

Conclusion: O(n³) time for the Lift to front algorithm

Conclusions

7

Many other flow algorithms

- Push-relabel (variant of preflow push)
 O(*nm* log (*n*²/*m*))
- Scaling (exercise)

Universiteit Utrecht

A useful theorem

- Let *f* be a circulation. Then *f* is a nonnegative linear combination of cycles in G.
 - Proof. Ignore lower bounds. Find a cycle c, with minimum flow on c r, and use induction with f r * c.
- If *f* is integer, `*integer scalared*' linear combination.
- Corollary: a flow is the linear combination of cycles and paths from *s* to *t*.
 - Look at the circulation by adding an edge from t to s and giving it flow value(f).

Universiteit Utrecht

Next

• Minimum cost flow

Universiteit Utrecht