Maximum flow

Algorithms and Networks

Today

Maximum flow problem
Variants
Applications

Briefly: Ford-Fulkerson; min cut max flow
theorem

Preflow push algorithm
Lift to front algorithm

i iteit Utrecht A&N: Maximum flow

The problem

= bl = Universiteit Utrecht

Problem

Variants in
notation, e.g.:

Directed graph G=(V,E) Write f(u,v) = -f(v,u)

Sources € V,sinkt e V.
Capacity c(e) € Z* for each e.
Flow: function f: E — N such that

— For all e: f(e) < c(e)

— For all v, except s and t: flow into v equals flow out of v
Flow value: flow out of s

Question: find flow from s to t with maximum
value

Universiteit Utrecht A&N: Maximum flow 4

Maximum flow

Algoritmiek
Ford-Fulkerson method JOTTEE

— Possibly (not likely) exponential time

— Edmonds-Karp version: O(nm?): augment over
shortest path from stot

Max Flow Min Cut Theorem

Improved algorithms: Preflow push; scaling
Applications
Variants of the maximum flow problem

i iteit Utrecht A&N: Maximum flow 5

Variants:
Multiple sources and sinks
L_ower bounds

= Universiteit Utrecht

Variant

« Multiple sources,
multiple sinks

e Possible
maximum flow
out of certain
sources or Into
some sinks

« Models logistic
guestions

= Universiteit Utrecht

I

S1
/2 —
. G
e
\st

W

A&N: Maximum flow

|_ower bounds on flow

 Edges with minimum and maximum
capacity
— For all e: I(e) <f(e) < c(e)

‘ I(Ce()e) ‘

Universiteit Utrecht A&N: Maximum flow

Flow with Lower Bounds

e Look for maximum flow with for each e:
I(e) <f(e) <c(e) _
« Problem solved in two phases Transshipment I

— First, find admissible flow
— Then, augment it to a maximum flow

« Admissible flow: any flow f, with
— Flow conservation
 if vg{s,t}, flow into v equals flow out of v

— Lower and upper capacity constraints fulfilled:
 foreache: I(e) <f(e) <c(e)

: Universiteit Utrecht A&N: Maximum flow 9

Finding admissible flow 1

* First, we transform the question to: find an
admissible circulation

 Finding admissible circulation Is
transformed to: finding maximum flow In
network with new source and new sink

 Translated back

i iteit Utrecht A&N: Maximum flow

10

Circulations

 Given: digraph G, lower bounds I, upper
capacity bounds c

» A circulation fulfills:
— For all v: flow into v equals flow out of v
— For all (u,v): I(u,v) <f(u,v) <c(u,v)

 Existence of circulation: first step for
finding admissible flow

i iteit Utrecht A&N: Maximum flow

11

Circulation vs. Flow

 Model flow network
with circulation
network: add an arc

(t,s) with large
capacity (e.g., sum
over all c(s,v)), and
ask for a circulation
with f(t,s) as large as

possible
f(t,s) = value(f)

i iteit Utrecht A&N: Maximum flow 12

Finding admissible flow

 Find admissible circulation in network with
arc (t,s)
— Construction: see previous sheet

» Remove the arc (t,s) and we have an
admissible flow

i iteit Utrecht A&N: Maximum flow

13

Finding admissible circulation

« |s transformed to: finding a maximum flow
In a new network

— New source
— New sink
— Each arc is replaced by three arcs

i iteit Utrecht A&N: Maximum flow

14

Finding admissible circulation
I(e)

[
»

c(e)

New sink
Do this for | ‘
each edge
‘ Lower bounds: 0
c(e)-l(e
New source
CO

Universiteit Utrecht A&N: Maximum flow

15

Finding admissible flow/circulation

e Find maximum flow from S’ to T~

 [fall edges from S’ (and hence all edges to

T’) use full capacity, we have admissible
flow:

— f2(u,v) = f(u,v) + I(u,v) for all (u,v) iIn G

i iteit Utrecht A&N: Maximum flow

16

From admissible flow to
maximum flow

Take admissible flow f (in original G)

Compute a maximum flow /" from sto t in G;
— Here ¢, (u,v) = c(u,v) — f(u,v)
— And ¢; (v,u) = f(u,v) — I(u,v)

 If (u,v) and (v,u) both exist in G: add ... (details omitted)

f+ 77 1s a maximum flow from s to t that fulfills
upper and lower capacity constraints

Any flow algorithm can be used

: Universiteit Utrecht A&N: Maximum flow

17

Recap: Maximum flow with
Lower bounds

« Find admissible flow f in G:
— Add the edge (t,s) and obtain G’
— Find admissible circulation in G’:
* Add new supersource s’ and supersink t’
e Obtain G’’ by changing each edge as shown three slides ago
« Compute with any flow algorithm a maximum flow in G’
e Translate back to admissible circulation in G’
— Translate back to admissible flow in G by ignoring (t,s)
« Comput G;
* Compute a maximum flow f* in G’ with any flow algorithm
e Qutput {+f

: Universiteit Utrecht A&N: Maximum flow

18

Applications

Applications

Logistics (transportation of goods)
Matching
Matrix rounding problem

i iteit Utrecht A&N: Maximum flow

20

Matrix rounding problem

* p * g matrix of real numbers D = {d;;}, with
row sums a; and column sums b;.

» Consistent rounding: round every d;; up or
down to integer, such that every row sum
and column sum equals rounded sum of
original matrix

« Can be modeled as flow problem with lower
and upper bounds on flow through edges

i iteit Utrecht A&N: Maximum flow 21

Row sum

rounded down, |,

Sum rounded up
& !

[16,17]

Column sum
rounded down,
Sum rounded up

° 2
28

Universiteit Utrecht A&N: Maximum flow 22

A

Reminder: Ford-Fulkerson and the
min-cut max flow theorem

= Universiteit Utrecht

Ford-Fulkerson

* Residual network G;
o Start with O flow

* Repeat
— Compute residual network
— Find path P from s to t in residual network
— Augment flow across P
Until no such path P exists

: Universiteit Utrecht A&N: Maximum flow

24

Max flow min cut theorem

s-t-cut: partition vertices in sets S, T such
thatsin S, tin T. Look to edges (v,w) with v
InS,winT.

Capacity of cut: sum of capacities of edges
from S to

Flow across cut

Theorem: minimum capacity of s-t-cut
equals maximum flow from s to t.

i iteit Utrecht A&N: Maximum flow 25

The preflow push algorithm

= Universiteit Utrecht

Preflow push

Simple implementation: O(n’m)
Better implementation: O(n?)

Algorithm maintains preflow: some flow
out of s which doesn’t reach t

Vertices have height
Flow Is pushed to lower vertex
Vertices sometimes are lifted

i iteit Utrecht A&N: Maximum flow

27

Preflow Notation from

Introduction to

. Algorith
e Functionf:V*V —-> R JOrInmS

— Skew symmetry: f(u,v) = - f(v,u)

— Capacity constraints: f(u,v) < c(u,v)

— Notation: f(V,u)

— For all u, except s: f(V,u) > 0 (excess flow)
— u Is overflowing when f(V,u) > 0.

— Maintain: e(u) = f(\V,u).

Universiteit Utrecht A&N: Maximum flow 28

Height function

* h:V —> N:
—h(s) =n
—h(t)=0

— For all (u,v) € E; (residual network):
n(u) < h(v)+1

Universiteit Utrecht A&N: Maximum flow

29

Initialize

« Set height function h

—h(s) =n R '
A(t) = 0 . ——Donotchange

— h(v) =0 for all v except s
 for each edge (s,u) do

— f(s,u) = c(s,u); f(u,s) =—c(s,u) nitial preflow
— e[u] = c(s,u);

i iteit Utrecht A&N: Maximum flow

30

Basic operation 1: Push

e Suppose e(u) >0, c;(u,v)>0, and
h[u]= h[v]+1
» Push as much flow across (u,v) as possible
r = min {ef[u], ¢;(u,v)}
f(u,v) =f(uyv) +r,;
f(v,u) =—f(u,v);
efu] =efu] —r;
e[v] =e[v] +r.

Universiteit Utrecht A&N: Maximum flow

31

Basic operation 2: Lift

« When no push can be done from
overflowing vertex (except s,t)

 Suppose e[u]>0, and for all (u,v) € E;: h[u]
<h[v],u#s,u=t

+ Set h[u] = 1 + min {h[v] | (u,v) € E}

Universiteit Utrecht A&N: Maximum flow 32

Preflow push algorithm
-+ Initialize

 while push or lift operation possible do

— Select an applicable push or lift operation and
perform it

To do: correctness proof and time analysis I

Universiteit Utrecht A&N: Maximum flow 33

| emmas / Invariants

If there Is an overflowing vertex (except t),
then a lift or push operation is possible

The height of a vertex never decreases

When a lift operation is done, the height
Increases by at least one.

h remains a height function during the
algorithm

i iteit Utrecht A&N: Maximum flow

34

Another invariant and the
correctness

« There is no path in G; fromsto t

— Proof: the height drops by at most one across
each of the at most n-1 edges of such a path

» When the algorithm terminates, the preflow
IS a maximum flow from s to t
— fi1s a flow, as no vertex except t has excess

— As G; has no path from s to t, f is a maximum
flow

: Universiteit Utrecht A&N: Maximum flow 35

Time analysis 1: Lemma

* |f u overflows then there Is a simple path
fromutosinG;

o |Intuition: flow must arrive from s to u:
reverse of such flow gives the path

« Formal proof skipped

i iteit Utrecht A&N: Maximum flow

36

Number of lifts

 Forall u: hju] <2n

— h[s] remains n. When vertex is lifted, it has
excess, hence path to s, with at mostn — 1
edges, each allowing a step in height of at most
one up.

» Each vertex is lifted less than 2n times
« Number of lift operations is less than 2n?

i iteit Utrecht A&N: Maximum flow 37

Counting pushes

» Saturating pushes and not saturating pushes
— Saturating: sends c{(u,v) across (u,v)
— Non-saturating: sends efu] < c¢«(u,v)

« Number of saturating pushes

— After saturating push across (u,v), edge (u,v) disappears
from G;.

— Before next push across (u,v), it must be created by
push across (v,u)

— Push across (v,u) means that a lift of v must happen
— At most 2n lifts per vertex: O(n) sat. pushes across edge
— O(nm) saturating pushes

& Universiteit Utrecht A&N: Maximum flow 38

Non-saturating pushes

Lookat P = Z h[v]
Initially ® = 0. €(V)>0
®d increases by lifts in total at most 2n?

® Increases by saturating pushes at most by 2n per push,
in total O(n’m)

® decreases at least one by a non-saturating push across
(u,v)

— After push, u does not overflow

— v may overflow after push

— h(u) > h(v)
At mgst O(n’m) pushes

:: Universiteit Utrecht A&N: Maximum flow

39

Algorithm

* Implement
— O(n) per lift operation
— O(1) per push

« O(n’m) time

i iteit Utrecht A&N: Maximum flow

40

Preflow-push fastened:
The lift-to-front algorithm

Lift-to-front algorithm

 Variant of preflow push using O(n3) time

 Vertices are discharged:
— Push from edges while possible
— If still excess flow, lift, and repeat until no excess flow

 QOrder in which vertices are discharge:
— list,
— discharged vertex placed at top of list

— Go from left to right through list, until end, then start
anew

: Universiteit Utrecht A&N: Maximum flow 42

Definition and Lemma

« Edge (u,v) Is admissible
— c{u,v) >0, 1.e., (uv) € E;
— h(u) = h(v)+1

» The network formed by the admissible edges is
acyclic.

— If there is a cycle, we get a contradiction by looking at
the heights

e |If (u,v) is admissible and e[u] > 0, we can do a push across
It. Such a push does not create an admissible edge, but
(u,v) can become not admissible.

: Universiteit Utrecht A&N: Maximum flow 43

Discharge procedure

 Vertices have adjacency list N[u]. Pointer
currentf[u] gives spot in adjacency list.
* Discharge(u)
— While e[u] >0 do
VvV = current[u];
If v = NIL then {Lift(u); currentfu] = head(N[u]);}
elseif c{(u,v) > 0 and h[u] = h[v]+1 then Push(u,v);
else current[u] = next-neighbor|[v];

i iteit Utrecht A&N: Maximum flow 44

Discharge indeed discharges

e If uis overflowing, then we can do either a
lift to u, or a push out of u

* Pushes and Lifts are done when Preflow
push algorithm conditions are met.

iversiteit Utrecht A&N: Maximum flow

45

Lift-to-front algorithm

« Maintain linked list L of all vertices except s, t.

 Lift-to-front(G,s,t)

— Initialize preflow and L

— for all v do current[v] = head[N(V)];

— uis head of L

— while u not NIL do
oldheight = h[u];
Discharge(u);
If h[u] > oldheight then move u to front of list L
u = next[u];

: Universiteit Utrecht A&N: Maximum flow

46

Remarks

Note how we go through L.

Often we start again at almost the start of
L...

We end when the entire list is done.

For correctness: why do we know that no
vertex has excess when we are at the end of

L?

i iteit Utrecht A&N: Maximum flow 47

A definition: Topological sort

« A directed acyclic graph is a directed graph
without cycles. It has a topological sort:

— An ordering of the verticest: V — {1, 2, ...,
n} (bijective function), such that for all edges
(v,w) € E: 1(v) < t(W)

i iteit Utrecht A&N: Maximum flow 48

L Is a topological sort of the
network of admissible edges

o If (u,v) Is an admissible edge, then u Is
before v in the list L.
— Initially true: no admissible edges
— A push does not create admissible edges

— After a lift of u, we place u at the start of L
 Edges (u,v) will be properly ordered
 Edges (v,u) will be destroyed

i iteit Utrecht A&N: Maximum flow

49

Lift-to-front algorithm correctly
computes a flow

« The algorithm maintains a preflow.

 |nvariant of the algorithm: all vertices before the
vertex u in consideration have no excess flow.
— Initially true.
— Remains true when u is put at start of L.
— Any push pushes flow towards the end of L.
L istopological sort of network of admissible edges.
* When algorithm terminates, no vertex in L has
excess flow.

: Universiteit Utrecht A&N: Maximum flow

50

Time analysis - |

« O(n?) lift operations. (As in preflow push.)
« O(nm) saturating pushes.

» Phase of algorithm: steps between two
times that a vertex is placed at start of L,
(and before first such and last such event.)

« O(n?) phases; each handling O(n) vertices.
 All work except discharges: O(n3).

i iteit Utrecht A&N: Maximum flow

o1

Time of discharging

Lifts in discharging: O(n) each,
O(n®) total

Going to next vertex in adjacency (:30”9'“9"0”:
list O(n3) time for the
— O(degree(u)) work between two lifts Lift to front algorlthm

of u
— O(nm) in total
Saturating pushes: O(nm)

Non-saturating pushes: only once
per discharge, so O(n3) in total.

Universiteit Utrecht A&N: Maximum flow 52

Conclusions

= bl = Universiteit Utrecht

Many other flow algorithms

 Push-relabel (variant of preflow push)
O(nm log (n%/m))
 Scaling (exercise)

Universiteit Utrecht A&N: Maximum flow

54

A useful theorem

» Letfbe acirculation. Then f Is a nonnegative
linear combination of cycles in G.

— Proof. Ignore lower bounds. Find a cycle ¢, with
minimum flow on ¢ r, and use induction with f —r * c.

 |Iffis integer, ‘integer scalared’ linear
combination.

» Corollary: a flow is the linear combination of
cycles and paths from s to t.

— Look at the circulation by adding an edge fromtto s
and giving it flow value(f).

: Universiteit Utrecht A&N: Maximum flow

95

Next

« Minimum cost flow

: Universiteit Utrecht A&N: Maximum flow

56

