
Maximum flow

Algorithms and Networks

A&N: Maximum flow 2

Today

• Maximum flow problem

• Variants

• Applications

• Briefly: Ford-Fulkerson; min cut max flow

theorem

• Preflow push algorithm

• Lift to front algorithm

1

The problem

A&N: Maximum flow 4

Problem

• Directed graph G=(V,E)

• Source s V, sink t V.

• Capacity c(e) Z+ for each e.

• Flow: function f: E N such that

– For all e: f(e) c(e)

– For all v, except s and t: flow into v equals flow out of v

• Flow value: flow out of s

• Question: find flow from s to t with maximum
value

Variants in

notation, e.g.:

Write f(u,v) = -f(v,u)

A&N: Maximum flow 5

Maximum flow

• Ford-Fulkerson method

– Possibly (not likely) exponential time

– Edmonds-Karp version: O(nm2): augment over
shortest path from s to t

• Max Flow Min Cut Theorem

• Improved algorithms: Preflow push; scaling

• Applications

• Variants of the maximum flow problem

Algoritmiek

1

Variants:

Multiple sources and sinks

Lower bounds

A&N: Maximum flow 7

Variant

• Multiple sources,

multiple sinks

• Possible

maximum flow

out of certain

sources or into

some sinks

• Models logistic

questions

G

s1

sk

t1

tr

s
t

A&N: Maximum flow 8

Lower bounds on flow

• Edges with minimum and maximum

capacity

– For all e: l(e) f(e) c(e)

l(e)

c(e)

A&N: Maximum flow 9

Flow with Lower Bounds

• Look for maximum flow with for each e:

l(e) f(e) c(e)

• Problem solved in two phases

– First, find admissible flow

– Then, augment it to a maximum flow

• Admissible flow: any flow f, with

– Flow conservation

• if v {s,t}, flow into v equals flow out of v

– Lower and upper capacity constraints fulfilled:

• for each e: l(e) f(e) c(e)

Transshipment

A&N: Maximum flow 10

Finding admissible flow 1

• First, we transform the question to: find an

admissible circulation

• Finding admissible circulation is

transformed to: finding maximum flow in

network with new source and new sink

• Translated back

A&N: Maximum flow 11

Circulations

• Given: digraph G, lower bounds l, upper

capacity bounds c

• A circulation fulfills:

– For all v: flow into v equals flow out of v

– For all (u,v): l(u,v) f(u,v) c(u,v)

• Existence of circulation: first step for

finding admissible flow

A&N: Maximum flow 12

Circulation vs. Flow

• Model flow network

with circulation

network: add an arc

(t,s) with large

capacity (e.g., sum

over all c(s,v)), and

ask for a circulation

with f(t,s) as large as

possible

s t

s t

f (t,s) = value(f)

G

G

A&N: Maximum flow 13

Finding admissible flow

• Find admissible circulation in network with

arc (t,s)

– Construction: see previous sheet

• Remove the arc (t,s) and we have an

admissible flow

A&N: Maximum flow 14

Finding admissible circulation

• Is transformed to: finding a maximum flow

in a new network

– New source

– New sink

– Each arc is replaced by three arcs

A&N: Maximum flow 15

Finding admissible circulation

S’

T’

a b Lower bounds: 0
c(e)-l(e)

a b

l(e)

c(e)

l(e)

l(e)

Do this for

each edge

New source

New sink

A&N: Maximum flow 16

Finding admissible flow/circulation

• Find maximum flow from S’ to T’

• If all edges from S’ (and hence all edges to

T’) use full capacity, we have admissible

flow:

– f’(u,v) = f(u,v) + l(u,v) for all (u,v) in G

A&N: Maximum flow 17

From admissible flow to

maximum flow

• Take admissible flow f (in original G)

• Compute a maximum flow f’ from s to t in Gf

– Here cf (u,v) = c(u,v) – f(u,v)

– And cf (v,u) = f(u,v) – l(u,v)

• If (u,v) and (v,u) both exist in G: add … (details omitted)

• f + f’ is a maximum flow from s to t that fulfills

upper and lower capacity constraints

• Any flow algorithm can be used

Recap: Maximum flow with

Lower bounds
• Find admissible flow f in G:

– Add the edge (t,s) and obtain G’

– Find admissible circulation in G’:

• Add new supersource s’ and supersink t’

• Obtain G’’ by changing each edge as shown three slides ago

• Compute with any flow algorithm a maximum flow in G’’

• Translate back to admissible circulation in G’

– Translate back to admissible flow in G by ignoring (t,s)

• Comput Gf

• Compute a maximum flow f’ in G’ with any flow algorithm

• Output f+f’

A&N: Maximum flow 18

3

Applications

A&N: Maximum flow 20

Applications

• Logistics (transportation of goods)

• Matching

• Matrix rounding problem

• …

A&N: Maximum flow 21

Matrix rounding problem

• p * q matrix of real numbers D = {dij}, with
row sums ai and column sums bj.

• Consistent rounding: round every dij up or
down to integer, such that every row sum
and column sum equals rounded sum of
original matrix

• Can be modeled as flow problem with lower
and upper bounds on flow through edges

A&N: Maximum flow 22

t

Row

1

Row

p

Col

1

Col

q

[16,17]

Row sum

rounded down,

Sum rounded up
Column sum

rounded down,

Sum rounded up

[bij , bij

s

4

Reminder: Ford-Fulkerson and the

min-cut max flow theorem

A&N: Maximum flow 24

Ford-Fulkerson

• Residual network Gf

• Start with 0 flow

• Repeat

– Compute residual network

– Find path P from s to t in residual network

– Augment flow across P

Until no such path P exists

A&N: Maximum flow 25

Max flow min cut theorem

• s-t-cut: partition vertices in sets S, T such
that s in S, t in T. Look to edges (v,w) with v
in S, w in T.

• Capacity of cut: sum of capacities of edges
from S to T

• Flow across cut

• Theorem: minimum capacity of s-t-cut
equals maximum flow from s to t.

5

The preflow push algorithm

A&N: Maximum flow 27

Preflow push

• Simple implementation: O(n2m)

• Better implementation: O(n3)

• Algorithm maintains preflow: some flow

out of s which doesn’t reach t

• Vertices have height

• Flow is pushed to lower vertex

• Vertices sometimes are lifted

A&N: Maximum flow 28

Preflow

• Function f: V * V R

– Skew symmetry: f(u,v) = - f(v,u)

– Capacity constraints: f(u,v) c(u,v)

– Notation: f(V,u)

– For all u, except s: f(V,u) 0 (excess flow)

– u is overflowing when f(V,u) > 0.

– Maintain: e(u) = f(V,u).

Notation from

Introduction to

Algorithms

A&N: Maximum flow 29

Height function

• h: V N:

– h(s) = n

– h(t) = 0

– For all (u,v) Ef (residual network):

h(u) h(v)+1

A&N: Maximum flow 30

Initialize

• Set height function h

– h(s) = n

– h(t) = 0

– h(v) = 0 for all v except s

• for each edge (s,u) do

– f(s,u) = c(s,u); f(u,s) = – c(s,u)

– e[u] = c(s,u);

Do not change

Initial preflow

A&N: Maximum flow 31

Basic operation 1: Push

• Suppose e(u) > 0, cf (u,v)>0, and
h[u]= h[v]+1

• Push as much flow across (u,v) as possible

r = min {e[u], cf (u,v)}

f(u,v) = f(u,v) + r;

f(v,u) = – f(u,v);

e[u] = e[u] – r;

e[v] = e[v] + r.

A&N: Maximum flow 32

Basic operation 2: Lift

• When no push can be done from

overflowing vertex (except s,t)

• Suppose e[u]>0, and for all (u,v) Ef : h[u]

 h[v], u s, u t

• Set h[u] = 1 + min {h[v] | (u,v) Ef}

A&N: Maximum flow 33

Preflow push algorithm

• Initialize

• while push or lift operation possible do

– Select an applicable push or lift operation and

perform it

To do: correctness proof and time analysis

A&N: Maximum flow 34

Lemmas / Invariants

• If there is an overflowing vertex (except t),

then a lift or push operation is possible

• The height of a vertex never decreases

• When a lift operation is done, the height

increases by at least one.

• h remains a height function during the

algorithm

A&N: Maximum flow 35

Another invariant and the

correctness

• There is no path in Gf from s to t

– Proof: the height drops by at most one across

each of the at most n-1 edges of such a path

• When the algorithm terminates, the preflow

is a maximum flow from s to t

– f is a flow, as no vertex except t has excess

– As Gf has no path from s to t, f is a maximum

flow

A&N: Maximum flow 36

Time analysis 1: Lemma

• If u overflows then there is a simple path

from u to s in Gf

• Intuition: flow must arrive from s to u:

reverse of such flow gives the path

• Formal proof skipped

A&N: Maximum flow 37

Number of lifts

• For all u: h[u] < 2n

– h[s] remains n. When vertex is lifted, it has

excess, hence path to s, with at most n – 1

edges, each allowing a step in height of at most

one up.

• Each vertex is lifted less than 2n times

• Number of lift operations is less than 2n2

A&N: Maximum flow 38

Counting pushes

• Saturating pushes and not saturating pushes

– Saturating: sends cf(u,v) across (u,v)

– Non-saturating: sends e[u] < cf(u,v)

• Number of saturating pushes

– After saturating push across (u,v), edge (u,v) disappears
from Gf.

– Before next push across (u,v), it must be created by
push across (v,u)

– Push across (v,u) means that a lift of v must happen

– At most 2n lifts per vertex: O(n) sat. pushes across edge

– O(nm) saturating pushes

A&N: Maximum flow 39

Non-saturating pushes

• Look at

• Initially = 0.

• increases by lifts in total at most 2n2

• increases by saturating pushes at most by 2n per push,
in total O(n2m)

• decreases at least one by a non-saturating push across
(u,v)

– After push, u does not overflow

– v may overflow after push

– h(u) > h(v)

• At most O(n2m) pushes

0)(

][
ve

vh

A&N: Maximum flow 40

Algorithm

• Implement

– O(n) per lift operation

– O(1) per push

• O(n2m) time

6

Preflow-push fastened:

The lift-to-front algorithm

A&N: Maximum flow 42

Lift-to-front algorithm

• Variant of preflow push using O(n3) time

• Vertices are discharged:

– Push from edges while possible

– If still excess flow, lift, and repeat until no excess flow

• Order in which vertices are discharge:

– list,

– discharged vertex placed at top of list

– Go from left to right through list, until end, then start

anew

A&N: Maximum flow 43

Definition and Lemma

• Edge (u,v) is admissible

– cf(u,v) > 0, i.e., (u,v) Ef

– h(u) = h(v)+1

• The network formed by the admissible edges is
acyclic.

– If there is a cycle, we get a contradiction by looking at
the heights

• If (u,v) is admissible and e[u] > 0, we can do a push across
it. Such a push does not create an admissible edge, but
(u,v) can become not admissible.

A&N: Maximum flow 44

Discharge procedure

• Vertices have adjacency list N[u]. Pointer

current[u] gives spot in adjacency list.

• Discharge(u)

– While e[u] > 0 do

v = current[u];

if v = NIL then {Lift(u); current[u] = head(N[u]);}

elseif cf(u,v) > 0 and h[u] = h[v]+1 then Push(u,v);

else current[u] = next-neighbor[v];

A&N: Maximum flow 45

Discharge indeed discharges

• If u is overflowing, then we can do either a

lift to u, or a push out of u

• Pushes and Lifts are done when Preflow

push algorithm conditions are met.

A&N: Maximum flow 46

Lift-to-front algorithm

• Maintain linked list L of all vertices except s, t.

• Lift-to-front(G,s,t)
– Initialize preflow and L

– for all v do current[v] = head[N(v)];

– u is head of L

– while u not NIL do

oldheight = h[u];

Discharge(u);

if h[u] > oldheight then move u to front of list L

u = next[u];

A&N: Maximum flow 47

Remarks

• Note how we go through L.

• Often we start again at almost the start of

L…

• We end when the entire list is done.

• For correctness: why do we know that no

vertex has excess when we are at the end of

L?

A&N: Maximum flow 48

A definition: Topological sort

• A directed acyclic graph is a directed graph

without cycles. It has a topological sort:

– An ordering of the vertices : V {1, 2, … ,

n} (bijective function), such that for all edges

(v,w) E: (v) < (w)

A&N: Maximum flow 49

L is a topological sort of the

network of admissible edges

• If (u,v) is an admissible edge, then u is

before v in the list L.

– Initially true: no admissible edges

– A push does not create admissible edges

– After a lift of u, we place u at the start of L

• Edges (u,v) will be properly ordered

• Edges (v,u) will be destroyed

A&N: Maximum flow 50

Lift-to-front algorithm correctly

computes a flow

• The algorithm maintains a preflow.

• Invariant of the algorithm: all vertices before the

vertex u in consideration have no excess flow.

– Initially true.

– Remains true when u is put at start of L.

– Any push pushes flow towards the end of L.

• L is topological sort of network of admissible edges.

• When algorithm terminates, no vertex in L has

excess flow.

A&N: Maximum flow 51

Time analysis - I

• O(n2) lift operations. (As in preflow push.)

• O(nm) saturating pushes.

• Phase of algorithm: steps between two

times that a vertex is placed at start of L,

(and before first such and last such event.)

• O(n2) phases; each handling O(n) vertices.

• All work except discharges: O(n3).

A&N: Maximum flow 52

Time of discharging

• Lifts in discharging: O(n) each,

O(n3) total

• Going to next vertex in adjacency

list

– O(degree(u)) work between two lifts

of u

– O(nm) in total

• Saturating pushes: O(nm)

• Non-saturating pushes: only once

per discharge, so O(n3) in total.

Conclusion:

O(n3) time for the

Lift to front algorithm

7

Conclusions

A&N: Maximum flow 54

Many other flow algorithms

• Push-relabel (variant of preflow push)

O(nm log (n2/m))

• Scaling (exercise)

A&N: Maximum flow 55

A useful theorem

• Let f be a circulation. Then f is a nonnegative
linear combination of cycles in G.

– Proof. Ignore lower bounds. Find a cycle c, with
minimum flow on c r, and use induction with f – r * c.

• If f is integer, `integer scalared’ linear
combination.

• Corollary: a flow is the linear combination of
cycles and paths from s to t.

– Look at the circulation by adding an edge from t to s
and giving it flow value(f).

A&N: Maximum flow 56

Next

• Minimum cost flow

