Matching

Algorithms and Networks

Universiteit Utrecht

This lecture

- Matching: problem statement and applications
- Bipartite matching
- Matching in arbitrary undirected graphs: Edmonds algorithm
- Perfect matchings in regular bipartite graphs
 - Schrijvers algorithm
 - Edge coloring and classroom scheduling application
- Diversion: generalized tic-tac-toe

Problem and applications

1

Universiteit Utrecht

Matching

- Set of edges $M \subseteq E$ such that no vertex is endpoint of more than one edge.
- Maximal matching
 - No $e \notin E$ with M $\cup \{e\}$ also a matching
- Maximum matching
 - Matching with |M| as large as possible
- Perfect matching
 - $-|\mathbf{M}| = n/2$: each vertex endpoint of edge in M.

Cost versions

- Each edge has cost; look for perfect matching with minimum cost
- Also polynomial time solvable, but harder

Universiteit Utrecht

Problems

- Given graph G, find
 - Maximal matching: easy (greedy algorithm)
 - Maximum matching
 - Polynomial time; not easy.
 - Important easier case: bipartite graphs
 - Perfect matching
 - Special case of maximum matching
 - A theorem for regular bipartite graphs and Schrijver's algorithm

Applications

- Personnel assignment
 - Tasks and competences
- Classroom assignment
- Scheduling
- Opponents selection for sport competitions

Universiteit Utrecht

Application: matching moving objects

- Moving objects, seen at two successive time moments
- Which object came from where?

Universiteit Utrecht

2

Bipartite matching

Universiteit Utrecht

Bipartite graphs: using maximum flow algorithms

- Finding maximum matching in bipartite graphs:
 - Model as flow problem, and solve it: make sure algorithm finds integral flow.

Technique works for variants too

- Minimum cost perfect matching in bipartite graphs
 - Model as mincost flow problem
- b-matchings in bipartite graphs
 - Function b: V \rightarrow N.
 - Look for set of edges M, with each v endpoint of exactly b(v) edges in M.

Steps by Ford-Fulkerson on the bipartite graph

• M-augmenting path:

in a flow augmentation step

3

Edmonds algorithm: matching in (possibly non-bipartite) undirected graphs

Universiteit Utrecht

A theorem that also works when the graph is not bipartite

Theorem. Let M be a matching in graph G. M is a maximum matching, if and only if there is no M-augmenting path.

- If there is an M-augmenting path, then M is not a maximum matching.
- Suppose M is not a maximum matching. Let N be a larger matching. Look at $N*M = N \cup M N \cap M$.
 - Every node in N*M has degree 0, 1, 2: collection of paths and cycles. All cycles alternatingly have edge from N and from M.
 - There must be a path in N*M with more edges from N than from M: this is an augmenting path.

Algorithm of Edmonds

• Finds maximum matching in a graph in polynomial time

Universiteit Utrecht

Jack Edmonds

Jack Edmonds

Definitions

- M-alternating walk:
 - (Possibly not simple) path with edges alternating in M, and not M.
- M-flower
 - M-alternating walk that starts in an unmatched vertex, and ends as:

Finding an M-augmenting path or an M-flower – I

- Let X be the set of unmatched vertices.
- Let Y be the set of vertices with an edge not in M to a vertex in X.
- Build digraph D = (V,A) with
 - $-A = \{ (u,v) \mid \text{there is an } x \text{ with } \{u,x\} \in E-M \text{ and } \{x,v\} \in M \}.$
- Find a shortest walk P from a vertex in X to a vertex in Y of length at least 1. (BFS in D.)
- Take P': P, followed by an edge to X.
- P' is M-alternating walk between two unmatched vertices.

Universiteit Utrecht

Finding M-augmenting path or M-flower – II

Two cases:

- P' is a simple path: it is an M-augmenting path
- P' is not simple. Look to start of P' until the first time a vertex is visited for the second time.
 - This is an M-flower:
 - Cycle-part of walk cannot be of even size, as it then can be removed and we have a shorter walk in D.

Algorithmic idea

- Start with some matching M, and find either M-augmenting path or M-blossom.
- If we find an M-augmenting path:
 - Augment M, and obtain matching of one larger size; repeat.
- If we find an M-blossom, we *shrink* it, and obtain an equivalent smaller problem; recurs.

Shrinking M-blossoms

- Let B be a set of vertices in G.
- **G/B** is the graph, obtained from G by contracting B to a single vertex.
 - M/B: those edges in M that are not entirely on B.

Universiteit Utrecht

Theorem

- **Theorem**: Let B be an M-blossom. Then M is a maximum size matching in G, if and only if M/B is a maximum size matching in G/B.
 - Suppose M/B is not max matching in G/B. Let P be M/Baugmenting path in G/B.
 - P does not traverse the vertex representing B: P also M-augmenting path in G: M not max matching in G.
 - P traverses B: case analysis helps to construct M-augmenting path in G.
 - Suppose M not max matching in G. Change M, such that vertex on M-blossom not endpoint of M.

Universiteit Utrecht

Proof (continued)

- Take M-augmenting path P in G.
- If P does not intersect B then P also M/Baugmenting path, M/B not maximum matching.
- Otherwise, assume P does not start in B, otherwise reverse P.
 - Now, use start of P to get M/B augmenting path.

Subroutine

- Given: Graph G, matching M
- *Question*: Find M-augmenting path if it exists.
 - Let X be the vertices not endpoint of edge in M.
 - Build D, and test if there is an M-alternating walk P from X to X of positive length. (Using Y, etc.)
 - If no such walk exists: M is maximum matching.
 - If P is a path: output P.
 - If P is not a path:
 - Find M-blossom B on P.
 - Shrink B, and recourse on G/B and M/B.
 - If G/B has no M/B augmenting path, then M is maximum matching.
 - Otherwise, expand M/B-augmenting path to an M-augmenting path.

Universiteit Utrecht

Edmonds algorithm

- A maximum matching can be found in $O(n^2m)$ time.
 - Start with empty (or any) matching, and repeat improving it with M-augmenting paths until this stops.
 - -O(n) iterations. Recursion depth is O(n); work per recursive call O(m).
- A perfect matching in a graph can be found in $O(n^2m)$ time, if it exists.

Improvements

- Better analysis and data structures gives $O(n^3)$ algorithm.
- Faster is possible: $O(n^{1/2} m)$ time.
- Minimum cost matchings with more complicated structural ideas.

Universiteit Utrecht

Matching in regular bipartite graphs

Universiteit Utrecht

Regular bipartite graphs

- Regular = all vertices have the same degree
- Say *d* is the degree of all vertices
- Theorem (proof follows): each regular bipartite graph has a perfect matching
- Schrijver's algorithm: finds such a perfect matching quickly
- Coming: a nice application for scheduling classrooms and lessons

A simple non-constructive proof of a well known theorem

Theorem. Each regular bipartite graph has a perfect matching.

Proof:

- Construct flow model of G. Set flow of edges from s, or to t to 1, and other edges flow to 1/d.
- This flow has value n/2, which is optimal.
- Ford-Fulkerson will find flow of value n/2; which corresponds to perfect matching.

Universiteit Utrecht

Perfect matchings in regular bipartite graphs

- Schrijver's algorithm to find one:
 - Each edge e has a weight w(e).
 - Initially all weights are 1.
 - Let G_w denote the graph formed by the edges of positive weight.
 - While G_w has a circuit
 - Take such a circuit C (which must have even length).
 - Split C into two matchings M and N, with $w(M) \ge w(N)$.
 - Increase the weight of each edge in M by 1.
 - Decrease the weight of each edge in N by 1.

Universiteit Utrecht

On the algorithm

- Let each vertex have degree d.
- Invariant: the sum of the weights of the incident edges of a vertex is *d*.
- At termination: no circuit in G_w , and by the invariant, it follows G_w must be a perfect matching.

Universiteit Utrecht

Time to find circuits

• Finding circuits:

- Keep a path P with edges of weight between 1 and d-1
- Let v be last vertex on P.
- *v* must have edge not on P with weight between 1 and d-1, say $\{v,x\}$.
- If x on P: we have a circuit.
 - Apply step on circuit.
 - Remove circuit from P, and work with smaller path.
- Otherwise, add $\{v, x\}$ to P, and repeat
- O(|C|) per circuit, plus O(n+m) additional overhead.

Time analysis

- Look at the sum over all edges of $w(e)^2$.
- Each improvement over a cycle C increases this sum by at least |C|.
- Initially m, never larger than nd^2 .
- So, total time $O(nd^2) = O(dm)$.

Universiteit Utrecht

Sum of squares increases by |C|

 $\sum \psi(e) + 1 + \sum \psi(e) - 1 =$ $\rho \in M$ $\rho \in N$ $\sum (w(e)^{2} + \sum (w(e)^{2} + 2\sum w(e) - 2\sum w(e) + |M \cup N| \geq 1)$ e∈M $\rho \subset N$ $\rho \in M$ $\rho \subset N$ $\sum \langle \psi(e) \rangle + \sum \langle \psi(e) \rangle + |M \cup N|$ $\rho \in N$ *e*⊂M

5

An application of matching in regular bipartite graphs: Edge coloring and classroom schedules

Universiteit Utrecht

Edge coloring and classroom schedules

- Teachers
- Class
- Some teachers should teach some classes but:
 - No teacher more than one class at a time
 - No class more than one lesson at the time
 - How many hours needed???

	Jansen	Petersen	Klaassen
1b	Х		
2a			Х
2b		Х	

	Jansen	Petersen	Klaassen
1b	Х	1-2	2-3
2a	1-2	2-3	Х
2b	2-3	Х	1-2

Universiteit Utrecht

Edge coloring model

- Take bipartite graph with vertices for teachers and for classes
- Look for a coloring of the edges such that no vertex has two incident edges with the same color.
- What is the minimum number of colors needed?
 - Lower bound: maximum degree. (Interpretation!)
 - We can attain the lower bound with help of matchings!!

Universiteit Utrecht

A theorem

- Let G be a bipartite graph with maximum degree d. Then G has an edge coloring with d colors.
 - Step 1: Make G regular by adding vertices and edges.
 - Step 2: Repeatedly find a matching and remove it.

Universiteit Utrecht

Making G regular

- Suppose G has vertex sets V_1 and V_2 with edges only between V_1 and V_2 . (Usually called: *color classes*).
- If $|V_1| > |V_2|$ then add $|V_1| |V_2|$ isolated vertices to $|V_2|$.
- If $|V_2| > |V_1|$ then add $|V_2| |V_1|$ isolated vertices to $|V_1|$.
- While not every vertex in $V_1 \cup V_2$ has degree *d*:
 - Find a vertex v in V_1 of degree less than $d \leftarrow Must$
 - Find a vertex w in V_2 of degree less than $d \leftarrow --$
- exist

- Add the edge $\{v, w\}$ to the graph.

Universiteit Utrecht

Edge coloring a regular graph

- Say G' is regular of degree d.
- For i = 1 to d do
 - Find a perfect matching M in G'.
 - Give all edges in M color *i*.
 - Remove all edges in M from G'. (Note that G' stays regular!)

Final step

- Take the edge coloring c of G'. Color G in the same way: G is subgraph of G.
- Time: carrying out *d* times a perfect matching algorithm in a regular graph:
 - $-O(nd^3)$ if we use Schrijver's algorithm.
 - Can be done faster by other algorithms.

6

Diversion: multidimensional tic-tactoe

Universiteit Utrecht

Trivial drawing strategies in multidimensional tic-tac-toe

- Tic-tac-toe
- Generalizations
 - More dimensions
 - Larger board size
- Who has a winning strategy?
 Either first player has winning strategy, or second player has drawing strategy

Trivial drawing strategy

- If lines are long enough: pairing of squares such that each line has a pair
- If player 1 plays in a pair, then player 2 plays to other square in pair

V	i	a	a	f
j	b	h	u	b
c	i		g	c
d	u	h	d	f
j	e	e	g	v

Trivial drawing strategies and generalized matchings

- Bipartite graph: line-vertices and square-vertices; edge when square is part of line
- Look for set of edges M, such that:
 - Each line-vertex is incident to two edges in M
 - Each square-vertex is incident to at most one edge in M
- There exists such a set of edges M, if and only if there is a trivial drawing strategy (of the described type).

Consequences

- Testing if trivial drawing strategy exists and finding one if so can be done efficiently (flow algorithm).
- *n* by *n* by ... by *n* tic-tac-toe (*d*-dimensional) has a trivial drawing strategy if *n* is at least 2*3^d-1
 - A square belongs to at most 3^d-1 lines.
 - Results from matching theory (see next dia) can be used

Technicalities

- Take a graph with two vertices per line, and one vertex per square, with an edge if the square belongs to the line
- Max degree is $max(n, 2*3^d-1)$
- This graph has a matching that matches all line vertices gives the desired strategy
 - Proof: add edges and vertices to make a regular
 bipartite graph of degree n and take a perfect matching
 in this graph

Universiteit Utrecht

Conclusions

7

Universiteit Utrecht

Conclusion

- Many applications of matching! Often bipartite...
- Algorithms for finding matchings:
 - Bipartite: flow models
 Bipartite, regular: Schrijver
 - General: with M-augmenting paths and blossomshrinking
- Minimum cost matching can also be solved in polynomial time: more complex algorithm
 - Min cost matching on bipartite graphs is solved using min cost flow

