
Matching 

Algorithms and Networks 



Algorithms and Networks: Matching 2 

This lecture 

• Matching: problem statement and applications 

• Bipartite matching 

• Matching in arbitrary undirected graphs: Edmonds 

algorithm 

• Perfect matchings in regular bipartite graphs 

– Schrijvers algorithm 

– Edge coloring and classroom scheduling application 

• Diversion: generalized tic-tac-toe 



1 

Problem and applications 



Algorithms and Networks: Matching 4 

Matching 

• Set of edges M  E such that no vertex is 
endpoint of more than one edge. 

• Maximal matching 

– No e E with M  {e} also a matching 

• Maximum matching 

– Matching with |M| as large as possible 

• Perfect matching 

– |M| = n/2: each vertex endpoint of edge in M. 



Algorithms and Networks: Matching 5 

Cost versions 

• Each edge has cost; look for perfect 

matching with minimum cost 

• Also polynomial time solvable, but harder 



Algorithms and Networks: Matching 6 

Problems 

• Given graph G, find 

– Maximal matching: easy (greedy algorithm) 

– Maximum matching 

• Polynomial time; not easy. 

• Important easier case: bipartite graphs 

– Perfect matching 

• Special case of maximum matching 

• A theorem for regular bipartite graphs and 
Schrijver’s algorithm 



Algorithms and Networks: Matching 7 

Applications 

• Personnel assignment 

– Tasks and competences 

• Classroom assignment 

• Scheduling 

• Opponents selection for sport competitions 



Algorithms and Networks: Matching 8 

Application: matching moving 

objects 

• Moving objects, seen 

at two successive time 

moments 

• Which object came 

from where? 



2 

Bipartite matching  



Algorithms and Networks: Matching 10 

Bipartite graphs: using maximum 

flow algorithms 

• Finding maximum matching in bipartite 

graphs: 

– Model as flow problem, and solve it: make sure 

algorithm finds integral flow. 

s t 

Capacities 1 



Algorithms and Networks: Matching 11 

Technique works for variants too 

• Minimum cost perfect matching in bipartite 

graphs 

– Model as mincost flow problem 

• b-matchings in bipartite graphs 

– Function b: V  N. 

– Look for set of edges M, with each v endpoint 

of exactly b(v) edges in M. 



Algorithms and Networks: Matching 12 

Steps by Ford-Fulkerson on the 

bipartite graph 

• M-augmenting path: 

unmatched 
becomes 

in a flow augmentation step 



3 

Edmonds algorithm: 

 matching in (possibly non-bipartite) 

undirected graphs 



Algorithms and Networks: Matching 14 

A theorem that also works when 

the graph is not bipartite 
Theorem. Let M be a matching in graph G. M is a 

maximum matching, if and only if there is no M-
augmenting path. 

– If there is an M-augmenting path, then M is not a 
maximum matching. 

– Suppose M is not a maximum matching. Let N be a 
larger matching. Look at N*M = N  M – N  M. 

• Every node in N*M has degree 0, 1, 2: collection of paths and 
cycles. All cycles alternatingly have edge from N and from M. 

• There must be a path in N*M with more edges from N than 
from M: this is an augmenting path. 



Algorithms and Networks: Matching 15 

Algorithm of Edmonds 

• Finds maximum matching in a graph in 

polynomial time 



Algorithms and Networks: Matching 16 

Jack Edmonds 



Algorithms and Networks: Matching 17 

Jack Edmonds 



Algorithms and Networks: Matching 18 
M-blossom 

Definitions 

• M-alternating walk:  

– (Possibly not simple) path with edges 
alternating in M, and not M. 

• M-flower 

– M-alternating walk that starts in an unmatched 
vertex, and ends as: 

 



Algorithms and Networks: Matching 19 

Finding an M-augmenting path or 

an M-flower – I  
• Let X be the set of unmatched vertices. 

• Let Y be the set of vertices with an edge not in M to a 

vertex in X. 

• Build digraph D = (V,A) with  

– A = { (u,v) | there is an x with {u,x}  E-M and {x,v}  M}. 

• Find a shortest walk P from a vertex in X to a vertex in Y 

of length at least 1. (BFS in D.) 

• Take P’: P, followed by an edge to X. 

• P’ is M-alternating walk between two unmatched vertices. 



Algorithms and Networks: Matching 20 

Finding M-augmenting path or 

M-flower – II 
Two cases: 

• P’ is a simple path: it is an M-augmenting path 

• P’ is not simple. Look to start of P’ until the first time a 

vertex is visited for the second time. 

– This is an M-flower: 

• Cycle-part of walk cannot be of even size, as it then can be 

removed and we have a shorter walk in D.  



Algorithms and Networks: Matching 21 

Algorithmic idea 

• Start with some matching M, and find either 
M-augmenting path or M-blossom. 

• If we find an M-augmenting path: 

– Augment M, and obtain matching of one larger 
size; repeat. 

• If we find an M-blossom, we shrink it, and 
obtain an equivalent smaller problem; 
recurs. 

 



Algorithms and Networks: Matching 22 

Shrinking M-blossoms 

• Let B be a set of vertices in G. 

• G/B is the graph, obtained from G by 

contracting B to a single vertex. 

– M/B: those edges in M that are not entirely on 

B. 



Algorithms and Networks: Matching 23 

Theorem 

• Theorem: Let B be an M-blossom. Then M is a maximum 
size matching in G, if and only if M/B is a maximum size 
matching in G/B. 

– Suppose M/B is not max matching in G/B. Let P be M/B-
augmenting path in G/B. 

• P does not traverse the vertex representing B: P also M-augmenting  
path in G: M not max matching in G. 

• P traverses B: case analysis helps to construct M-augmenting path in 
G. 

– Suppose M not max matching in G. Change M, such that vertex on 
M-blossom not endpoint of M.  



Algorithms and Networks: Matching 24 



Algorithms and Networks: Matching 25 



Algorithms and Networks: Matching 26 

Proof (continued) 

• Take M-augmenting path P in G.  

• If P does not intersect B then P also M/B-
augmenting path, M/B not maximum 
matching. 

• Otherwise, assume P does not start in B, 
otherwise reverse P. 

– Now, use start of P to get M/B augmenting 
path.  



Algorithms and Networks: Matching 27 

Subroutine 
• Given: Graph G, matching M 

• Question: Find M-augmenting path if it exists. 

– Let X be the vertices not endpoint of edge in M. 

– Build D, and test if there is an M-alternating walk P from X to X of 
positive length. (Using Y, etc.) 

– If no such walk exists: M is maximum matching. 

– If P is a path: output P. 

– If P is not a path: 

• Find M-blossom B on P.  

• Shrink B, and recourse on G/B and M/B. 

• If G/B has no M/B augmenting path, then M is maximum 
matching. 

• Otherwise, expand M/B-augmenting path to an M-augmenting 
path. 



Algorithms and Networks: Matching 28 

Edmonds algorithm 

• A maximum matching can be found in 
O(n2m) time. 

– Start with empty (or any) matching, and repeat 
improving it with M-augmenting paths until 
this stops. 

– O(n) iterations. Recursion depth is O(n); work 
per recursive call O(m). 

• A perfect matching in a graph can be found 
in O(n2m) time, if it exists. 



Algorithms and Networks: Matching 29 

Improvements 

• Better analysis and data structures gives 

O(n3) algorithm.  

• Faster is possible: O(n1/2 m) time. 

• Minimum cost matchings with more 

complicated structural ideas. 



4 

Matching in regular bipartite graphs 



Algorithms and Networks: Matching 31 

Regular bipartite graphs 

• Regular = all vertices have the same degree 

• Say d is the degree of all vertices 

• Theorem (proof follows): each regular 
bipartite graph has a perfect matching 

• Schrijver’s algorithm: finds such a perfect 
matching quickly 

• Coming: a nice application for scheduling 
classrooms and lessons 



Algorithms and Networks: Matching 32 

A simple non-constructive proof 

of a well known theorem 

Theorem. Each regular bipartite graph has a 

perfect matching. 

Proof: 

– Construct flow model of G. Set flow of edges 

from s, or to t to 1, and other edges flow to 1/d. 

– This flow has value n/2, which is optimal. 

– Ford-Fulkerson will find flow of value n/2; 

which corresponds to perfect matching. 



Algorithms and Networks: Matching 33 

Perfect matchings in regular 

bipartite graphs 

• Schrijver’s algorithm to find one: 

– Each edge e has a weight w(e). 

– Initially all weights are 1. 

– Let Gw denote the graph formed by the edges of 

positive weight. 

– While Gw has a circuit 

• Take such a circuit C (which must have even length). 

• Split C into two matchings M and N, with w(M)  w(N). 

• Increase the weight of each edge in M by 1. 

• Decrease the weight of each edge in N by 1. 



Algorithms and Networks: Matching 34 

On the algorithm 

• Let each vertex have degree d. 

• Invariant: the sum of the weights of the 

incident edges of a vertex is d. 

• At termination: no circuit in Gw, and by the 

invariant, it follows Gw must be a perfect 

matching. 

 



Algorithms and Networks: Matching 35 

Time to find circuits 

• Finding circuits: 

– Keep a path P with edges of weight between 1 and d – 1 

– Let v be last vertex on P. 

– v must have edge not on P with weight between 1 and 
 d – 1, say {v,x}. 

– If x on P: we have a circuit. 

• Apply step on circuit. 

• Remove circuit from P, and work with smaller path. 

– Otherwise, add {v,x} to P, and repeat 

• O(|C|) per circuit, plus O(n+m) additional overhead. 



Algorithms and Networks: Matching 36 

Time analysis 

• Look at the sum over all edges of w(e)2. 

• Each improvement over a cycle C increases 

this sum by at least |C|. 

• Initially m, never larger than nd2. 

• So, total time O(nd2) = O(dm). 



Algorithms and Networks: Matching 37 

NeMe

ewew
22

1)(1)(

Ne NeMeMe

NMewewewew ||)(2)(2)()(
22

NeMe

NMewew ||)()(
22

Sum of squares increases by |C| 



5 

An application of matching in regular 

bipartite graphs: 

Edge coloring and classroom schedules 



Algorithms and Networks: Matching 39 

Edge coloring and classroom 

schedules 
• Teachers 

• Class 

• Some teachers should 
teach some classes 
but: 

– No teacher more than 
one class at a time 

– No class more than one 
lesson at the time 

– How many hours 
needed??? 

Jansen Petersen Klaassen 

1b X 

2a X 

2b X 



Algorithms and Networks: Matching 40 

Jansen Petersen Klaassen 

1b X 1-2 2-3 

2a 1-2 2-3 X 

2b 2-3 X 1-2 



Algorithms and Networks: Matching 41 

Edge coloring model 

• Take bipartite graph with vertices for teachers and 

for classes 

• Look for a coloring of the edges such that no 

vertex has two incident edges with the same color. 

• What is the minimum number of colors needed? 

– Lower bound: maximum degree. (Interpretation!) 

– We can attain the lower bound with help of matchings!! 



Algorithms and Networks: Matching 42 

A theorem 

• Let G be a bipartite graph with maximum 

degree d. Then G has an edge coloring with 

d colors. 

– Step 1: Make G regular by adding vertices and 

edges. 

– Step 2: Repeatedly find a matching and remove 

it. 



Algorithms and Networks: Matching 43 

Making G regular 

• Suppose G has vertex sets V1 and V2 with edges only 

between V1 and V2. (Usually called: color classes). 

• If |V1| > |V2| then add |V1| - |V2| isolated vertices to |V2| . 

• If |V2| > |V1| then add |V2| - |V1| isolated vertices to |V1| . 

• While not every vertex in V1  V2 has degree d: 

– Find a vertex v in V1 of degree less than d 

– Find a vertex w in V2 of degree less than d 

– Add the edge {v,w} to the graph. 

 

Must 

exist 



Algorithms and Networks: Matching 44 

Edge coloring a regular graph 

• Say G’ is regular of degree d. 

• For i = 1 to d do 

– Find a perfect matching M in G’. 

– Give all edges in M color i. 

– Remove all edges in M from G’.  (Note that G’ 

stays regular!) 



Algorithms and Networks: Matching 45 

Final step 

• Take the edge coloring c of G’. Color G in 

the same way: G is subgraph of G. 

• Time: carrying out d times a perfect 

matching algorithm in a regular graph: 

– O(nd3) if we use Schrijver’s algorithm. 

– Can be done faster by other algorithms. 



6 

Diversion: multidimensional tic-tac-

toe 



Algorithms and Networks: Matching 47 

Trivial drawing strategies 

in multidimensional tic-tac-toe 

• Tic-tac-toe 

• Generalizations  

– More dimensions 

– Larger board size 

• Who has a winning strategy? 

– Either first player has winning strategy, or 

second player has drawing strategy 



Algorithms and Networks: Matching 48 

Trivial drawing strategy 

• If lines are long 

enough: pairing of 

squares such that each 

line has a pair 

• If player 1 plays in a 

pair, then player 2 

plays to other square 

in pair 

v i a a f 

j b h u b 

c i g c 

d u h d f 

j e e g v 



Algorithms and Networks: Matching 49 

Trivial drawing strategies and 

generalized matchings 

• Bipartite graph: line-vertices and square-vertices; 

edge when square is part of line 

• Look for set of edges M, such that: 

– Each line-vertex is incident to two edges in M 

– Each square-vertex is incident to at most one edge in M 

• There exists such a set of edges M, if and only if 

there is a trivial drawing strategy (of the described 

type). 



Algorithms and Networks: Matching 50 

Consequences 

• Testing if trivial drawing strategy exists and 

finding one if so can be done efficiently (flow 

algorithm). 

• n by n by …by n tic-tac-toe (d-dimensional) has a 

trivial drawing strategy if n is at least 2*3d-1 

– A square belongs to at most 3d-1 lines. 

– Results from matching theory (see next dia) can be used 



Technicalities 

• Take a graph with two vertices per line, and 

one vertex per square, with an edge if the 

square belongs to the line 

• Max degree is max(n, 2*3d-1)  

• This graph has a matching that matches all line 

vertices – gives the desired strategy 

– Proof: add edges and vertices to make a regular 

bipartite graph of degree n and take a perfect matching 

in this graph 

Algorithms and Networks: Matching 51 



7 

Conclusions 



Algorithms and Networks: Matching 53 

Conclusion 

• Many applications of matching! Often bipartite… 

• Algorithms for finding matchings: 

– Bipartite: flow models 
Bipartite, regular: Schrijver 

– General: with M-augmenting paths and blossom-
shrinking 

• Minimum cost matching can also be solved in 
polynomial time: more complex algorithm 

– Min cost matching on bipartite graphs is solved using 
min cost flow 


