The Stable Marriage Problem

Algorithms and Networks

Universiteit Utrecht

The stable marriage problem

- Story: there are *n* men and *n* women, which are unmarried. Each has a preference list on the persons of the opposite sex
- Does there exist and can we find a stable matching (stable marriage): a matching of men and women, such that there is no pair of a man and a woman who both prefer each other above their partner in the matching?

Universiteit Utrecht

Application

- Origin: assignment of medical students to hospitals (for internships)
 - Students list hospitals in order of preference
 - Hospitals list students in order of preference

Universiteit Utrecht

Example

- Arie: Betty Ann Cindy
- Bert: Ann Cindy Betty
- Carl: Ann Cindy Betty
- Ann: Bert Arie Carl
- Betty: Arie Carl Bert
- Cindy: Bert Arie Carl

- Stable matching: (Arie,Betty), (Bert,Ann), (Carl,Cindy)
- Matching (Arie,Ann), (Bert,Betty), (Carl, Cindy) is not stable, e.g., Arie and Betty prefer each other above given partner
- Blocking pair

Remark

"Local search" approach does not need to terminate
SOAP-SERIES-ALGORITHM
While there is a blocking pair
Do Switch the blocking pair
– Can go on for ever!
– So, we need something else…

Universiteit Utrecht

Result

- Gale/Stanley algorithm: finds always a stable matching
 - Input: list of men, women, and their preference list
 - Output: stable matching

Universiteit Utrecht

The algorithm

- Fix some ordering on the men
- Repeat until everyone is matched
 - Let X be the first unmatched man in the ordering
 - Find woman Y such that Y is the most desirable woman in X's list such that Y is unmatched, or Y is currently matched to a Z and X is more preferable to Y than Z.
 - Match X and Y; possible this turns Z to be unmatched

Questions: Does this terminate? How fast? Does this give a stable matching?

Termination and number of steps

- Once a woman is matched, she stays matched (her partner can change).
- When the partner of a woman changes, this is to a more preferable partner for her: at most n 1 times.
- Every step, either an unmatched woman becomes matched, or a matched woman changes partner: at most n^2 steps.

Stability of final matching

- Suppose final matching is not stable.
- Take:
 - Arie is matched to Ann,
 - Bert is matched to Betty,
 - Arie prefers Betty to Ann,
 - Betty prefers Arie to Bert.
- So: Betty is before Ann in the preference list of Arie, but Arie is not matched to Betty. Two cases:

Universiteit Utrecht

- When Arie considers Betty, she has a partner (say) Carl preferable to Arie: Carl is also preferable to Bert, but in the algorithm woman can get only more preferable partners, contradiction.
- When Arie considers Betty, she is free, but Arie is later replaced by someone preferable to Arie. Again, Betty can never end up with Bert.

Comments

- A stable matching exists and can be found in polynomial time
- Consider the greedy algorithm:
 - Start with any matching, and make switches when a pair prefers each other to their current partner
 - This algorithm does not need to terminate
- Controversy: the algorithm is better for the men: hospitals in the application

Man optimal stable matchings

Theorem

- 1. All possible executions of the Gale-Shapley algorithm give the same stable matching.
 - A proof of this follows
- 2. In this matching, the men have the best partner they can have in any stable matching.
- 3. In this matching, the women have the worst partner they can have in any stable matching.

Proof

- Suppose the algorithm gives matching M.
- Suppose there is a stable matching M' with man *m* matched to *w*' in M', and to *w* in M, with *m* preferring *w*' over *w*.
- Look at run of algorithm that produces M. w' has rejected m at some point.
- Of all such *m*, *w* and *w'*, take a triple such that the rejection of *m* by *w'* happens first.
- Suppose w' prefers m' to m, as reason for the rejection.
- *m*'must prefer *w*' to his partner in M': see next slide
- Thus *m*', *w*' is a *blocking pair* in M': M' not stable; contradiction.
- So, all men are matched to the woman that appears in a stable matching that they prefer most.
 - Unique solution

Universiteit Utrecht

m' Prefers w'

- *m*' is matched in M' with w''
- If *m*' prefers *w*'' to *w*':
 - In execution of algorithm, we have
 - At some point w'' must reject m' as later m' is matched with w' (while w' rejects m at that step).
 - This is earlier than the rejection of w' of m
 - Now *m'*, *w'* and *w''* form an earlier choice for the triple.

Stable roommates

- Variant of problem with boys that must share two-person rooms (US campus)
- Each has preference list
- Stable marriage problem is special case

Not always a stable matching for the stable roommates

- Consider the following instance:
 - Person Arie: Carl Bert Dirk
 - Person Bert: Arie Carl Dirk
 - Person Carl: Bert Arie Dirk
 - Person Dirk: no difference
- Each matching is unstable e.g., (Arie,Bert)(Carl,Dirk) has {Carl,Arie} as blocking pair

Testing stable roommates

- Complicated algorithm
- Uses $O(n^2)$ time

Universiteit Utrecht

Comments

- Much further work has been done, e.g.:
 - Random / Fair stable matchings
 - Many variants of stable matching are also solvable (indifferences, groups, forbidden pairs, ...)
 - What happens if some participants lie about their preferences?
 - Stable roommates with indifferences: NPcomplete

