
NP-completeness

Algorithms and Networks

Algorithms and Networks: NP-completeness 2

Today

• Complexity of computational problems

• Formal notion of computations

• NP-completeness

– Why is it relevant?

– What is it exactly?

– How is it proven?

• P vs. NP

• Some animals from the complexity zoo

1

Introduction

Algorithms and Networks: NP-completeness 4

Hard problems / Easy problems

• Finding the shortest

simple path between

vertices v and w in a given

graph

• Determine if there is an

Euler tour in a given graph

• Testing 2-colorability

• Satisfiability when each

clause has two literals

• Finding the longest simple

path between vertices v

and w in a given graph

• Determine if there is a

Hamiltonian circuit in a

given graph

• Testing 3-colorability

• Satisfiability when each

clause has three literals

Algorithms and Networks: NP-completeness 5

Fast and slow

• Algorithms whose

running time is

polynomial in input

size

• Algorithms whose

running time is

exponential in input

size

• Or worse…

Or in

between???

Algorithms and Networks: NP-completeness 6

EXPTIME

• Many problems appear not to have a
polynomial time algorithm

• For a few, we can proof that each algorithm
needs exponential time:

– EXPTIME hardness, in particular generalized
games (Generalized Go, Generalized Chess)

• For most, including many important and
interesting problems, we cannot.

Algorithms and Networks: NP-completeness 7

NP-completeness

• Theory shows relations and explains behavior of

many combinatorial problems

• From many fields:

– Logic

– Graphs, networks, logistics, scheduling

– Databases

– Compiler optimization

– Graphics

– …

Algorithms and Networks: NP-completeness 8

We need formalisation!

• Formal notion of

– problem instance

– decision problem

– computation

– running time

2

Abstract and concrete problems

Algorithms and Networks: NP-completeness 10

Different versions of problems

• Decision problems

– Answer is yes or no

• Optimization problems

– Answer is a number

• Construction problems

– Answer is some object (set of vertices,

function, …)

Focus on

decision problems

Abstract versus concrete

problems

• Concrete:

– Talk about graphs, logic formulas, applications,

...

• Abstract:

– Sets of strings in finite alphabet

Algorithms and Networks: NP-completeness 11

Algorithms and Networks: NP-completeness 12

Abstract problem instances

• Computers work with bit strings

• Problems are described using objects:

– G is a graph, …

– Given a logic formula, …

– Is there a clique of size at least k, ...

• We must map objects to bit strings
(or another encoding like Gödel numbers...)

Algorithms and Networks: NP-completeness 13

Formal problem instances

1

2
3

4 5

6

7 8

0 1 1 0 0 0 1 0

1 0 1 0 0 0 0 0

1 1 0 1 1 1 0 0

0 0 1 0 1 0 0 0

0 0 1 1 0 0 0 0

0 0 1 0 0 0 1 0

1 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

Algorithms and Networks: NP-completeness 14

Abstract decision problems

• Abstract decision problem:

– Set of instances I

– Subset of I: instances where the answer to the

problem is YES.

Algorithms and Networks: NP-completeness 15

Encoding / concrete problem

• Encoding: mapping of set of instances I to

bitstrings in {0,1}*

• Concrete (decision) problem:

– Subset of {0,1}*

• With encoding, an abstract decision

problem maps to a concrete decision

problem

3

P and NP

Algorithms and Networks: NP-completeness 17

Complexity Class P

FORMAL

• Class of languages L,

for which there exists

a deterministic Turing

Machine deciding

whether i L, using

running time O(p(|i|))

for some polynomial p

INFORMAL

• Class of decision

problems that have

polynomial time

algorithms solving

them

Algorithms and Networks: NP-completeness 18

P

• An algorithm solves a problem

– Decides if string in {0,1}* belongs to subset

• Time: deterministic, worst case

• Algorithm uses polynomial time, if there is a
polynomial p such that on inputs of length n the
algorithm uses at most p(n) time.

– Size of input x is denoted |x|.

• P is the class of concrete decision problems that
have an algorithm that solves it, and that uses
polynomial time

Algorithms and Networks: NP-completeness 19

Using P for abstract problems

• Abstract problem (with encoding) is in P, if the
resulting problem is in P

• In practice: encoding and corresponding concrete
problem is assumed very implicitly

• For polynomiality, encoding does not matter!

– If we can transform encodings in polynomial time to
each other

• Details: see e.g., chapter 34 of Introduction to
Algorithms

Algorithms and Networks: NP-completeness 20

Language of a problem

• Decision problem as a language:

– Set of all yes-instances

• P is the set of all languages that have a

polynomial time decision algorithm

Algorithms and Networks: NP-completeness 21

Verification algorithm

• Verification algorithm has two arguments:

– Problem input

– Certificate (“solution”)

• Answers “yes” or “no”

• Checks if 2nd argument is certificate for first
argument for studied problem

• The language verified by the verification
algorithm A is

– {i | there is an c with A(i,c)= true}

Algorithms and Networks: NP-completeness 22

Complexity Class NP

Two equivalent definitions of NP

• Class of languages L, for which there exists a

Non-Deterministic Turing Machine deciding

whether i L+, using running time O(p(|i|))

• Class of languages L, for which there exists a

Deterministic Turing Machine verifying whether

i L+, using a polynomial sized certificate c,

and using running time O(p(|i|))

Algorithms and Networks: NP-completeness 23

NP

• Problems with polynomial time verification
algorithm and polynomial size certificates

• Problem L belongs to the class NP, if there
exists a 2-argument algorithm A, with

– A runs in polynomial time

– There is a constant d such that for each x, there
is a certificate y with

• A(i,c) = true

• |c| = O(|i|d)

Algorithms and Networks: NP-completeness 24

Many problems are in NP

• Examples: Hamiltonian Path, Maximum

Independent Set, Satisfiability, Vertex

Cover, …

• Al of these have trivial certificates (set of

vertices, truth assignment, …)

• In NP (not trivial): Integer Linear Program

Algorithms and Networks: NP-completeness 25

P NP

• If A decides L in polynomial time, then as

verification algorithm, compute

– B(i,c) = A(i)

– “We do not need a certificate”.

• Famous open problem: P = NP ?? Or not??

3

Reducibility

Algorithms and Networks: NP-completeness 27

Reducibility

• Language L1 is polynomial time reducible

to language L2 (or: L1 P L2), if there exists

a polynomial time computable function f :

{0,1}* {0,1}* such that

– For all x {0,1}*:

• x L1 if and only if f(x) L2

Algorithms and Networks: NP-completeness 28

Lemma

Lemma: If L1 P L2 then if L2 P, then L1

 P.

Proof-idea: run an algorithm for L2 on f(i) for

input i to problem L1.

Also: If L1 P L2 then if L2 NP, then L1

NP.

4

NP-completeness and

the Cook-Levin theorem

Algorithms and Networks: NP-completeness 30

NP-completeness

A language L is NP-complete, if

1. L NP

2. For every L’ NP: L’ P L

A language L is NP-hard, if

1. For every L’ NP: L’ P L

• NP-hardness sometimes also used as term for

problems that are not a decision problem, and for

problems that are ‘harder than NP’

Algorithms and Networks: NP-completeness 31

What does it mean to be

NP-complete?

• Evidence that it is (very probably) hard to

find an algorithm that solves the problem

– Always

– Exact

– In polynomial time

Algorithms and Networks: NP-completeness 32

CNF-Satisfiability

• Given: expression over Boolean variables in

conjunctive normal form

• Question: Is the expression satisfiable? (Can

we give each variable a value true or false

such that the expression becomes true).

– CNF: “and” of clauses; each clause “or” of

variables or negations (xi or not(xj))

Algorithms and Networks: NP-completeness 33

Cook-Levin theorem

• Satisfiability is NP-complete

– Most well known is Cook’s proof, using Turing

machine characterization of NP.

5

Proving that problems are

 NP-complete

Algorithms and Networks: NP-completeness 35

Proving problems NP-complete

Lemma

1. Let L’ P L and let L’ be NP-complete. Then

L is NP-hard.

2. Let L’ P L and let L’ be NP-complete, and L

 NP. Then L is NP-complete.

Algorithms and Networks: NP-completeness 36

3-Sat

• 3-Sat is CNF-Satisfiability, but each clause has
exactly three literals

• Lemma: CNF-Satisfiability P 3-Sat

– Clauses with one or two literals:

• Use two extra variables p and q

• Replace 2-literal clause (x or y) by (x or y or p) and (x or y or
not(p))

• Similarly, replace 1-literal clause by 4 clauses

– Clauses with more than three literals:

• Repeat until no such clauses

– For (l1 or l2 or … lr) add new variable t and take as replacement
clauses (l1 or l2 or t) and (not(t) or l3 or … or lr)

Algorithms and Networks: NP-completeness 37

3-Sat is NP-complete

• Membership in NP

• Reduction

– 3-Sat is important starting problem for many

NP-completeness proofs

Algorithms and Networks: NP-completeness 38

Clique

• Given: graph G=(V,E), integer k

• Question: does G have a clique with at least

k vertices?

Clique is NP-complete.

In NP … easy!

NP-hardness: using 3-sat.

Algorithms and Networks: NP-completeness 39

Reduction for Clique

• One vertex per literal

per clause

• Edges between

vertices in different

clauses, except edges

between xi and not(xi)

• If m clauses, look for

clique of size m

x1

x1

x2

not(x3)

not(x2) x3

…

Clause: {x1,not(x2),x3}

Clause: {x1,x2,not(x3)}

Algorithms and Networks: NP-completeness 40

Correctness

• There is a satisfying truth assignment, if and only if there
is a clique with m vertices

• =>: Select from each clause the true literal. The
corresponding vertices form a clique with m vertices.

• <=: Set variable xi to true, if a vertex representing xi is in
the clique, otherwise set it to false. This is a satisfying truth
assignment:

– The clique must contain one vertex from each 3 vertices
representing a clause.

– It cannot contain a vertex representing xi and a vertex representing
not(xi).

Algorithms and Networks: NP-completeness 41

Independent set

• Independent set: set of vertices W V,

such that for all v,w W: {v,w} E.

• Independent set problem:

– Given: graph G, integer k

– Question: Does G have an independent set of

size at least k?

• Independent set is NP-complete

Algorithms and Networks: NP-completeness 42

Independent set is NP-complete

• In NP.

• NP-hard: transform from Clique.

• W is a clique in G, if and only if W is

an independent set in the complement

of G (there is an edge in Gc iff. there is no

edge in G).

Algorithms and Networks: NP-completeness 43

How do I write down this proof?

• Theorem. Independent Set is NP-complete.

• Proof: The problem belongs to NP: as certificates, we use
sets of vertices; we can check in polynomial time for a set
that it is a clique, and that its size is at least k.
To show NP-hardness, we use a reduction from Clique. Let
(G,k) be an input to the clique problem. Transform this to
(Gc,k) with Gc the complement of G. As G has a clique
with at least k vertices, if and only if Gc has an independent
set with k vertices, this is a correct transformation. The
transformation can clearly be carried out in polynomial
time. QED

Algorithms and Networks: NP-completeness 44

Vertex Cover

• Set of vertices W V with for all {x,y}

E: x W or y W.

• Vertex Cover problem:

– Given G, find vertex cover of minimum size

= vertex cover

Algorithms and Networks: NP-completeness 45

Vertex cover is NP-complete

• In NP.

• NP-hard: transform from independent set.

• W is a vertex cover in G, if and only if V-W

is an independent set in G.

Algorithms and Networks: NP-completeness 46

Example of restriction

• Weighted vertex cover

– Given: Graph G=(V,E), for each vertex v V,

a positive integer weight w(v), integer k.

– Question: Does G have a vertex cover of total

weight at most k?

• NP-complete

– In NP.

– NP-hardness: set all weights to 1 (VC).

Algorithms and Networks: NP-completeness 47

Techniques for proving

 NP-hardness

• Local replacement

• Restriction

• Component Design

6

Local replacement proofs

Algorithms and Networks: NP-completeness 49

Technique 1:

Local replacement

• Form an instance of our problem by

– Taking an instance of a known NP-complete

problem

– Making some change “everywhere”

– Such that we get an equivalent instance, but

now of the problem we want to show NP-hard

Algorithms and Networks: NP-completeness 50

Examples of Local Replacement

• We saw or will see:

– 3-Satisfiability

– Independent Set

– TSP

– Vertex Cover

7

Restriction proofs

Algorithms and Networks: NP-completeness 52

Technique 2:

Restriction

• Take the problem.

• Add a restriction to the set of instances.

NOT to the problem definition!

• Show that this is a known NP-complete

problem

Algorithms and Networks: NP-completeness 53

Restriction: Weighted Vertex Cover

• Weighted vertex cover

– Given: Graph G=(V,E), for each vertex v V,

a positive integer weight w(v), integer k.

– Question: Does G have a vertex cover of total

weight at most k?

• NP-complete

– In NP.

– NP-hardness: set all weights to 1 (VC).

Algorithms and Networks: NP-completeness 54

Restriction: Knapsack

• Knapsack

– Given: Set S of items, each with integer value v
and integer weight w, integers W and V.

– Question: is there a subset of S of weight no
more than W, with total value at least V?

• NP-complete

– In NP

– NP-hardness: set all weights equal to their
values (Subset sum)

9

Component design proofs

Algorithms and Networks: NP-completeness 56

Technique 3:

Component design

• Build (often complicated) parts of an

instance with certain properties

• Glue them together in such a way that the

proof works

• Examples: Clique, Hamiltonian Circuit

Algorithms and Networks: NP-completeness 57

Hamiltonian circuit

• Given: Graph G

• Question: does G have

a simple cycle that

contains all vertices?

Algorithms and Networks: NP-completeness 58

NP-completeness of

Hamiltonian Circuit

• HC is in NP.

• Vertex Cover P Hamiltonain Circuit:

complicated proof (component design)

– Widgets

– Selector vertices

– Given a graph G and an integer k, we construct

a graph H, such that H has a HC, if and only if

G has a VC of size k.

Algorithms and Networks: NP-completeness 59

Widget

• For each edge {u,v}

we have a widget Wuv
[u,v,1]

[u,v,6] [v,u,6]

[v,u,1]

Algorithms and Networks: NP-completeness 60

Only possible ways to visit all vertices in widget

Algorithms and Networks: NP-completeness 61

Selector vertices

• We have k selector vertices s1, …, sk

• These will represent the vertices selected

for the vertex cover

Algorithms and Networks: NP-completeness 62

Connecting the widgets

• For each vertex v we

connect the widgets of

the edges {v,w}.

Suppose v has

neighbors x1, …, xr:

add edges

{[v,x1,6],[v,x2,1]},

{[v,x2,6],[v,x3,1]}, …,

{[v,xr-1,6],[v,xr,1]}.

Algorithms and Networks: NP-completeness 63

Connecting the selector vertices

to the widgets

• Each selector vertex is

attached to the first

neighbor widget of

each vertex, i.e. to

vertex [v,x1,1] and to

the last neighbor

widget [v,xr,6]

si

Vertex in example

has degree 2

Algorithms and Networks: NP-completeness 64

Correctness of reduction

• Lemma: G has a vertex cover of size (at

most) k, if and only if H has a Hamiltonian

circuit.

Algorithms and Networks: NP-completeness 65

Finally

• The reduction takes polynomial time.

• So, we can conclude that Hamiltonian

Circuit is NP-complete.

Algorithms and Networks: NP-completeness 66

TSP

• NP-completeness of TSP by local replacement:

– In NP.

– Reduction from Hamiltonian Circuit:

• Take city for each vertex

• Take cost(i,j) = 1 if {i,j} E

• Take cost(i,j) = 0, if {i,j} E

• G has HC, if and only if there is a TSP-tour of length 0.

• Remark: variant with triangle inequality: use

weights 2, 1 and n

10

Weak and strong NP-completeness

Algorithms and Networks: NP-completeness 67

Algorithms and Networks: NP-completeness 68

Problems with numbers

• Strong NP-complete:

– Problem is NP-complete if numbers are given

in unary

• Weak NP-complete:

– Problem is NP-complete if numbers are given

in binary, but polynomial time solvable when

numbers are given in unary

Algorithms and Networks: NP-completeness 69

Examples
• Subset-sum

– Given: set of positive integers S, integer t.

– Question: Is there a subset of S with total sum t?
• Weak NP-complete. (Solvable in pseudo-polynomial time

using dynamic programming: O(nt) time…)

• 3-Partition
– Given: set of positive integers S, (integer t).

– Question: can we partition S into sets of exactly 3
elements each, such that each has the same sum (t)?

• Strong NP-hard.

• t must be the sum of S divided by |S|/3 = number of groups

• Starting point for many reductions

Remark

• Easily made mistake: reductions from

subset sum that create exponentially large

instances

• Subgraph Isomorphism for degree 2 graphs

– Given: Graphs G and H, such that each vertex

in G and H has degree at most 2

– Question: Is G a subgraph of H?

• NP-hardness proof can be done with 3-PARTITION

Algorithms and Networks: NP-completeness 70

11

Some discussion

Algorithms and Networks: NP-completeness 72

Discussion

• Is P NP? (who thinks so?)

• www.claymath.org/prizeproblems/pvsnp.htm : one

of the millennium problems

• Why so hard to prove?

• What to do with

problems that are

NP-complete?

• Other complexity notions…

NP

P

NP-

complete

Algorithms and Networks: NP-completeness 73

P vs NP is hard to prove

• P = NP? Hard to design poly algorithm...

• Current mathematical knowledge does not

suffice to prove P != NP:

– “Natural Proofs” can not separate P from NP

(Razborov & Rudich, 1993)

– PA
 = NPA, but PB != NPB for some oracles A

and B, so diagonalisation can not separate P

from NP (Baker, Gill, & Solovay, 1975)

12

A Few Animals from

The Complexity Zoo

Algorithms and Networks: NP-completeness 75

Much more classes

• In Theoretical Computer Science, a large

number of other complexity classes have

been defined

• Here, we give an informal introduction to a

few of the more important ones

• There is much, much, much more…

coNP

• Complement of a class: switch “yes” and “no”

• coNP: complement of problems in NP, e.g.:

NOT-HAMILTONIAN

– Given: Graph G

– Question: Does G NOT have a Hamiltonian circuit

UNSATISFIABLE

– Given: Boolean formula in CNF

– Question: Do all truth assignments to the variable
make the formula false?

Algorithms and Networks: NP-completeness 76

Algorithms and Networks: NP-completeness 77

PSPACE

• All decision problems solvable in polynomial space

• Unknown: is P=PSPACE?

• Savitch, 1970: PSPACE = NPSPACE

– NPSPACE: solvable with non-deterministic program in
polynomial time

• PSPACE-complete, e.g.,

– generalized Tic-Tac-Toe, generalized Reversi,

– Quantified Boolean formula’s (QBF):

323214321 xxxxxxxxx

Algorithms and Networks: NP-completeness 78

EXPTIME

• Decision problems that can be solved in

exponential time

• P is unequal EXPTIME (Stearns, Hartmanis,

1965)

• EXPTIME complete problems:

– Generalized chess, generalized checkers, generalized go

(Japanese drawing rule)

– Given a Turing Machine M and integer k, does M halt

after k steps?

Algorithms and Networks: NP-completeness 79

And a few more

• NEXPTIME: non-deterministic exponential

time

• EXPSPACE = NEXPSPACE: exponential

space

Algorithms and Networks: NP-completeness 80

Graph Isomorphism

• Discussed in another lecture

• Given two graphs, are they isomorphic?

• In NP, not known to be NP-complete; not

known to be in P

• Several problems are equaly hard:

Isomorphism-complete

Algorithms and Networks: NP-completeness 81

NC

• NC: “Nicks class”, after Nick Pippinger

• Talks about the time to solve a problem

with a parallel machine

• Model: we have a polynomial number of

processors, that use the same memory

– Variants depending on what happens when

processors try to read or write the same

memory location simultaneously

Algorithms and Networks: NP-completeness 82

NC – the definition

• NC: decision problems that can be solved with a
PRAM (Parallel Random Access Machine) with
polynomial number of processors in
polylogarithmic time

– O((log n)d) for some constant d

• Unknown: P=NC?

• P-complete problems are expected not to be in
NC. An example is

– Linear Programming (formulated as decision problem)

Algorithms and Networks: NP-completeness 83

Counting

• #P: (“Sharp-P”)

• Problems that outputs a number

• The precise definition will not be given here. Think as:
“what is the number of certificates for this instance”, with
polynomial checking of certificates

• #P-complete e.g.:

– Number of satisfying truth assignments of 3SAT-formula

– Number of Hamiltonian circuits in a graph

– Number of perfect matchings in a given graph

• PP is a related class (vaguely: “decide if the number of
solutions is at most given number k”)

On PP and #P

• Inference:

– Given: probabilistic network, observations O,
variable X, value x, value p in [0,1]

– Question: Pr(X = x | O) <= p?

• Decision variant of problem from course
Probabilistic Reasoning

• Is PP-complete; variants are #P-complete

• PP-hard and #P-hard problems are probably
not polynomial...

Algorithms and Networks: NP-completeness 84

LSPACE or L

• Problems can be solved with only

logarithmic extra space:

– You can read the input as often as you want

– You may use only O(log n) extra memory

• E.g.: (1) pointers to your input

• NL: non-deterministic logspace...

Algorithms and Networks: NP-completeness 85

Algorithms and Networks: NP-completeness 86

More

• The Polynomial Time Hierarchy

• Oracles

• UP: unique solutions

