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Today 

• Complexity of computational problems 

• Formal notion of computations 

• NP-completeness 

– Why is it relevant? 

– What is it exactly? 

– How is it proven? 

• P vs. NP  

• Some animals from the complexity zoo 
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Introduction 
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Hard problems / Easy problems 

• Finding the shortest 

simple path between 

vertices v and w in a given 

graph 

• Determine if there is an 

Euler tour in a given graph 

• Testing 2-colorability 

• Satisfiability when each 

clause has two literals 

• Finding the longest simple 

path between vertices v 

and w in a given graph 

• Determine if there is a 

Hamiltonian circuit in a 

given graph 

• Testing 3-colorability 

• Satisfiability when each 

clause has three literals 
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Fast and slow 

• Algorithms whose 

running time is 

polynomial in input 

size 

• Algorithms whose 

running time is 

exponential in input 

size 

• Or worse… 

Or in 

between??? 
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EXPTIME 

• Many problems appear not to have a 
polynomial time algorithm 

• For a few, we can proof that each algorithm 
needs exponential time: 

– EXPTIME hardness, in particular generalized 
games (Generalized Go, Generalized Chess)  

• For most, including many important and 
interesting problems, we cannot. 
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NP-completeness 

• Theory shows relations and explains behavior of 

many combinatorial problems 

• From many fields: 

– Logic 

– Graphs, networks, logistics, scheduling 

– Databases 

– Compiler optimization 

– Graphics 

– … 
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We need formalisation! 

• Formal notion of  

– problem instance 

– decision problem 

– computation 

– running time 
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Abstract and concrete problems 
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Different versions of problems 

• Decision problems 

– Answer is yes or no 

• Optimization problems 

– Answer is a number 

• Construction problems 

– Answer is some object (set of vertices, 

function, …) 

Focus on 

decision problems 



Abstract versus concrete 

problems 

• Concrete: 

– Talk about graphs, logic formulas, applications, 

... 

• Abstract: 

– Sets of strings in finite alphabet 
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Abstract problem instances 

• Computers work with bit strings 

• Problems are described using objects:  

– G is a graph, … 

– Given a logic formula, … 

– Is there a clique of size at least k, ... 

• We must map objects to bit strings 
(or another encoding like Gödel numbers...) 
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Formal problem instances 

1 

2 
3 

4 5 

6 

7 8 

0 1 1 0 0 0 1 0 

1 0 1 0 0 0 0 0 

1 1 0 1 1 1 0 0 

0 0 1 0 1 0 0 0 

0 0 1 1 0 0 0 0 

0 0 1 0 0 0 1 0 

1 0 0 0 0 1 0 1 

0 0 0 0 0 0 1 0 
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Abstract decision problems 

• Abstract decision problem:  

– Set of instances I 

– Subset of I: instances where the answer to the 

problem is YES. 
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Encoding / concrete problem 

• Encoding: mapping of set of instances I to 

bitstrings in {0,1}* 

• Concrete (decision) problem: 

– Subset of {0,1}* 

• With encoding, an abstract decision 

problem maps to a concrete decision 

problem 



3 

P and NP 
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Complexity Class P 

FORMAL 

• Class of languages L, 

for which there exists 

a deterministic Turing 

Machine deciding 

whether i  L, using 

running time O(p(|i|)) 

for some polynomial p  

 

INFORMAL 

• Class of decision 

problems that have 

polynomial time 

algorithms solving 

them 
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P 

• An algorithm solves a problem 

– Decides if string in {0,1}* belongs to subset 

• Time: deterministic, worst case 

• Algorithm uses polynomial time, if there is a 
polynomial p such that on inputs of length n the 
algorithm uses at most p(n) time. 

– Size of input x is denoted |x|. 

• P is the class of concrete decision problems that 
have an algorithm that solves it, and that uses 
polynomial time 
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Using P for abstract problems 

• Abstract problem (with encoding) is in P, if the 
resulting problem is in P 

• In practice: encoding and corresponding concrete 
problem is assumed very implicitly 

• For polynomiality, encoding does not matter! 

– If we can transform encodings in polynomial time to 
each other 

• Details: see e.g., chapter 34 of Introduction to 
Algorithms 



Algorithms and Networks: NP-completeness 20 

Language of a problem 

• Decision problem as a language: 

– Set of all yes-instances 

• P is the set of all languages that have a 

polynomial time decision algorithm 



Algorithms and Networks: NP-completeness 21 

Verification algorithm 

• Verification algorithm has two arguments: 

– Problem input 

– Certificate (“solution”) 

• Answers “yes” or “no” 

• Checks if 2nd argument is certificate for first 
argument for studied problem 

• The language verified by the verification 
algorithm A is 

– {i | there is an c with A(i,c)= true} 
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Complexity Class NP 

Two equivalent definitions of NP 

• Class of languages L, for which there exists a 

Non-Deterministic Turing Machine deciding 

whether i  L+, using running time O(p(|i|)) 

• Class of languages L, for which there exists a 

Deterministic Turing Machine verifying whether 

i  L+, using a polynomial sized certificate c, 

and using running time O(p(|i|)) 
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NP 

• Problems with polynomial time verification 
algorithm and polynomial size certificates 

• Problem L belongs to the class NP, if there 
exists a 2-argument algorithm A, with 

– A runs in polynomial time 

– There is a constant d such that for each x, there 
is a certificate y with 

• A(i,c) = true 

• |c| = O(|i|d) 
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Many problems are in NP 

• Examples: Hamiltonian Path, Maximum 

Independent Set, Satisfiability, Vertex 

Cover, … 

• Al of these have trivial certificates (set of 

vertices, truth assignment, …) 

• In NP (not trivial): Integer Linear Program 
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P  NP 

• If A decides L in polynomial time, then as 

verification algorithm, compute 

– B(i,c) = A(i) 

– “We do not need a certificate”. 

• Famous open problem: P = NP ?? Or not?? 
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Reducibility 
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Reducibility 

• Language L1 is polynomial time reducible 

to language L2 (or: L1 P L2 ), if there exists 

a polynomial time computable function f : 

{0,1}*  {0,1}* such that 

– For all x  {0,1}*: 

• x  L1 if and only if f(x)  L2 
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Lemma 

Lemma: If L1 P L2 then if L2  P, then L1 

 P.  

Proof-idea: run an algorithm for L2 on f(i) for 

input i to problem L1. 

Also: If L1 P L2 then if L2  NP, then L1  

NP. 
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NP-completeness and  

the Cook-Levin theorem 
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NP-completeness 

A language L is NP-complete, if 

1. L  NP 

2. For every L’ NP: L’ P L 

A language L is NP-hard, if 

1. For every L’ NP: L’ P L 

• NP-hardness sometimes also used as term for 

problems that are not a decision problem, and for 

problems that are ‘harder than NP’ 
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What does it mean to be 

NP-complete? 

• Evidence that it is (very probably) hard to 

find an algorithm that solves the problem 

– Always 

– Exact 

– In polynomial time 
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CNF-Satisfiability 

• Given: expression over Boolean variables in 

conjunctive normal form 

• Question: Is the expression satisfiable? (Can 

we give each variable a value true or false 

such that the expression becomes true). 

– CNF: “and” of clauses; each clause “or” of 

variables or negations (xi or not(xj)) 
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Cook-Levin theorem 

• Satisfiability is NP-complete 

– Most well known is Cook’s proof, using Turing 

machine characterization of NP. 
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Proving that problems are 

 NP-complete 
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Proving problems NP-complete 

Lemma 

1. Let L’ P L and let L’ be NP-complete. Then 

L is NP-hard. 

2. Let L’ P L and let L’ be NP-complete, and L 

 NP. Then L is NP-complete. 
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3-Sat 

• 3-Sat is CNF-Satisfiability, but each clause has 
exactly three literals 

• Lemma: CNF-Satisfiability P 3-Sat 

– Clauses with one or two literals: 

• Use two extra variables p and q 

• Replace 2-literal clause (x or y) by (x or y or p) and (x or y or 
not(p)) 

• Similarly, replace 1-literal clause by 4 clauses 

– Clauses with more than three literals: 

• Repeat until no such clauses 

– For (l1 or l2 or … lr) add new variable t and take as replacement 
clauses (l1 or l2 or t) and (not(t) or l3 or … or lr) 
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3-Sat is NP-complete 

• Membership in NP 

• Reduction 

– 3-Sat is important starting problem for many 

NP-completeness proofs 
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Clique 

• Given: graph G=(V,E), integer k 

• Question: does G have a clique with at least 

k vertices? 

Clique is NP-complete. 

In NP … easy! 

NP-hardness: using 3-sat.  
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Reduction for Clique 

• One vertex per literal 

per clause 

• Edges between 

vertices in different 

clauses, except edges 

between xi and not(xi) 

• If m clauses, look for 

clique of size m 

x1 

x1 

x2 

not(x3) 

not(x2) x3 

… 

Clause: {x1,not(x2),x3} 

Clause: {x1,x2,not(x3)} 
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Correctness 

• There is a satisfying truth assignment, if and only if there 
is a clique with m vertices 

• =>: Select from each clause the true literal. The 
corresponding vertices form a clique with m vertices. 

• <=: Set variable xi to true, if a vertex representing xi is in 
the clique, otherwise set it to false. This is a satisfying truth 
assignment:  

– The clique must contain one vertex from each 3 vertices 
representing a clause. 

– It cannot contain a vertex representing xi and a vertex representing 
not(xi). 
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Independent set 

• Independent set: set of vertices W  V, 

such that for all v,w  W: {v,w}  E. 

• Independent set problem: 

– Given: graph G, integer k 

– Question: Does G have an independent set of 

size at least k? 

• Independent set is NP-complete 
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Independent set is NP-complete 

• In NP. 

• NP-hard: transform from Clique. 

• W is a clique in G, if and only if W is 

an independent set in the complement 

of G (there is an edge in Gc iff. there is no 

edge in G). 
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How do I write down this proof? 

• Theorem. Independent Set is NP-complete. 

• Proof: The problem belongs to NP: as certificates, we use 
sets of vertices; we can check in polynomial time for a set 
that it is a clique, and that its size is at least k. 
To show NP-hardness, we use a reduction from Clique. Let 
(G,k) be an input to the clique problem. Transform this to 
(Gc,k) with Gc the complement of G. As G has a clique 
with at least k vertices, if and only if Gc has an independent 
set with k vertices, this is a correct transformation. The 
transformation can clearly be carried out in polynomial 
time. QED 
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Vertex Cover 

• Set of vertices W  V with for all {x,y}  

E: x  W or y  W. 

• Vertex Cover problem: 

– Given G, find vertex cover of minimum size 

= vertex cover 
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Vertex cover is NP-complete 

• In NP. 

• NP-hard: transform from independent set. 

• W is a vertex cover in G, if and only if V-W 

is an independent set in G. 
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Example of restriction 

• Weighted vertex cover 

– Given: Graph G=(V,E), for each vertex v  V, 

a positive integer weight w(v), integer k. 

– Question: Does G have a vertex cover of total 

weight at most k? 

• NP-complete 

– In NP. 

– NP-hardness: set all weights to 1 (VC). 
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Techniques for proving 

 NP-hardness 

• Local replacement 

• Restriction 

• Component Design 



6 

Local replacement proofs 
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Technique 1: 

Local replacement 

• Form an instance of our problem by 

– Taking an instance of a known NP-complete 

problem 

– Making some change “everywhere” 

– Such that we get an equivalent instance, but 

now of the problem we want to show NP-hard 



Algorithms and Networks: NP-completeness 50 

Examples of Local Replacement 

• We saw or will see: 

– 3-Satisfiability 

– Independent Set 

– TSP 

– Vertex Cover 
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Restriction proofs 
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Technique 2: 

Restriction 

• Take the problem.  

• Add a restriction to the set of instances. 

NOT to the problem definition! 

• Show that this is a known NP-complete 

problem 
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Restriction: Weighted Vertex Cover 

• Weighted vertex cover 

– Given: Graph G=(V,E), for each vertex v  V, 

a positive integer weight w(v), integer k. 

– Question: Does G have a vertex cover of total 

weight at most k? 

• NP-complete 

– In NP. 

– NP-hardness: set all weights to 1 (VC). 
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Restriction: Knapsack 

• Knapsack 

– Given: Set S of items, each with integer value v 
and integer weight w, integers W and V.  

– Question: is there a subset of S of weight no 
more than W, with total value at least V? 

• NP-complete 

– In NP 

– NP-hardness: set all weights equal to their 
values (Subset sum) 
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Component design proofs 
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Technique 3: 

Component design 

• Build (often complicated) parts of an 

instance with certain properties 

• Glue them together in such a way that the 

proof works 

• Examples: Clique, Hamiltonian Circuit 
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Hamiltonian circuit 

• Given: Graph G 

• Question: does G have 

a simple cycle that 

contains all vertices? 
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NP-completeness of 

Hamiltonian Circuit 

• HC is in NP. 

• Vertex Cover P Hamiltonain Circuit: 

complicated proof (component design) 

– Widgets 

– Selector vertices 

– Given a graph G and an integer k, we construct 

a graph H, such that H has a HC, if and only if 

G has a VC of size k. 
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Widget 

• For each edge {u,v} 

we have a widget Wuv 
[u,v,1] 

[u,v,6] [v,u,6] 

[v,u,1] 
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Only possible ways to visit all vertices in widget 
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Selector vertices 

• We have k selector vertices s1, …, sk 

• These will represent the vertices selected 

for the vertex cover 
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Connecting the widgets 

• For each vertex v we 

connect the widgets of 

the edges {v,w}. 

Suppose v has 

neighbors x1, …, xr: 

add edges 

{[v,x1,6],[v,x2,1]}, 

{[v,x2,6],[v,x3,1]}, …, 

{[v,xr-1,6],[v,xr,1]}. 
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Connecting the selector vertices 

to the widgets 

• Each selector vertex is 

attached to the first 

neighbor widget of 

each vertex, i.e. to 

vertex [v,x1,1] and to 

the last neighbor 

widget [v,xr,6] 

si 

Vertex in example 

has degree 2 
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Correctness of reduction 

• Lemma: G has a vertex cover of size (at 

most) k, if and only if H has a Hamiltonian 

circuit. 



Algorithms and Networks: NP-completeness 65 

Finally 

• The reduction takes polynomial time. 

• So, we can conclude that Hamiltonian 

Circuit is NP-complete. 
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TSP 

• NP-completeness of TSP by local replacement: 

– In NP. 

– Reduction from Hamiltonian Circuit: 

• Take city for each vertex 

• Take cost(i,j) = 1 if {i,j}  E 

• Take cost(i,j) = 0, if {i,j}  E 

• G has HC, if and only if there is a TSP-tour of length 0. 

• Remark: variant with triangle inequality: use 

weights 2, 1 and n 
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Weak and strong NP-completeness 

Algorithms and Networks: NP-completeness 67 
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Problems with numbers 

• Strong NP-complete: 

– Problem is NP-complete if numbers are given 

in unary 

• Weak NP-complete: 

– Problem is NP-complete if numbers are given 

in binary, but polynomial time solvable when 

numbers are given in unary 
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Examples 
• Subset-sum 

– Given: set of positive integers S, integer t. 

– Question: Is there a subset of S with total sum t? 
• Weak NP-complete. (Solvable in pseudo-polynomial time 

using dynamic programming: O(nt) time…) 

• 3-Partition 
– Given: set of positive integers S, (integer t). 

– Question: can we partition S into sets of exactly 3 
elements each, such that each has the same sum (t)? 

• Strong NP-hard. 

• t must be the sum of S divided by |S|/3 = number of groups 

• Starting point for many reductions 



Remark 

• Easily made mistake: reductions from 

subset sum that create exponentially large 

instances 

• Subgraph Isomorphism for degree 2 graphs 

– Given: Graphs G and H, such that each vertex 

in G and H has degree at most 2 

– Question: Is G a subgraph of H? 

• NP-hardness proof can be done with 3-PARTITION 
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Some discussion 
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Discussion 

• Is P  NP? (who thinks so?) 

• www.claymath.org/prizeproblems/pvsnp.htm : one 

of the millennium problems 

• Why so hard to prove? 

• What to do with 

problems that are 

NP-complete? 

• Other complexity notions… 

NP 

P 

NP- 

complete 
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P vs NP is hard to prove 

• P = NP? Hard to design poly algorithm... 

• Current mathematical knowledge does not 

suffice to prove P != NP: 

– “Natural Proofs” can not separate P from NP 

(Razborov & Rudich, 1993) 

– PA
 = NPA, but PB != NPB for some oracles A 

and B, so diagonalisation can not separate P 

from NP (Baker, Gill, & Solovay, 1975) 
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A Few Animals from 

The Complexity Zoo 
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Much more classes 

• In Theoretical Computer Science, a large 

number of other complexity classes have 

been defined 

• Here, we give an informal introduction to a 

few of the more important ones 

• There is much, much, much more… 



coNP 

• Complement of a class: switch “yes” and “no” 

• coNP: complement of problems in NP, e.g.: 

NOT-HAMILTONIAN 

– Given: Graph G 

– Question: Does G NOT have a Hamiltonian circuit 

UNSATISFIABLE 

– Given: Boolean formula in CNF 

– Question: Do all truth assignments to the variable 
make the formula false? 
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PSPACE 

• All decision problems solvable in polynomial space 

• Unknown: is P=PSPACE? 

• Savitch, 1970: PSPACE = NPSPACE 

– NPSPACE: solvable with non-deterministic program in 
polynomial time 

• PSPACE-complete, e.g.,  

– generalized Tic-Tac-Toe, generalized Reversi, 

– Quantified Boolean formula’s (QBF): 

323214321 xxxxxxxxx
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EXPTIME 

• Decision problems that can be solved in 

exponential time 

• P is unequal EXPTIME (Stearns, Hartmanis, 

1965) 

• EXPTIME complete problems: 

– Generalized chess, generalized checkers, generalized go 

(Japanese drawing rule) 

– Given a Turing Machine M and integer k, does M halt 

after k steps? 
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And a few more 

• NEXPTIME: non-deterministic exponential 

time 

• EXPSPACE = NEXPSPACE: exponential 

space 
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Graph Isomorphism 

• Discussed in another lecture 

• Given two graphs, are they isomorphic? 

• In NP, not known to be NP-complete; not 

known to be in P 

• Several problems are equaly hard: 

Isomorphism-complete 
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NC 

• NC: “Nicks class”, after Nick Pippinger 

• Talks about the time to solve a problem 

with a parallel machine 

• Model: we have a polynomial number of 

processors, that use the same memory 

– Variants depending on what happens when 

processors try to read or write the same 

memory location simultaneously 
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NC – the definition 

• NC: decision problems that can be solved with a 
PRAM (Parallel Random Access Machine) with 
polynomial number of processors in 
polylogarithmic time 

– O( (log n)d) for some constant d 

• Unknown: P=NC? 

• P-complete problems are expected not to be in 
NC. An example is  

– Linear Programming (formulated as decision problem) 
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Counting 

• #P: (“Sharp-P”) 

• Problems that outputs a number 

• The precise definition will not be given here. Think as: 
“what is the number of certificates for this instance”, with 
polynomial checking of certificates 

• #P-complete e.g.: 

– Number of satisfying truth assignments of 3SAT-formula 

– Number of Hamiltonian circuits in a graph 

– Number of perfect matchings in a given graph 

• PP is a related class (vaguely: “decide if the number of 
solutions is at most given number k”) 



On PP and #P 

• Inference: 

– Given: probabilistic network, observations O, 
variable X,  value x, value p in [0,1] 

– Question: Pr(X = x | O ) <= p? 

• Decision variant of problem from course 
Probabilistic Reasoning 

• Is PP-complete; variants are #P-complete 

• PP-hard and #P-hard problems are probably 
not polynomial... 
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LSPACE or L 

• Problems can be solved with only 

logarithmic extra space: 

– You can read the input as often as you want 

– You may use only O(log n) extra memory 

• E.g.: (1) pointers to your input  

• NL: non-deterministic logspace... 
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More 

• The Polynomial Time Hierarchy 

• Oracles 

• UP: unique solutions 


