NP-completeness

Algorithms and Networks

Today

- Complexity of computational problems
- Formal notion of computations
- NP-completeness
 - Why is it relevant?
 - What is it exactly?
 - How is it proven?
- P vs. NP
- Some animals from the complexity zoo

Introduction

1

Hard problems / Easy problems

- Finding the shortest
 simple path between
 vertices v and w in a given
 graph
- Determine if there is an Euler tour in a given graph
- Testing 2-colorability
- Satisfiability when each clause has two literals

- Finding the longest simple path between vertices *v* and *w* in a given graph
- Determine if there is a Hamiltonian circuit in a given graph
- Testing 3-colorability
- Satisfiability when each clause has three literals

Fast and slow

 Algorithms whose running time is *polynomial* in input size

- Algorithms whose running time is *exponential* in input size
- Or worse...

Or in between???

EXPTIME

- Many problems appear *not* to have a polynomial time algorithm
- For a few, we can proof that each algorithm needs exponential time:
 - EXPTIME hardness, in particular generalized
 games (Generalized Go, Generalized Chess)
- For most, including many important and interesting problems, we cannot.

NP-completeness

- Theory shows relations and explains behavior of many combinatorial problems
- From many fields:
 - Logic
 - Graphs, networks, logistics, scheduling
 - <mark>– D</mark>atabases
 - Compiler optimization
 - Graphics

. . .

We need formalisation!

- Formal notion of

 problem instance
 decision problem
 computation
 .
 - *running time*

Universiteit Utrecht

2

Abstract and concrete problems

Different versions of problems

• Decision problems – Answer is yes or no

- Answer is a number
- Construction problems
 - Answer is some object (set of vertices, function, ...)

Focus on decision problems

Abstract versus concrete problems

- Concrete:
 - Talk about graphs, logic formulas, applications,
- Abstract:

. . .

– Sets of strings in finite alphabet

Abstract problem instances

- Computers work with bit strings
- Problems are described using objects:
 - -G is a graph, ...
 - Given a logic formula, ...
 - Is there a clique of size at least k, ...
- We must map objects to bit strings (or another encoding like Gödel numbers...)

Formal problem instances

0	1	1	0	0	0	1	0
1	0	1	0	0	0	0	0
1	1	0	1	1	1	0	0
0	0	1	0	1	0	0	0
0	0	1	1	0	0	0	0
0	0	1	0	0	0	1	0
1	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0

Universiteit Utrecht

Abstract decision problems

- Abstract decision problem:
 - Set of instances I
 - Subset of I: instances where the answer to the problem is YES.

Encoding / concrete problem

- Encoding: mapping of set of instances I to bitstrings in {0,1}*
- Concrete (decision) problem:
 Subset of {0,1}*
- With encoding, an abstract decision problem maps to a concrete decision problem

3

P and NP

Complexity Class P

FORMAL

• Class of languages L, for which there exists a deterministic Turing Machine deciding whether $i \in L$, using running time O(p(|i/))for some polynomial p

INFORMAL

 Class of decision problems that have polynomial time algorithms solving them

Ρ

- An algorithm *solves* a problem
 - Decides if string in $\{0,1\}^*$ belongs to subset
- Time: deterministic, worst case
- Algorithm uses *polynomial time*, if there is a polynomial p such that on inputs of length n the algorithm uses at most p(n) time.

- Size of input x is denoted |x|.

• P is the class of concrete decision problems that have an algorithm that solves it, and that uses polynomial time

Universiteit Utrecht

Using P for abstract problems

- Abstract problem (with encoding) is in P, if the resulting problem is in P
- In practice: encoding and corresponding concrete problem is assumed *very implicitly*
- For polynomiality, encoding does not matter!

 If we can transform encodings in polynomial time to each other
- Details: see e.g., chapter 34 of Introduction to Algorithms

Language of a problem

- Decision problem as a language:
 - Set of all yes-instances
- P is the set of all languages that have a polynomial time decision algorithm

Verification algorithm

- Verification algorithm has two arguments:
 - Problem input
 - Certificate ("solution")
- Answers "yes" or "no"
- Checks if 2nd argument is certificate for first argument for studied problem
- The language verified by the verification algorithm A is

- {*i*/ there is an *c* with A(*i*,*c*)= true }

Universiteit Utrecht

Complexity Class NP

Two equivalent definitions of NP

- Class of languages L, for which there exists a Non-Deterministic Turing Machine *deciding* whether $i \in L_+$, using running time O(p(|*i*/))
- Class of languages L, for which there exists a Deterministic Turing Machine *verifying* whether *i* ∈ L₊, using a polynomial sized certificate *c*, and using running time O(p(|*i*/))

NP

- Problems with polynomial time verification algorithm and polynomial size certificates
- Problem L belongs to the class NP, if there exists a 2-argument algorithm A, with
 - A runs in polynomial time
 - There is a constant d such that for each x, there is a certificate y with
 - A(i,c) = true
 - $|c| = O(|i|^d)$

Many problems are in NP

- Examples: Hamiltonian Path, Maximum Independent Set, Satisfiability, Vertex Cover, ...
- Al of these have trivial certificates (set of vertices, truth assignment, ...)
- In NP (not trivial): Integer Linear Program

$P \subseteq NP$

- If A decides L in polynomial time, then as verification algorithm, compute
 - $-\mathbf{B}(i,c) = \mathbf{A}(i)$
 - -"We do not need a certificate".
- Famous open problem: P = NP ?? Or not??

3

Reducibility

Reducibility

- Language L_1 is *polynomial time reducible* to language L_2 (or: $L_1 \leq_P L_2$), if there exists a polynomial time computable function f: $\{0,1\}^* \rightarrow \{0,1\}^*$ such that -For all $x \in \{0,1\}^*$:
 - $x \in L_1$ if and only if $f(x) \in L_2$

Universiteit Utrecht

Lemma

Lemma: If $L_1 \leq_P L_2$ then if $L_2 \in P$, then $L_1 \in P$.

Proof-idea: run an algorithm for L_2 on f(i) for input *i* to problem L_1 .

Also: If $L_1 \leq_P L_2$ then if $L_2 \in NP$, then $L_1 \in NP$.

Universiteit Utrecht

NP-completeness and the Cook-Levin theorem

NP-completeness

- A language L is NP-complete, if 1. $L \in NP$ 2. For every L' $\in NP$: L' $\leq_P L$ A language L is NP-hard, if
 - 1. For every $L' \in NP: L' \leq_P L$
 - NP-hardness sometimes also used as term for problems that are not a decision problem, and for problems that are '*harder than NP*'

Universiteit Utrecht

What does it mean to be NP-complete?

- Evidence that it is (very probably) hard to find an algorithm that solves the problem
 - Always
 - Exact
 - In polynomial time

CNF-Satisfiability

- Given: expression over Boolean variables in conjunctive normal form
- Question: Is the expression satisfiable? (Can we give each variable a value true or false such that the expression becomes true).
 CNF: "and" of clauses; each clause "or" of

variables or negations $(x_i \text{ or } not(x_j))$

Cook-Levin theorem

- Satisfiability is NP-complete
 - Most well known is Cook's proof, using Turing machine characterization of NP.

Universiteit Utrecht

5

Proving that problems are NP-complete

Proving problems NP-complete

Lemma

- 1. Let $L' \leq_P L$ and let L' be NP-complete. Then L is NP-hard.
- 2. Let $L' \leq_P L$ and let L' be NP-complete, and L \in NP. Then L is NP-complete.

Universiteit Utrecht

3-Sat

- 3-Sat is CNF-Satisfiability, but each clause has exactly three literals
- Lemma: CNF-Satisfiability ≤_P 3-Sat
 - Clauses with one or two literals:
 - Use two extra variables *p* and *q*
 - Replace 2-literal clause (*x* or *y*) by (*x* or *y* or *p*) and (*x* or *y* or not(*p*))
 - Similarly, replace 1-literal clause by 4 clauses
 - Clauses with more than three literals:
 - Repeat until no such clauses
 - For $(l_1 \text{ or } l_2 \text{ or } \dots l_r)$ add new variable *t* and take as replacement
 - clauses $(l_1 \text{ or } l_2 \text{ or } t)$ and $(\text{not}(t) \text{ or } l_3 \text{ or } \dots \text{ or } l_r)$

Universiteit Utrecht
3-Sat is NP-complete

- Membership in NP
- Reduction
 - 3-Sat is important starting problem for many NP-completeness proofs

Clique

- Given: graph G=(V,E), integer k
- Question: does G have a clique with at least *k* vertices?

Clique is NP-complete.

In NP ... easy!

NP-hardness: using 3-sat.

Reduction for Clique

- One vertex per literal per clause
- Edges between vertices in different clauses, except edges between x_i and not(x_i)
- If *m* clauses, look for clique of size *m*

Clause: $\{x_1, not(x_2), x_3\}$

Clause: $\{x_1, x_2, not(x_3)\}$

Universiteit Utrecht

Correctness

- There is a satisfying truth assignment, if and only if there is a clique with *m* vertices
- =>: Select from each clause the true literal. The corresponding vertices form a clique with *m* vertices.
- <=: Set variable x_i to true, if a vertex representing x_i is in the clique, otherwise set it to false. This is a satisfying truth assignment:
 - The clique must contain one vertex from each 3 vertices representing a clause.
 - It cannot contain a vertex representing x_i and a vertex representing not(x_i).

Independent set

- Independent set: set of vertices $W \subseteq V$, such that for all $v, w \in W$: $\{v, w\} \notin E$.
- Independent set problem:
 - Given: graph G, integer k
 - Question: Does G have an independent set of size at least k?
- Independent set is NP-complete

Independent set is NP-complete

- In NP.
- NP-hard: transform from Clique.
- W is a clique in G, if and only if W is an independent set in the *complement* of G (there is an edge in G^c iff. there is no edge in G).

Universiteit Utrecht

How do I write down this proof?

- Theorem. Independent Set is NP-complete.
- Proof: The problem belongs to NP: as certificates, we use sets of vertices; we can check in polynomial time for a set that it is a clique, and that its size is at least *k*.
 To show NP-hardness, we use a reduction from Clique. Let (G,k) be an input to the clique problem. Transform this to (G^c,k) with G^c the complement of G. As G has a clique with at least *k* vertices, if and only if G^c has an independent set with *k* vertices, this is a correct transformation. The transformation can clearly be carried out in polynomial time. QED

Vertex Cover

- Set of vertices $W \subseteq V$ with for all $\{x, y\} \in E$: $x \in W$ or $y \in W$.
- Vertex Cover problem:

– Given G, find vertex cover of minimum size

Vertex cover is NP-complete

- In NP.
- NP-hard: transform from independent set.
- W is a vertex cover in G, if and only if V-W is an independent set in G.

Example of restriction

• Weighted vertex cover

- Given: Graph G=(V,E), for each vertex $v \in V$, a positive integer weight w(v), integer k.
- Question: Does G have a vertex cover of total weight at most k?
- NP-complete
 - <mark>– In</mark> NP.
 - NP-hardness: set all weights to 1 (VC).

Techniques for proving NP-hardness

- Local replacement
- Restriction
- Component Design

6

Local replacement proofs

Universiteit Utrecht

Technique 1: Local replacement

- Form an instance of our problem by
 - Taking an instance of a known NP-complete
 problem
 - Making some change "everywhere"
 - Such that we get an equivalent instance, but now of the problem we want to show NP-hard

Examples of Local Replacement

- We saw or will see:
 - 3-Satisfiability
 - Independent Set
 - <mark>– T</mark>SP
 - Vertex Cover

7

Restriction proofs

Universiteit Utrecht

Technique 2: Restriction

- Take the problem.
- Add a restriction to *the set of instances*.
 NOT to the *problem definition*!
- Show that this is a known NP-complete problem

Restriction: Weighted Vertex Cover

• Weighted vertex cover

- Given: Graph G=(V,E), for each vertex $v \in V$, a positive integer weight w(v), integer k.
- Question: Does G have a vertex cover of total weight at most k?
- NP-complete
 - <mark>– In</mark> NP.
 - NP-hardness: set all weights to 1 (VC).

Universiteit Utrecht

Restriction: Knapsack

• Knapsack

- Given: Set *S* of items, each with integer value *v* and integer weight *w*, integers W and V.
- Question: is there a subset of S of weight no more than W, with total value at least V?
- NP-complete
 - <mark>– In</mark> NP
 - NP-hardness: set all weights equal to their values (Subset sum)

Universiteit Utrecht

9

Component design proofs

Universiteit Utrecht

Technique 3: Component design

- Build (often complicated) parts of an instance with certain properties
- Glue them together in such a way that the proof works
- Examples: Clique, Hamiltonian Circuit

Hamiltonian circuit

- Given: Graph G
- Question: does G have a simple cycle that contains all vertices?

NP-completeness of Hamiltonian Circuit

- HC is in NP.
- Vertex Cover ≤_P Hamiltonain Circuit: complicated proof (*component design*)
 - <mark>– W</mark>idgets
 - Selector vertices
 - Given a graph G and an integer k, we construct a graph H, such that H has a HC, if and only if G has a VC of size k.

Universiteit Utrecht

• For each edge $\{u, v\}$ we have a widget W_{uv}

Universiteit Utrecht

Only possible ways to visit all vertices in widget

Universiteit Utrecht

Selector vertices

- We have k selector vertices $s_1, ..., s_k$
- These will represent the vertices selected for the vertex cover

Universiteit Utrecht

Connecting the widgets

• For each vertex v we connect the widgets of the edges $\{v, w\}$. Suppose v has neighbors x_1, \ldots, x_r : add edges $\{[v, x_1, 6], [v, x_2, 1]\},\$ $\{[v, x_2, 6], [v, x_3, 1]\}, \ldots,$ $\{[v, x_{r_{1}}, 6], [v, x_{r_{1}}, 1]\}.$

Universiteit Utrecht

Connecting the selector vertices to the widgets

• Each selector vertex is attached to the first neighbor widget of each vertex, i.e. to vertex $[v, x_{l}, 1]$ and to the last neighbor widget $[v, x_{r}, 6]$

Correctness of reduction

Lemma: G has a vertex cover of size (at most) k, if and only if H has a Hamiltonian circuit.

Finally

- The reduction takes polynomial time.
- So, we can conclude that Hamiltonian Circuit is NP-complete.

Universiteit Utrecht

TSP

- NP-completeness of TSP by *local replacement*:
 In NP.
 - Reduction from Hamiltonian Circuit:
 - Take city for each vertex
 - Take cost(i,j) = 1 if $\{i,j\} \notin E$
 - Take cost(i,j) = 0, if $\{i,j\} \in E$
 - G has HC, if and only if there is a TSP-tour of length 0.
- Remark: variant with triangle inequality: use weights 2, 1 and n

10

Weak and strong NP-completeness

Universiteit Utrecht

Problems with numbers

• Strong NP-complete:

- Problem is NP-complete if numbers are given in unary
- Weak NP-complete:
 - Problem is NP-complete if numbers are given in binary, *but* polynomial time solvable when numbers are given in unary

Examples

• Subset-sum

- Given: set of positive integers S, integer t.
- Question: Is there a subset of S with total sum *t*?
 - Weak NP-complete. (Solvable in *pseudo-polynomial time* using dynamic programming: O(nt) time...)

3-Partition

- Given: set of positive integers S, (integer t).
- Question: can we partition S into sets of exactly 3 elements each, such that each has the same sum (t)?
 - Strong NP-hard.
 - *t* must be the sum of S divided by |S|/3 = number of groups
 - Starting point for many reductions

Remark

- Easily made mistake: reductions from subset sum that create exponentially large instances
- Subgraph Isomorphism for degree 2 graphs
 Given: Graphs G and H, such that each vertex in G and H has degree at most 2
 - Question: Is G a subgraph of H?
 - NP-hardness proof can be done with 3-PARTITION

11

Some discussion

Universiteit Utrecht

Discussion

- Is $P \neq NP$? (who thinks so?)
- www.claymath.org/prizeproblems/pvsnp.htm : one of the millennium problems
- Why so hard to prove?
- What to do with problems that are NP-complete?
- Other complexity notions...

P vs NP is hard to prove

- P = NP? Hard to design poly algorithm...
- Current mathematical knowledge does not suffice to prove P != NP:
 - "Natural Proofs" can not separate P from NP (Razborov & Rudich, 1993)
 - P^A = NP^A, but P^B != NP^B for some *oracles* A and B, so *diagonalisation* can not separate P from NP (Baker, Gill, & Solovay, 1975)

12

A Few Animals from The Complexity Zoo

Universiteit Utrecht

Much more classes

- In Theoretical Computer Science, a large number of other complexity classes have been defined
- Here, we give an informal introduction to a few of the more important ones
- There is much, much, much more...

coNP

- Complement of a class: switch "yes" and "no"
- coNP: complement of problems in NP, e.g.: NOT-HAMILTONIAN
 - Given: Graph G
 - Question: Does G NOT have a Hamiltonian circuit UNSATISFIABLE
 - <mark>– Gi</mark>ven: Boolean formula in CNF
 - Question: Do all truth assignments to the variable make the formula false?

Universiteit Utrecht

PSPACE

- All decision problems solvable in polynomial space
- Unknown: is P=PSPACE?
- **S**avitch, 1970: PSPACE = NPSPACE
 - NPSPACE: solvable with non-deterministic program in polynomial time
- **PSP**ACE-complete, e.g.,
 - generalized Tic-Tac-Toe, generalized Reversi,
 - Quantified Boolean formula's (QBF):

$$\forall x_1 \exists x_2 \forall x_3 \exists x_4 \ (x_1 \lor \neg x_2 \lor x_3) \ (x_2 \lor \neg x_3) \$$

Universiteit Utrecht

EXPTIME

- Decision problems that can be solved in exponential time
- P is unequal EXPTIME (Stearns, Hartmanis, 1965)
- **EXPTIME** complete problems:
 - Generalized chess, generalized checkers, generalized go (Japanese drawing rule)
 - Given a Turing Machine M and integer k, does M halt after k steps?

Universiteit Utrecht

And a few more

- NEXPTIME: non-deterministic exponential time
- EXPSPACE = NEXPSPACE: exponential space

Universiteit Utrecht

Graph Isomorphism

- Discussed in another lecture
- Given two graphs, are they *isomorphic*?
- In NP, not known to be NP-complete; not known to be in P
- Several problems are *equaly hard*: Isomorphism-complete

NC

- NC: "Nicks class", after Nick Pippinger
- Talks about the time to solve a problem with a **parallel** machine
- Model: we have a polynomial number of processors, that use the same memory
 - Variants depending on what happens when processors try to read or write the same memory location simultaneously

NC – the definition

- NC: decision problems that can be solved with a PRAM (Parallel Random Access Machine) with polynomial number of processors in *polylogarithmic* time
 - $O((\log n)^d)$ for some constant d
- Unknown: P=NC?
- P-complete problems are expected not to be in NC. An example is
 - Linear Programming (formulated as decision problem)

Counting

- #P: ("Sharp-P")
- Problems that outputs a number
- The precise definition will not be given here. Think as: "what is the number of certificates for this instance", with polynomial checking of certificates
- **#P-c**omplete e.g.:
 - Number of satisfying truth assignments of 3SAT-formula
 - Number of Hamiltonian circuits in a graph
 - Number of perfect matchings in a given graph
- PP is a related class (vaguely: "decide if the number of solutions is at most given number k")

On PP and #P

- Inference:
 - Given: probabilistic network, observations O, variable X, value x, value p in [0,1]

- Question: $Pr(X = x | O) \le p?$

- Decision variant of problem from course Probabilistic Reasoning
- Is PP-complete; variants are #P-complete
- PP-hard and #P-hard problems are probably not polynomial...

LSPACE or L

- Problems can be solved with only logarithmic extra space:
 - You can read the input as often as you want
 - You may use only $O(\log n)$ extra memory
 - E.g.: $\Theta(1)$ pointers to your input
- NL: non-deterministic logspace...

More

- The Polynomial Time Hierarchy
- Oracles
- UP: unique solutions

Universiteit Utrecht