Exponential time algorithms

Algorithms and networks

Universiteit Utrecht

Today

- Exponential time algorithms: introduction
- Techniques
- 3-coloring
- 4-coloring
- Coloring
- Maximum Independent Set
- TSP

What to do if a problem is NP-complete?

- Solve on special cases
- Heuristics and approximations
- Algorithms that are fast on average
- Good exponential time algorithms

. . .

Good exponential time algorithms

- Algorithms with a running time of $c^n p(n)$
 - c a constant
 - p() a polynomial
 - Notation: $O^*(c^n)$
- Smaller c helps a lot!

Important techniques

- Dynamic programming
- Branch and reduce
 - Measure and conquer (and design)
- Divide and conquer
- Clever enumeration
- Local search
- Inclusion-exclusion

Held-Karp algorithm for TSP

- $O(n^2 2^n)$ algorithm for TSP
- Uses Dynamic programming
- Take some starting vertex *s*
- For set of vertices R ($s \in R$), vertex $w \in R$, let
 - -B(R,w) = minimum length of a path, that
 - Starts in *s*
 - Visits all vertices in R (and no other vertices)
 - Ends in w

TSP: Recursive formulation

- $B({s},s) = 0$
- If |X| > 1, then - $B(X,w) = \min_{v \in X - \{w\}} B(X-\{w\},v\}) + w(v,w)$
- If we have all B(V,v) then we can solve TSP.
- Gives requested algorithm using DPtechniques.

Notation

- O*(f(n)): hides polynomial factors, i.e.,
- O*(f(n)) = O(p(n)*f(n)) for some polynomial p

Universiteit Utrecht

ETH

Exponential Time Hypothesis (ETH):
 Satisability of *n*-variable 3-CNF formulas (3-SAT) cannot be decided in subexponential worst case time, e.g., it cannot be done in O*(2^{o(n)}) time.

Universiteit Utrecht

Running example

- Graph coloring
 - Several applications: scheduling, frequency assignment (usually more complex variants)
 - Different algorithms for small fixed number of colors (3-coloring, 4-coloring, ...) and arbitrary number of colors
 - -2-coloring is easy in O(n+m) time

Universiteit Utrecht

3-coloring

- $O^*(3^n)$ is trivial
- Can we do this faster?

3-coloring in $O^*(2^n)$ time

- G is 3-colorable, if and only if there is a set of vertices S with
 - S is independent
 - G[V-S] is 2-colorable
- Algorithm: enumerate all sets, and test these properties $(2^n \text{ tests of } O(n+m) \text{ time each})$

3-coloring

- Lawler, 1976:
 - We may assume S is a *maximal independent set*
 - Enumerating all maximal independent sets in $O^*(3^{n/3}) = O^*(1.4423^n)$ time
 - There are O*(3^{*n*/3}) maximal independent sets (will be proved later.)
 - Thus $O^*(1.4423^n)$ time algorithm for 3-coloring
- Schiermeyer, 1994; O*(1.398^{*n*}) time

Universiteit Utrecht

• Beigel, Eppstein, 1995: $O^*(1.3446^n)$ time

4-coloring in $O^*(2^n)$ time

- Lawler, 1976
- G is 4-colorable, if and only if we can partition the vertices in two sets X and Y such that G[X] and G[Y] are both 2colorable
- Enumerate all partitions
 - For each, check both halves in O(n+m) time

4-coloring

- Using 3-coloring
 - Enumerate all maximal independent sets S
 - For each, check 3-colorability of G[V-S]

 $-1.4423^n * 1.3446^n = 1.939^n$

- Better: there is always a color with at least *n*/4 vertices
 - Enumerate all m.i.s. S with at least n/4 vertices
 - For each, check 3-colorability of G[V-S]
 - $-1.4423^n * 1.3446^{3n/4} = 1.8009^n$
- Byskov, 2004: O*(1.7504ⁿ) time

Coloring

- Next: coloring when the number of colors is some arbitrary number (not necessarily small)
- First: a dynamic program

Coloring with dynamic programming

- Lawler, 1976: using DP for solving graph coloring.
- $\Box \mathbf{X}(G) = \min_{\mathbf{S} \text{ is m.i.s. in } G} 1 + \mathbf{X}(G[\mathbf{V}-\mathbf{S}])$
- Tabulate chromatic number of G[W] over all subsets W
 - In increasing size
 - Using formula above
 - $-2^{n} * 1.4423^{n} = 2.8868^{n}$

Coloring

- Lawler 1976: 2.4423^{*n*} (improved analysis)
- Eppstein, 2003: 2.4151^{*n*}
- Byskov, 2004: 2.4023^{*n*}
 - All using $O^*(2^n)$ memory
 - Improvements on DP method
- Björklund, Husfeld, 2005: 2.3236^{*n*}
- 2006: Inclusion/Exclusion

Inclusion-exclusion

- Björklund and Husfeld, 2006, and independently Koivisto, 2006
- $O^*(2^n)$ time algorithm for coloring
- Expression: number of ways to cover all vertices with k independent sets

First formula

- Let c_k(G) be the number of ways we can cover all vertices in G with k independent sets, where the stable sets may be overlapping, or even the same
 Sequences (V₁,...,V_k) with the union of the V_i's
 - = V, and each V_{*i*} independent
- Lemma: G is k-colorable, if and only if $c_k(G) > 0$

Universiteit Utrecht

Counting independent sets

- Let s(X) be the number of independent sets that do not intersect X, i.e., the number of independent sets in G(V-X).
- We can compute all values s(X) in $O^*(2^n)$ time.
 - $\mathbf{s}(\mathbf{X}) = \mathbf{s}(\mathbf{X} \cup \{v\}) + \mathbf{s}(\mathbf{X} \cup \{v\} \cup \mathbf{N}(v)) \text{ for } v \notin \mathbf{X}$
 - Count IS's with *v* and IS's without *v*
 - Now use DP and store all values
 - Polynomial space slower algorithm also possible, by computing s(X) each time again

Expressing
$$c_k$$
 in s
 $c_k(G) = \sum_{X \subseteq V} (-1)^{|X|} s(X)^k$

- s(X)^k counts the number of ways to pick k independent sets from V-X
- If a pick covers all vertices, it is counted in $s(\emptyset)$
- If a pick does not cover all vertices, suppose it covers all vertices in V-Y, then it is counted in all X that are a subset in Y
 - With a + 1 if X is even, and a 1 if X is odd

Universiteit Utrecht

- Y has equally many even as odd subsets: total contribution is 0

Explanations

- Consider the number of *k*-tuples (W(1), ..., W(*k*)) with each W(*i*) an independent set in G
- If we count all these *k*-tuples, we count all colourings, but also some *wrong k*-tuples: those which avoid some vertices
- So, subtract from this number all *k*-tuples of independent sets that avoid a vertex *v*, for all *v*
- However, we now subtract too many, as *k*-tuples that avoid two or more vertices are subtracted twice
- So, add for all pairs $\{v, w\}$, the number of k-tuples that avoid both v and w
- But, then what happens to *k*-tuples that avoid 3 vertices???
- Continue, and note that the parity tells if we add or subtract...
- This gives the formula of the previous slide

Universiteit Utrecht

The algorithm

- Tabulate all s(X)
- Compute values $c_k(G)$ with the formula
- Take the smallest k for which $c_k(G) > 0$

Universiteit Utrecht

Maximum independent set

- Branch and reduce algorithm (folklore)
- Uses:
 - Branching rule
 - Reduction rules

Universiteit Utrecht

Two simple reduction rules

- Reduction rule 1: if v has degree 0, put v in the solution set and recurse on G-v
- Reduction rule 2: if v has degree 1, then put v in the solution set. Suppose v has neighbor w. Recurse on $G \{v, w\}$.
 - If v has degree 1, then there is always a maximum independent set containing v

Universiteit Utrecht

Idea for branching rule

- Consider some vertex v with neighbors w_1 , w_2, \ldots, w_d . Suppose S is a maximum independent set. One of the following cases must hold:
- *1.* $v \in S$. Then w_1, w_2, \ldots, w_d are not in S.
- 2. For some $i, 1 \le i \le d, v, w_1, w_2, \dots, w_{i-1}$ are not in S and $w_i \in S$. Also, no neighbor of w_i is in S.

Universiteit Utrecht

Branching rule

- Take a vertex *v* of minimum degree.
- Suppose v has neighbors $w_1, w_2, ..., w_d$.
- Set *best* to 1 + what we get when we recurse on $G \{v, w_1, w_2, ..., w_d\}$. (Here we put v in the solution set.)
- For i = 1 to d do
 - Recurse on G { $v, w_1, w_2, ..., w_i$ } N(w_i). Say, it gives a solution of value x. (N(w_i) is set of neighbors of w_i . Here we put w_i in S.)
 - $Set \ best = max \ (best, x+1).$
- Return best

Using some bookkeeping gives the corresponding set S

Analysis

- Say T(*n*) is the number of *leaves* in the search tree when we have a graph with *n* vertices.
- If *v* has degree *d*, then we have $T(n) \le (d+1) T(n-d-1)$.
 - Note that each w_i has degree d as v had minimum
 degree, so we always recurse on a graph with at least d 1 fewer vertices.
- d > 1 (because of reduction rules).
- With induction: $T(n) \le 3^{n/3}$.
- Total time is $O^*(3^{n/3}) = O^*(1.4423^n)$.

Number of maximal independent sets

- Suppose M(*n*) is maximum number of m.i.s.'s in graph with *n* vertices
- Choose *v* of minimum degree *d*.
- If y has degree 0: number of m.i.s.'s is at most $1^* M(n)$
- If v has degree 1: number of m.i.s.'s is at most $2^* M(n-2)$
- If v has degree d>1: number of m.i.s's is at most $(d+1)^*$ M(n-d-1)
- $M(n) \leq 3^{n/3}$ with induction

Universiteit Utrecht

Some remarks

- Can be done without reduction step
- Bound on number of m.i.s.'s sharp: consider a collection of triangles

A faster algorithm

- Reduction rule 3: if all vertices of G have degree at most two, solve problem directly.
 (Easy in O(n+m) time.)
- New branching rule:
 - Take vertex *v* of **maximum** degree
 - Take best of two recursive steps:
 - *v* not in solution: recurse of $G \{v\}$
 - v in solution: recurse on $G \{v\} N(v)$; add 1.

Universiteit Utrecht

Analysis

- Time on graph with n vertices T(n).
- We have $T(n) \le T(n-1) + T(n-4) + O(n+m)$
 - As v has degree at least 3, we loose in the second case at least 4 vertices
- Induction: $T(n) = O^*(1.3803^n)$
 - Solve (with e.g., Maple or Mathematica, SAGEmath (http://www.sagemath.org) or Solver from Excel)
 - $x^4 = x^3 + 1$

Universiteit Utrecht

Maximum Independent Set Final remarks

- More detailed analysis gives better bounds
- Current best known: $O(1.1844^n)$ (Robson, 2001)
 - Extensive, computer generated case analysis!
 - Includes memorization (DP)
- 2005: Fomin, Grandoni, Kratsch: the *measure and conquer* technique for better analysis of *branch and reduce* algorithms
 - Much simpler and only slightly slower compared to Robson

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Final remarks

- Techniques for designing exponential time algorithms
- Other techniques, e.g., local search
- Combination of techniques
- Several interesting open problems

