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Today 

• Exponential time algorithms: introduction 

• Techniques 

• 3-coloring 

• 4-coloring 

• Coloring 

• Maximum Independent Set 

• TSP 
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What to do if a problem is 

 NP-complete? 

• Solve on special cases 

• Heuristics and approximations 

• Algorithms that are fast on average 

• Good exponential time algorithms 

• … 
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Good exponential time 

algorithms 

• Algorithms with a running time of cn.p(n) 

– c a constant 

– p() a polynomial 

– Notation: O*(cn) 

• Smaller c helps a lot! 
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Important techniques 

• Dynamic programming 

• Branch and reduce 

– Measure and conquer (and design) 

• Divide and conquer 

• Clever enumeration 

• Local search 

• Inclusion-exclusion 
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Held-Karp algorithm for TSP 

• O(n22n) algorithm for TSP 

• Uses Dynamic programming 

• Take some starting vertex s 

• For set of vertices R (s  R), vertex w  R, let 

– B(R,w) = minimum length of a path, that 

• Starts in s 

• Visits all vertices in R (and no other vertices) 

• Ends in w 
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TSP: Recursive formulation 

• B({s},s) = 0 

• If |X| > 1, then 

– B(X,w) = minv  X – {w}B(X-{w}, v}) + w(v,w) 

• If we have all B(V,v) then we can solve 

TSP. 

• Gives requested algorithm using DP-

techniques. 



Notation 

• O*(f(n)):  hides polynomial factors, i.e., 

• O*(f(n)) = O(p(n)*f(n)) for some 

polynomial p 
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ETH 

• Exponential Time Hypothesis (ETH): 

Satisability of n-variable 3-CNF formulas 

(3-SAT) cannot be decided in 

subexponential worst case time, e.g., it 

cannot be done in O*(2o(n)) time. 
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Running example 

• Graph coloring 

– Several applications: scheduling, frequency 

assignment (usually more complex variants) 

– Different algorithms for small fixed number of 

colors (3-coloring, 4-coloring, …) and arbitrary 

number of colors 

– 2-coloring is easy in O(n+m) time 
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3-coloring 

• O*(3n) is trivial 

• Can we do this faster? 
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3-coloring in O*(2n) time 

• G is 3-colorable, if and only if there is a set 

of vertices S with 

– S is independent 

– G[V-S] is 2-colorable 

• Algorithm: enumerate all sets, and test these 

properties (2n tests of O(n+m) time each) 
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3-coloring 

• Lawler, 1976: 

– We may assume S is a maximal independent set 

– Enumerating all maximal independent sets in O*(3n/3) = 

O*(1.4423n) time 

• There are O*(3n/3) maximal independent sets (will be proved 

later.) 

– Thus O*(1.4423n) time algorithm for 3-coloring 

• Schiermeyer, 1994; O*(1.398n) time 

• Beigel, Eppstein, 1995: O*(1.3446n) time 
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4-coloring in O*(2n) time 

• Lawler, 1976 

• G is 4-colorable, if and only if we can 

partition the vertices in two sets X and Y 

such that G[X] and G[Y] are both 2-

colorable 

• Enumerate all partitions 

– For each, check both halves in O(n+m) time 
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4-coloring 

• Using 3-coloring 

– Enumerate all maximal independent sets S 

– For each, check 3-colorability of G[V-S] 

– 1.4423n * 1.3446n = 1.939n 

• Better: there is always a color with at least n/4 
vertices  

– Enumerate all m.i.s. S with at least n/4 vertices 

– For each, check 3-colorability of G[V-S] 

– 1.4423n * 1.34463n/4 = 1.8009n 

• Byskov, 2004: O*(1.7504n) time 
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Coloring 

• Next: coloring when the number of colors is some 
arbitrary number (not necessarily small) 

• First: a dynamic program 



Exponential time algorithms 18 

Coloring with dynamic 

programming 

• Lawler, 1976: using DP for solving graph 
coloring. 

(G) = minS is m.i.s. in G 1+X(G[V-S]) 

• Tabulate chromatic number of G[W] over 
all subsets W 

– In increasing size 

– Using formula above 

– 2n * 1.4423n = 2.8868n 
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Coloring 

• Lawler 1976: 2.4423n (improved analysis) 

• Eppstein, 2003: 2.4151n  

• Byskov, 2004: 2.4023n  

– All using O*(2n) memory 

– Improvements on DP method 

• Björklund, Husfeld, 2005: 2.3236n 

• 2006: Inclusion/Exclusion 
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Inclusion-exclusion 

• Björklund and Husfeld, 2006, and 

independently Koivisto, 2006 

• O*(2n) time algorithm for coloring 

• Expression: number of ways to cover all 

vertices with k independent sets 
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First formula 

• Let ck(G) be the number of ways we can 

cover all vertices in G with k independent 

sets, where the stable sets may be 

overlapping, or even the same 

– Sequences (V1,…,Vk) with the union of the Vi’s 

= V, and each Vi independent 

• Lemma: G is k-colorable, if and only if 

ck(G) > 0 
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Counting independent sets 

• Let s(X) be the number of independent sets that do 

not intersect X, i.e., the number of independent 

sets in G(V-X). 

• We can compute all values s(X) in O*(2n) time.  

– s(X) = s(X  {v}) + s(X  {v}  N(v)) for v  X 

• Count IS’s with v and IS’s without v 

– Now use DP and store all values 

– Polynomial space slower algorithm also possible, by 

computing s(X) each time again 
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Expressing ck in s 

• s(X)k counts the number of ways to pick k independent sets 
from V-X 

• If a pick covers all vertices, it is counted in s( ) 

• If a pick does not cover all vertices, suppose it covers all 
vertices in V-Y, then it is counted in all X that are a subset 
in Y 

– With a +1 if X is even, and a -1 if X is odd 

– Y has equally many even as odd subsets: total contribution is 0 
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Explanations 

• Consider the number of k-tuples (W(1), … , W(k)) with each W(i) an 
independent set in G 

• If we count all these k-tuples, we count all colourings, but also some 
wrong k-tuples: those which avoid some vertices 

• So, subtract from this number all k-tuples of independent sets that 
avoid a vertex v, for all v 

• However, we now subtract too many, as k-tuples that avoid two or 
more vertices are subtracted twice 

• So, add for all pairs {v,w}, the number of k-tuples that avoid both v 
and w 

• But, then what happens to k-tuples that avoid 3 vertices??? 

• Continue, and note that the parity tells if we add or subtract… 

• This gives the formula of the previous slide 
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The algorithm 

• Tabulate all s(X) 

• Compute values ck(G) with the formula  

• Take the smallest k for which ck(G) > 0 

O*(2n) 
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Maximum independent set 

• Branch and reduce algorithm (folklore) 

• Uses: 

– Branching rule 

– Reduction rules 
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Two simple reduction rules 

• Reduction rule 1: if v has degree 0, put v in 

the solution set and recurse on G-v 

• Reduction rule 2: if v has degree 1, then put 

v in the solution set. Suppose v has neighbor 

w. Recurse on G – {v,w}. 

– If v has degree 1, then there is always a 

maximum independent set containing v 
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Idea for branching rule 

• Consider some vertex v with neighbors w1, 
w2, … , wd. Suppose S is a maximum 
independent set. One of the following 
cases must hold: 

1. v  S. Then w1, w2, … , wd are not in S. 

2. For some i, 1 i d, v, w1, w2, … , wi-1 are 
not in S and wi  S. Also, no neighbor of 
wi is in S. 
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Branching rule 

• Take a vertex v of minimum degree. 

• Suppose v has neighbors w1, w2, …, wd. 

• Set best to 1 + what we get when we recurse on G – {v, w1, 
w2, …, wd}. (Here we put v in the solution set.) 

• For i = 1 to d do 

– Recurse on G – {v, w1, w2, …, wi} – N(wi). Say, it gives 
a solution of value x. (N(wi) is set of neighbors of wi. 
Here we put wi in S.) 

– Set best = max (best, x+1). 

• Return best 

 

Using some 

bookkeeping gives the 

corresponding set S 
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Analysis 

• Say T(n) is the number of leaves in the search tree 
when we have a graph with n vertices. 

• If v has degree d, then we have T(n) (d+1) T(n-
d-1). 

– Note that each wi has degree d as v had minimum 
degree, so we always recurse on a graph with at least d-
1 fewer vertices. 

• d > 1 (because of reduction rules). 

• With induction: T(n) 3n/3. 

• Total time is O*(3n/3) = O*(1.4423n). 
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Number of  

maximal independent sets 
• Suppose M(n) is maximum number of m.i.s.’s in graph 

with n vertices 

• Choose v of minimum degree d. 

• If v has degree 0: number of m.i.s.’s is at most 1* M(n) 

• If v has degree 1: number of m.i.s.’s is at most 2* M(n-2) 

• If v has degree d>1: number of m.i.s’s is at most (d+1)* 

M(n – d – 1) 

• M(n)  3n/3 with induction 
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Some remarks 

• Can be done without reduction step 

• Bound on number of m.i.s.’s sharp: consider 

a collection of triangles 
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A faster algorithm 

• Reduction rule 3: if all vertices of G have 

degree at most two, solve problem directly. 

(Easy in O(n+m) time.) 

• New branching rule: 

– Take vertex v of maximum degree 

– Take best of two recursive steps: 

• v not in solution: recurse of G – {v} 

• v in solution: recurse on G – {v} – N(v); add 1. 
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Analysis 

• Time on graph with n vertices T(n). 

• We have T(n) T(n – 1) + T(n – 4) + 
O(n+m) 
– As v has degree at least 3, we loose in the 

second case at least 4 vertices 

• Induction: T(n) =  O*(1.3803n) 
– Solve (with e.g., Maple or Mathematica, 

SAGEmath (http://www.sagemath.org) or 
Solver from Excel) 

• x4 = x3 + 1 
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Maximum Independent Set 

Final remarks 
• More detailed analysis gives better bounds 

• Current best known: O(1.1844n) (Robson, 2001) 
– Extensive, computer generated case analysis! 

– Includes memorization (DP) 

• 2005: Fomin, Grandoni, Kratsch: the measure and 
conquer technique for better analysis of branch 
and reduce algorithms  
– Much simpler and only slightly slower compared to 

Robson 
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Final remarks 

• Techniques for designing exponential time 

algorithms 

• Other techniques, e.g., local search 

• Combination of techniques 

• Several interesting open problems 


