
Exponential time algorithms

Algorithms and networks

Exponential time algorithms 2

Today

• Exponential time algorithms: introduction

• Techniques

• 3-coloring

• 4-coloring

• Coloring

• Maximum Independent Set

• TSP

Exponential time algorithms 3

What to do if a problem is

 NP-complete?

• Solve on special cases

• Heuristics and approximations

• Algorithms that are fast on average

• Good exponential time algorithms

• …

Exponential time algorithms 4

Exponential time algorithms 5

Good exponential time

algorithms

• Algorithms with a running time of cn.p(n)

– c a constant

– p() a polynomial

– Notation: O*(cn)

• Smaller c helps a lot!

Exponential time algorithms 6

Important techniques

• Dynamic programming

• Branch and reduce

– Measure and conquer (and design)

• Divide and conquer

• Clever enumeration

• Local search

• Inclusion-exclusion

A&N: TSP 7

Held-Karp algorithm for TSP

• O(n22n) algorithm for TSP

• Uses Dynamic programming

• Take some starting vertex s

• For set of vertices R (s R), vertex w R, let

– B(R,w) = minimum length of a path, that

• Starts in s

• Visits all vertices in R (and no other vertices)

• Ends in w

A&N: TSP 8

TSP: Recursive formulation

• B({s},s) = 0

• If |X| > 1, then

– B(X,w) = minv X – {w}B(X-{w}, v}) + w(v,w)

• If we have all B(V,v) then we can solve

TSP.

• Gives requested algorithm using DP-

techniques.

Notation

• O*(f(n)): hides polynomial factors, i.e.,

• O*(f(n)) = O(p(n)*f(n)) for some

polynomial p

Exponential time algorithms 9

ETH

• Exponential Time Hypothesis (ETH):

Satisability of n-variable 3-CNF formulas

(3-SAT) cannot be decided in

subexponential worst case time, e.g., it

cannot be done in O*(2o(n)) time.

Exponential time algorithms 10

Exponential time algorithms 11

Running example

• Graph coloring

– Several applications: scheduling, frequency

assignment (usually more complex variants)

– Different algorithms for small fixed number of

colors (3-coloring, 4-coloring, …) and arbitrary

number of colors

– 2-coloring is easy in O(n+m) time

Exponential time algorithms 12

3-coloring

• O*(3n) is trivial

• Can we do this faster?

Exponential time algorithms 13

3-coloring in O*(2n) time

• G is 3-colorable, if and only if there is a set

of vertices S with

– S is independent

– G[V-S] is 2-colorable

• Algorithm: enumerate all sets, and test these

properties (2n tests of O(n+m) time each)

Exponential time algorithms 14

3-coloring

• Lawler, 1976:

– We may assume S is a maximal independent set

– Enumerating all maximal independent sets in O*(3n/3) =

O*(1.4423n) time

• There are O*(3n/3) maximal independent sets (will be proved

later.)

– Thus O*(1.4423n) time algorithm for 3-coloring

• Schiermeyer, 1994; O*(1.398n) time

• Beigel, Eppstein, 1995: O*(1.3446n) time

Exponential time algorithms 15

4-coloring in O*(2n) time

• Lawler, 1976

• G is 4-colorable, if and only if we can

partition the vertices in two sets X and Y

such that G[X] and G[Y] are both 2-

colorable

• Enumerate all partitions

– For each, check both halves in O(n+m) time

Exponential time algorithms 16

4-coloring

• Using 3-coloring

– Enumerate all maximal independent sets S

– For each, check 3-colorability of G[V-S]

– 1.4423n * 1.3446n = 1.939n

• Better: there is always a color with at least n/4
vertices

– Enumerate all m.i.s. S with at least n/4 vertices

– For each, check 3-colorability of G[V-S]

– 1.4423n * 1.34463n/4 = 1.8009n

• Byskov, 2004: O*(1.7504n) time

Exponential time algorithms 17

Coloring

• Next: coloring when the number of colors is some
arbitrary number (not necessarily small)

• First: a dynamic program

Exponential time algorithms 18

Coloring with dynamic

programming

• Lawler, 1976: using DP for solving graph
coloring.

(G) = minS is m.i.s. in G 1+X(G[V-S])

• Tabulate chromatic number of G[W] over
all subsets W

– In increasing size

– Using formula above

– 2n * 1.4423n = 2.8868n

Exponential time algorithms 19

Coloring

• Lawler 1976: 2.4423n (improved analysis)

• Eppstein, 2003: 2.4151n

• Byskov, 2004: 2.4023n

– All using O*(2n) memory

– Improvements on DP method

• Björklund, Husfeld, 2005: 2.3236n

• 2006: Inclusion/Exclusion

Exponential time algorithms 20

Inclusion-exclusion

• Björklund and Husfeld, 2006, and

independently Koivisto, 2006

• O*(2n) time algorithm for coloring

• Expression: number of ways to cover all

vertices with k independent sets

Exponential time algorithms 21

First formula

• Let ck(G) be the number of ways we can

cover all vertices in G with k independent

sets, where the stable sets may be

overlapping, or even the same

– Sequences (V1,…,Vk) with the union of the Vi’s

= V, and each Vi independent

• Lemma: G is k-colorable, if and only if

ck(G) > 0

Exponential time algorithms 22

Counting independent sets

• Let s(X) be the number of independent sets that do

not intersect X, i.e., the number of independent

sets in G(V-X).

• We can compute all values s(X) in O*(2n) time.

– s(X) = s(X {v}) + s(X {v} N(v)) for v X

• Count IS’s with v and IS’s without v

– Now use DP and store all values

– Polynomial space slower algorithm also possible, by

computing s(X) each time again

Exponential time algorithms 23

Expressing ck in s

• s(X)k counts the number of ways to pick k independent sets
from V-X

• If a pick covers all vertices, it is counted in s()

• If a pick does not cover all vertices, suppose it covers all
vertices in V-Y, then it is counted in all X that are a subset
in Y

– With a +1 if X is even, and a -1 if X is odd

– Y has equally many even as odd subsets: total contribution is 0

VX

kX

k XsGc)()1()(||

Exponential time algorithms 24

Explanations

• Consider the number of k-tuples (W(1), … , W(k)) with each W(i) an
independent set in G

• If we count all these k-tuples, we count all colourings, but also some
wrong k-tuples: those which avoid some vertices

• So, subtract from this number all k-tuples of independent sets that
avoid a vertex v, for all v

• However, we now subtract too many, as k-tuples that avoid two or
more vertices are subtracted twice

• So, add for all pairs {v,w}, the number of k-tuples that avoid both v
and w

• But, then what happens to k-tuples that avoid 3 vertices???

• Continue, and note that the parity tells if we add or subtract…

• This gives the formula of the previous slide

Exponential time algorithms 25

The algorithm

• Tabulate all s(X)

• Compute values ck(G) with the formula

• Take the smallest k for which ck(G) > 0

O*(2n)

Exponential time algorithms 26

Maximum independent set

• Branch and reduce algorithm (folklore)

• Uses:

– Branching rule

– Reduction rules

Exponential time algorithms 27

Two simple reduction rules

• Reduction rule 1: if v has degree 0, put v in

the solution set and recurse on G-v

• Reduction rule 2: if v has degree 1, then put

v in the solution set. Suppose v has neighbor

w. Recurse on G – {v,w}.

– If v has degree 1, then there is always a

maximum independent set containing v

Exponential time algorithms 28

Idea for branching rule

• Consider some vertex v with neighbors w1,
w2, … , wd. Suppose S is a maximum
independent set. One of the following
cases must hold:

1. v S. Then w1, w2, … , wd are not in S.

2. For some i, 1 i d, v, w1, w2, … , wi-1 are
not in S and wi S. Also, no neighbor of
wi is in S.

Exponential time algorithms 29

Branching rule

• Take a vertex v of minimum degree.

• Suppose v has neighbors w1, w2, …, wd.

• Set best to 1 + what we get when we recurse on G – {v, w1,
w2, …, wd}. (Here we put v in the solution set.)

• For i = 1 to d do

– Recurse on G – {v, w1, w2, …, wi} – N(wi). Say, it gives
a solution of value x. (N(wi) is set of neighbors of wi.
Here we put wi in S.)

– Set best = max (best, x+1).

• Return best

Using some

bookkeeping gives the

corresponding set S

Exponential time algorithms 30

Analysis

• Say T(n) is the number of leaves in the search tree
when we have a graph with n vertices.

• If v has degree d, then we have T(n) (d+1) T(n-
d-1).

– Note that each wi has degree d as v had minimum
degree, so we always recurse on a graph with at least d-
1 fewer vertices.

• d > 1 (because of reduction rules).

• With induction: T(n) 3n/3.

• Total time is O*(3n/3) = O*(1.4423n).

Exponential time algorithms 31

Number of

maximal independent sets
• Suppose M(n) is maximum number of m.i.s.’s in graph

with n vertices

• Choose v of minimum degree d.

• If v has degree 0: number of m.i.s.’s is at most 1* M(n)

• If v has degree 1: number of m.i.s.’s is at most 2* M(n-2)

• If v has degree d>1: number of m.i.s’s is at most (d+1)*

M(n – d – 1)

• M(n) 3n/3 with induction

Exponential time algorithms 32

Some remarks

• Can be done without reduction step

• Bound on number of m.i.s.’s sharp: consider

a collection of triangles

Exponential time algorithms 33

A faster algorithm

• Reduction rule 3: if all vertices of G have

degree at most two, solve problem directly.

(Easy in O(n+m) time.)

• New branching rule:

– Take vertex v of maximum degree

– Take best of two recursive steps:

• v not in solution: recurse of G – {v}

• v in solution: recurse on G – {v} – N(v); add 1.

Exponential time algorithms 34

Analysis

• Time on graph with n vertices T(n).

• We have T(n) T(n – 1) + T(n – 4) +
O(n+m)
– As v has degree at least 3, we loose in the

second case at least 4 vertices

• Induction: T(n) = O*(1.3803n)
– Solve (with e.g., Maple or Mathematica,

SAGEmath (http://www.sagemath.org) or
Solver from Excel)

• x4 = x3 + 1

Exponential time algorithms 35

Maximum Independent Set

Final remarks
• More detailed analysis gives better bounds

• Current best known: O(1.1844n) (Robson, 2001)
– Extensive, computer generated case analysis!

– Includes memorization (DP)

• 2005: Fomin, Grandoni, Kratsch: the measure and
conquer technique for better analysis of branch
and reduce algorithms
– Much simpler and only slightly slower compared to

Robson

Exponential time algorithms 36

Exponential time algorithms 37

Final remarks

• Techniques for designing exponential time

algorithms

• Other techniques, e.g., local search

• Combination of techniques

• Several interesting open problems

