Exponential time algorithms

Algorithms and networks

Today

Exponential time algorithms: introduction
Techniques

3-coloring

4-coloring

Coloring

Maximum Independent Set

TSP

iversiteit Utrecht Exponential time algorithms

What to do If a problem Is
NP-complete?

Solve on special cases

Heuristics and approximations
Algorithms that are fast on average
Good exponential time algorithms

iversiteit Utrecht Exponential time algorithms

BROTE-FORCE
SOL-UTT1ON:

o(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O(n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?
3

S
SHUT THE
HEW VR

Universiteit Utrecht

Exponential time algorithms

Good exponential time
algorithms

« Algorithms with a running time of c".p(n)
— C a constant
— p() a polynomial
— Notation: O*(c")

« Smaller ¢ helps a lot!

iversiteit Utrecht Exponential time algorithms

Important techniques

Dynamic programming

Branch and reduce

— Measure and conquer (and design)
Divide and conquer

Clever enumeration

|_ocal search
Inclusion-exclusion

Universiteit Utrecht Exponential time algorithms

Held-Karp algorithm for TSP

O(n?2") algorithm for TSP
Uses Dynamic programming
Take some starting vertex s

For set of vertices R (s € R), vertex w € R, let
— B(R,w) = minimum length of a path, that
o Startsins
« Visits all vertices in R (and no other vertices)
 Endsinw

: Universiteit Utreclht A&N: TSP

TSP: Recursive formulation

B({s},s)=0
I |X| > 1, then
— B(X,w) = min, . x _nBX-{w}, v}) + w(v,w)

If we have all B(V,v) then we can solve
TSP.

Gives requested algorithm using DP-
techniques.

_ : Universiteit irecht A&N: TSB

Notation

« O*(f(n)): hides polynomial factors, I.e.,

* O*(f(n)) = O(p(n)*f(n)) for some
polynomial p

= M S Universiteit Utrecht Exponential time algorithms

10

ETH

Exponential Time Hypothesis (ETH):
Satisability of n-variable 3-CNF formulas
(3-SAT) cannot be decided In
subexponential worst case time, e.g., It
cannot be done in O*(2°M) time.

iversiteit Utrecht Exponential time algorithms

Running example

 Graph coloring

— Several applications: scheduling, frequency
assignment (usually more complex variants)

— Different algorithms for small fixed number of
colors (3-coloring, 4-coloring, ...) and arbitrary
number of colors

— 2-coloring Is easy in O(n+m) time

11

& Universiteit Utrecht Exponential time algorithms

3-coloring

e O*(3") Is trivial
e Can we do this faster?

= Universiteit Utrecht

12

Exponential time algorithms

3-coloring In O*(2") time

« G is 3-colorable, if and only if there Is a set
of vertices S with
— S Is Independent
— G[V-S] is 2-colorable

 Algorithm: enumerate all sets, and test these
properties (2" tests of O(n+m) time each)

13 iversiteit Utrecht Exponential time algorithms

3-coloring

« Lawler, 1976:

— We may assume S is a maximal independent set
— Enumerating all maximal independent sets in O*(3"3) =
0*(1.4423") time

 There are O*(3"3) maximal independent sets (will be proved
later.)

— Thus O*(1.4423") time algorithm for 3-coloring

» Schiermeyer, 1994; O*(1.398") time
 Beigel, Eppstein, 1995: O*(1.3446") time

14

Universiteit Utrecht Exponential time algorithms

4-coloring in O*(2") time

e Lawler, 1976

* G is 4-colorable, if and only if we can
partition the vertices in two sets X and Y
such that G[X] and G[Y] are both 2-

colorable

« Enumerate all partitions
— For each, check both halves in O(n+m) time

15 iversiteit Utrecht Exponential time algorithms

4-coloring

 Using 3-coloring
— Enumerate all maximal independent sets S
— For each, check 3-colorability of G[V-S]
— 1.4423"* 1.3446" = 1.939"
 Better: there Is always a color with at least n/4
vertices

— Enumerate all m.i.s. S with at least n/4 vertices
— For each, check 3-colorability of G[V-S]
— 1.4423"* 1.34463"4 = 1.8009"

. Bys, 2004: O*(1.7504") time

16 = & Universiteit Utrecht Exponential time algorithms

Coloring

« Next: coloring when the number of colors is some
arbitrary number (not necessarily small)

 First: a dynamic program

17 Universiteit Utrecht Exponential time algorithms

Coloring with dynamic
programming

 Lawler, 1976: using DP for solving graph
coloring.

L X(G) = minS ISm.i.s. in G 1+X(G [V'S])
 Tabulate chromatic number of G[W] over
all subsets W
— In increasing size

— Using formula above
—2"*1.4423"= 2.8868"

18 iversiteit Utrecht Exponential time algorithms

Coloring

« Lawler 1976: 2.4423" (improved analysis)
» Eppstein, 2003: 2.4151"

« Byskov, 2004: 2.4023"
— All using O*(2") memory
— Improvements on DP method
» Bjorklund, Husfeld, 2005: 2.3236"

e 2006: Inclusion/Exclusion

19 iversiteit Utrecht Exponential time algorithms

Inclusion-exclusion

 Bjorklund and Husfeld, 2006, and
Independently Koivisto, 2006

« O*(2") time algorithm for coloring

» EXpression: number of ways to cover all
vertices with k independent sets

20 iversiteit Utrecht Exponential time algorithms

21

First formula

Let ¢, (G) be the number of ways we can
cover all vertices in G with k independent

sets, where the stable sets may be

overlapping, or even the same

— Sequences (V,...,V,) with the union of the V;’s
=V, and each V; independent

Lemma: G is k-colorable, if and only If

c(G) >0

Exponential time algorithms

Counting Independent sets

 Let s(X) be the number of independent sets that do
not intersect X, I.e., the number of independent

sets in G(V-X).
» \We can compute all values s(X) in O*(2") time.
— 5(X) = s(X U {Vv}) + s(X U {v} U N(V)) for v ¢ X
e Count IS’s with v and IS’s without v

— Now use DP and store all values

— Polynomial space slower algorithm also possible, by
computing s(X) each time again

22 S Universiteit Utrecht Exponential time algorithms

Expressing ¢, In S

_ |X] K
¢ (G) =) (-D)™'s(X)
X<V
 s(X)kcounts the number of ways to pick k independent sets
from V-X

« |fa pick covers all vertices, it is counted in s()
 |fa pick does not cover all vertices, suppose it covers all
vertices in V-Y, then it is counted in all X that are a subset
InY
— Witha+1if Xiseven,anda-1if X is odd
— Y has equally many even as odd subsets: total contribution is 0

23 Universiteit Utrecht Exponential time algorithms

Explanations

» Consider the number of k-tuples (W(1), ... , W(k)) with each W(i) an
Independent set in G

» If we count all these k-tuples, we count all colourings, but also some
wrong k-tuples: those which avoid some vertices

» S0, subtract from this number all k-tuples of independent sets that
avoid a vertex v, forall v

« However, we now subtract too many, as k-tuples that avoid two or
more vertices are subtracted twice

. So(,]I add for all pairs {v,w}, the number of k-tuples that avoid both v
and w

« But, then what happens to k-tuples that avoid 3 vertices???
« Continue, and note that the parity tells if we add or subtract...
» This gives the formula of the previous slide

24 & Universiteit Utrecht Exponential time algorithms

The algorithm

 Tabulate all s(X)
« Compute values ¢, (G) with the formula
 Take the smallest k for which ¢, (G) > 0

Universiteit Utrecht Exponential time algorithms

25

Maximum Independent set

 Branch and reduce algorithm (folklore)

o Uses:
— Branching rule
— Reduction rules

26 iversiteit Utrecht Exponential time algorithms

Two simple reduction rules

 Reduction rule 1: if v has degree O, put v In
the solution set and recurse on G-v

« Reduction rule 2: if v has degree 1, then put
v In the solution set. Suppose v has neighbor
w. Recurse on G — {v,w}.

— If v has degree 1, then there Is always a
maximum Iindependent set containing v

27 iversiteit Utrecht Exponential time algorithms

|dea for branching rule

« Consider some vertex v with neighbors w;,
W,, ..., Wy. SUppose S IS a maximum
Independent set. One of the following

cases must hold:
1. ve S Thenw,, w,, ..., wyarenotinS.

2. Forsomel,1<i1<d,v,w;,W,, ..., W are
not in S and w; € S. Also, no neighbor of

W; IS In S.

28 Exponential time algorithms

29

Branching rule

Take a vertex v of minimum degree.
Suppose v has neighbors w;, w,, ..., Wj.

Set best to 1 + what we get when we recurse on G — {v, wy,
W,, ..., Wy}. (Here we put v in the solution set.)

Fori=1toddo

— Recurse on G — {v, w;, W,, ..., wi} — N(w;). Say, it gives
a solution of value x. (N(w;) is set of neighbors of w..
Here we put w; in S.) _

— Set best = max (best, x+1). Using some

Return best bookkeeping gives the
corresponding set S

Universiteit Utrecht Exponential time algorithms

Analysis

Say T(n) is the number of leaves In the search tree
when we have a graph with n vertices.

If v has degree d, then we have T(n) < (d+1) T(n-
d-1).

— Note that each w; has degree d as v had minimum

degree, so we always recurse on a graph with at least d-
1 fewer vertices.

d > 1 (because of reduction rules).
With induction: T(n) < 373,
Total time is 0*(37°) = 0*(1.4423").

30 ':_: & Universiteit Utrecht Exponential time algorithms

31

Number of
maximal Independent sets

Suppose M(n) is maximum number of m.i.s.’s in graph
with n vertices

Choose v of minimum degree d.

If v has degree 0: number of m.1.s.’s is at most 1* M(n)
If v has degree 1: number of m.1.s.’s is at most 2* M(n-2)
If v has degree d>1: number of m.1.s’s is at most (d+1)*
M(n—-d-1)

M(n) < 3" with induction

& Universiteit Utrecht Exponential time algorithms

Some remarks

 Can be done without reduction step

* Bound on number of m.1.s.’s sharp: consider
a collection of triangles

32

& Universiteit Utrecht Exponential time algorithms

A faster algorithm

 Reduction rule 3: if all vertices of G have
degree at most two, solve problem directly.
(Easy in O(n+m) time.)

* New branching rule:
— Take vertex v of maximum degree

— Take best of two recursive steps:
* v not in solution: recurse of G — {v}
« v in solution: recurse on G — {v} — N(v); add 1.

33 Universiteit Utrecht Exponential time algorithms

34

Analysis

Time on graph with n vertices T(n).
We have T(nN) <T(n—-1)+T(h-4) +
O(n+m)

— As v has degree at least 3, we loose in the
second case at least 4 vertices

Induction: T(n) = O*(1.3803")
— Solve (with e.g., Maple or Mathematica,

SAGEmath (http://www.sagemath.org) or
Solver from Excel)

e X*=x3+1

& Universiteit Utrecht Exponential time algorithms

35

Maximum Independent Set
Final remarks

More detailed analysis gives better bounds

Current best known: O(1.1844") (Robson, 2001)

— Extensive, computer generated case analysis!
— Includes memorization (DP)
2005: Fomin, Grandoni, Kratsch: the measure and

conquer technique for better analysis of branch
and reduce algorithms

— Much simpler and only slightly slower compared to
Robson

§ Universiteit Utrecht Exponential time algorithms

36

MY HoBpy:

EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

% CHOTCHKIES kssrwmuT}

«— APPENZERS —

MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE SALAD 235
HOT WINGS 3.55

MOZZAREUA STIKS 420
SAMPLER PLATE 580

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.

{ .. EXACTLY? UHA...
HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.
LISTEN, I HAVE Six OTHER
TABLES TO GET T0 —

—AS FRST PS POSSIBLE, (F (DURSE. WANT
SOMETHING ON TRAVELING SALESNAN? /

\
(¥IVR

RARRF IE L 6%

Universiteit Utrecht

Exponential time algorithms

Final remarks

« Techniques for designing exponential time
algorithms

 Other techniques, e.g., local search
« Combination of techniques
 Several interesting open problems

37 iversiteit Utrecht Exponential time algorithms

