Fixed Parameter Complexity

Algorithms and Networks

Universiteit Utrecht

Fixed parameter complexity

- Analysis what happens to problem when some parameter is *small*
- Definitions
- Fixed parameter tractability techniques
 - Branching
 - Kernelisation
 - Other techniques

Universiteit Utrecht

Motivation

- In many applications, some number can be assumed to be *small*
 - Time of algorithm can be exponential in this small number, but should be polynomial in *usual* size of problem

Universiteit Utrecht

Parameterized problem

- Given: Graph G, integer k, ...
- Parameter: k
- Question: Does G have a ??? of size at least (at most) k?
 - Examples: vertex cover, independent set, coloring, ...

Examples of parameterized problems (1)

Graph Coloring

Given: Graph G, integer k

Parameter: k

Question: Is there a vertex coloring of G with k colors? (I.e., c: V \rightarrow {1, 2, ..., k} with for all {v,w} \in E: c(v) \neq c(w)?)

• NP-complete, even when k=3.

Examples of parameterized problems (2)

Clique

- Given: Graph G, integer k
- Parameter: k

Question: Is there a clique in G of size at least k?

Solvable in O(n^k) time with simple algorithm. Complicated algorithm gives O(n^{2k/3}). Seems to require Ω(n^{f(k)}) time...

Examples of parameterized problems (3)

Vertex cover

- Given: Graph G, integer k
- Parameter: k
- Question: Is there a vertex cover of G of size at most *k*?
- Solvable in $O(2^k (n+m))$ time

Fixed parameter complexity theory

- To distinguish between behavior:
 >O(f(k) * n^c)
 >Ω(n^{f(k)})
- **Proposed by Downey and Fellows.**

Universiteit Utrecht

Parameterized problems

- Instances of the form (*x*,*k*)
 - I.e., we have a *second parameter*
- Decision problem (subset of $\{0,1\}^* \ge \mathbb{N}$)

Fixed parameter tractable problems

FPT is the class of problems with an algorithm that solves instances of the form (*x*,*k*) in time p(|*x*|)*f(*k*), for polynomial p and some function f.

Hard problems

- Complexity classes
 - $-\mathbf{FPT} \subseteq \mathbf{W}[1] \subseteq \mathbf{W}[2] \subseteq \dots \otimes \mathbf{W}[i] \subseteq \dots \subseteq \mathbf{W}[\mathbf{P}]$
 - FPT is 'easy', all others 'hard'
 - Defined in terms of *Boolean circuits*
 - Problems hard for W[1] or larger class are assumed not to be in FPT
 - Compare with P / NP

Examples of hard problems

- Clique and Independent Set are W[1]-complete
- Dominating Set is W[2]-complete
- Version of Satisfiability is W[1]-complete
 - Given: set of clauses, k
 - Parameter: k
 - Question: can we set (at most) k variables to true, and al others to false, and make all clauses true?

Techniques for showing fixed parameter tractability

- Branching
- Kernelisation
- Iterative compression
- Other techniques (e.g., treewidth)

A branching algorithm for vertex cover

- Idea:
 - Simple base cases
 - Branch on an edge: one of the endpoints belongs to the vertex cover
- Input: graph G and integer k

Branching algorithm for Vertex Cover

- Recursive procedure VC(Graph G, int *k*)
- VC(G=(V,E), k)
 - If G has no edges, then return **true**
 - If k == 0, then return **false**
 - $-Select an edge \{v,w\} \in E$
 - -Compute G' = G [V v]
 - Compute G'' = G [V w]
 - Return VC(G',k-1) or VC(G'',k-1)

Analysis of algorithm

• Correctness

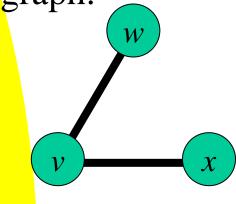
- Either *v* or *w* must belong to an optimal VC
- Time analysis
 - Recursion depth k
 - -At most 2^k recursive calls
 - Each recursive call costs O(n+m) time
 - $-O(2^k(n+m))$ time: FPT

Cluster editing

- **Instance**: undirected graph G=(V,E), integer K
- Parameter: K
- Question: can we make at most K modifications to G, such that each connected component is a clique, where each modification is an addition of an edge or the deletion of an edge?
- Models biological question: partition species in families, where available data contains mistakes
- With branching: $O(3^k p(n))$ algorithm

Lemma

• If G has a connected component that is not a clique, then G contains the following subgraph:



• Proof: there are vertices *w* and *x* in the connected component that are not adjacent. Take such w and x of minimum distance. Case analysis: distance is 2 hence this subgraph

Branching algorithm for Cluster Editing

- If each connected component is a clique:
 - Answer YES
- If *k*=0 and some connected components are not cliques:
 - Answer NO
- Otherwise, there must be vertices v, w, x with $\{v,w\} \in E, \{v,x\} \in E, \text{ and } \{w,x\} \notin E$

W

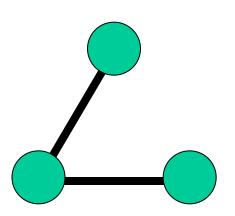
Fixed Parameter Complexity

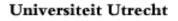
12

- Go three times in recursion:
 - Once with $\{v, w\}$ removed and k = k 1
 - Once with $\{v, x\}$ removed and k = k 1
 - Once with $\{w, x\}$ added and k = k 1

Analysis branching algorithm

- Correctness by lemma
- Time ...
 - -3^k leaves of decision tree





More on cluster editing

- Faster branching algorithms exist
- Important applications and practical experiments
- We'll see more when discussing kernelisation

Max SAT

- Variant of satisfiability, but now we ask: can we satisfy at least *k* clauses?
- NP-complete
- With k as parameter: FPT
- Branching:
 - Take a variable
 - If it only appears positively, or negatively, then ...
 - Otherwise: Branch! What happens with k?

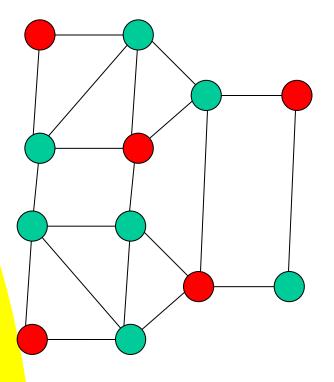
Universiteit Utrecht

Independent Set on planar graphs

Given: a planar graph G=(V,E), integer *k* Parameter: *k*

Question: Does G have an independent set with at least k vertices, i.e., a set W of size at least k with for all $v, w \in V$: $\{v, w\} \notin E$

- NP-complete
- Easy to see that it is FPT by kernelisation...
- Here: $O(6^k n)$ algorithm

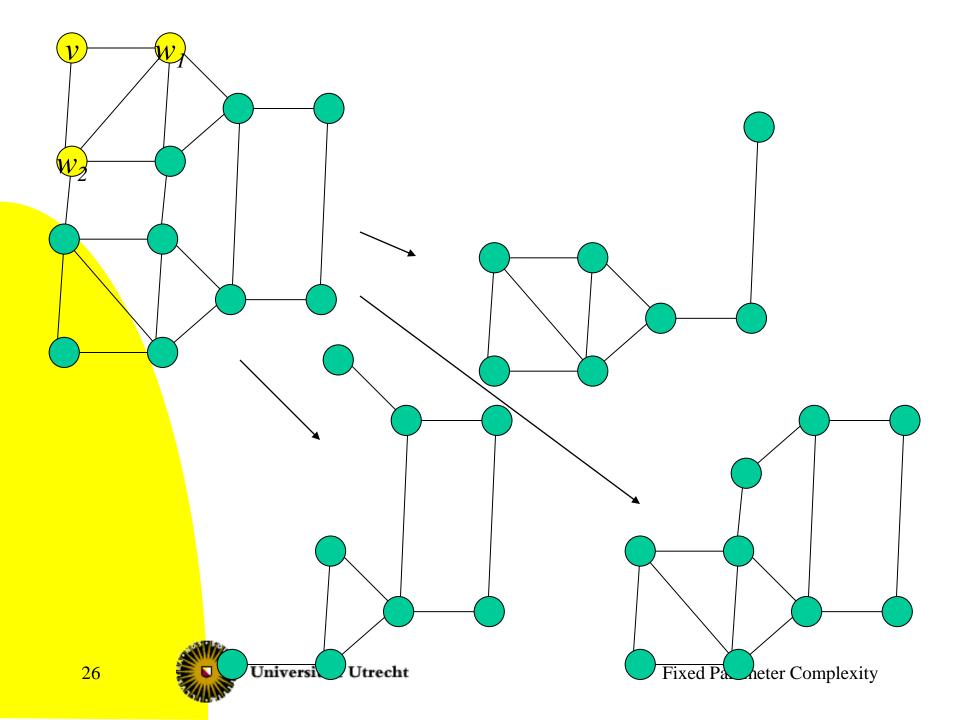


The red vertices form an independent set

Branching

- Each planar graph has a vertex of degree at most 5
- Take vertex v of minimum degree, say with neighbors w₁, ..., w_r, r at most 5
- A maximum size independent set contains v or one of its neighbors
 - Selecting a vertex is equivalent to removing it and its neighbors and decreasing k by one
- Create at most 6 subproblems, one for each $x \in \{v, w_1, ..., w_r\}$. In each, we set k = k 1, and remove x and its neighbors

Universiteit Utrecht



Closest string

Given: *k* strings s_1, \ldots, s_k each of length L, integer *d*

Parameter: *d*

- Question: is there a string *s* with Hamming distance at most *d* to each of $s_1, ..., s_k$
- Application in molecular biology
- Here: FPT algorithm
- (Gramm and Niedermeier, 2002)

Subproblems

• Subproblems have form

- Candidate string s
- Additional parameter r

Universiteit Utrecht

- We look for a solution to original problem, with additional condition:
 - Hamming distance at most *r* to *s*
- Start with s = s₁ and r=d (= original problem)

Branching step

- Choose an s_i with Hamming distance > d to s
- If Hamming distance of s_j to *s* is larger than d+r: *NO*
- For all positions *i* where *s_j* differs from *s*
 - Solve subproblem with
 - s changed at position *i* to value $s_j(i)$
 - r = r 1
- Note: we find a solution, if and only one of these subproblems has a solution

Example

- Strings 01112, 02223, 01221, *d*=3
 - First position in solution will be a 0
 - First subproblem (01112, 3)
 - Creates three subproblems
 - (02113, 2)
 - (01213, 2)
 - (01123, 2)

Universiteit Utrecht

Time analysis

- Recursion depth d
- At each level, we branch at most at $d + r \le 2d$ positions
- So, number of recursive steps at most $2d^{d+1}$
- Each step can be done in polynomial time: O(*kdL*)
- Total time is $O(2d^{d+1} \cdot kdL)$
- Speed up possible by more clever branching and by kernelisation

More clever branching

- Choose an s_i with Hamming distance > d to s
- If Hamming distance of s_i to s is larger than d+r: NO
- Choose arbitrarily *d*+1 positions where s_j differs from s
 - Solve subproblem with
 - *s* changed at position *i* to value $s_j(j)$
 - r = r 1
- Note: still correct, and running time can be made $O(kL + kd d^d)$

Technique

- Try to find a branching rule that
 - Decreases the parameter
 - Splits in a bounded number of subcases
 - YES, if and only if YES in at least one subcase

Kernelisation

- Preprocessing rules reduce starting instance to one of size f(k)
 - Should work in polynomial time
- Then use any algorithm to solve problem on kernel
- Time will be p(n) + g(f(k))

Kernelization

- Helps to analyze preprocessing
- Much recent research
- Today: definition and some examples

Formal definition of kernelisation

• Let P be a parameterized problem. (Each input of the form (I,*k*).)

A *reduction to a problem kernel* is an algorithm A, that transforms inputs of P to inputs of P, such that

- $-(\mathbf{I},k) \in \mathbf{P}$, if and only if $A(\mathbf{I},k) \in \mathbf{P}$ for all (\mathbf{I},k)
- If A(I,k) = (I',k'), then $k' \le f(k)$, and $|I'| \le g(k)$ for some functions f, g
- A uses time, polynomial in |I| and k

Kernels and FPT

- **Theorem**. Consider a decidable parameterized problem. Then the problem belongs to FPT, if and only if it has a kernel
- <= Build the kernel and then solve the problem on the kernel
- => Suppose we have an f(k)n^c algorithm. Run the algorithm for n^{c+1} steps. If it did not yet solve the problem, return the input as kernel: it has size at most f(k). If it solved the problem, then ...

Universiteit Utrecht

Consequence

- If a problem is W[1]-hard, it has no kernel, unless FPT=W[1]
- There are also techniques to give evidence that problems have no kernels of polynomial size
 - If problem is *compositional* and NP-hard, then it has no polynomial kernel
 - Example is e.g., LONG PATH

First kernel: Convex string recoloring

- Application from molecular biology
- Given: string *s* in Σ^* , integer *k*
- Parameter: k
- Question: can we change at most *k* characters in the string *s*, such that *s* becomes *convex*, i.e., for each symbol, the positions with that symbol are consecutive.
- Example of convex string: aaacccbxxxffff
- Example of string that is not convex: abba
- Instead of symbols, we talk about *colors*

Kernel for convex string recoloring

• Theorem: Convex string recoloring has a kernel with $O(k^2)$ characters.

Notions

- Notion: good and bad colors
- A color is *good*, if it is consecutive in *s*, otherwise it is bad
- abba: a is bad and b is good
- Notion: block: consecutive occurrences of the same color: aaabbbaccc has four blocks
- Convex: each color has one block

Stepwise construction of kernel

- Step 1: limit the number of blocks of bad colors
- Step 2: limit the number of good colors
- Step 3: limit the number of characters in *s* per block
- Step 4: count

Rule 1

- If there are more than 4*k* blocks of bad colors, say NO
 - Formally, transform to trivial NO-instance, e.g. (aba, 0)

– Why correct?

Universiteit Utrecht

Rule 2

• If we have two consecutive blocks of good colors, then change the color of the second block to that of the first

E.g: abbbbcca -> abbbbbba

• Why correct?

Rule 3

• If a block has more than k+1 characters, delete all but k+1 of the block

Correctness: a block of such a size will never be changed

Universiteit Utrecht

Counting

- After the rules have been applied, we have at most:
 - -4k blocks of bad colors
 - 4k+1 blocks of good colors: at most one between each pair of bad colors, one in front and one in the end
 - Each block has size at most k+1
- String has size at most (8k+1)(k+1)
- This can be improved by better analysis, more rules, ...

Vertex cover: observations that helps for kernelisation

- If *v* has degree at least *k*+1, then *v* belongs to each vertex cover in G of size at most *k*.
 - If v is not in the vertex cover, then all its neighbors are in the vertex cover.
- If all vertices have degree at most *k*, then a vertex cover has at least *m/k* vertices.

-(m = |E|). Any vertex covers at most k edges.

Kernelisation for Vertex Cover

$$\mathbf{H} = \mathbf{G}; \ (\mathbf{S} = \emptyset;)$$

While there is a vertex v in H of degree at least k+1do

Remove v and its incident edges from H

k = k - 1; (S = S + v;)

If k < 0 then return **false** If H has at least k^2+1 edges, then return **false**

Remove vertices of degree 0

Solve vertex cover on (H,k) with some algorithm

Time

- Kernelisation step can be done in O(*n*+*m*)
 time
- After kernelisation, we must solve the problem on a graph with at most k² edges, e.g., with branching this gives:
 - $-O(n + m + 2^k k^2)$ time
 - $-O(kn + 2^k k^2)$ time can be obtained by noting that there is no solution when m > kn.

Universiteit Utrecht

Better kernel for vertex cover

- Nemhauser-Trotter: kernel of at most 2k vertices
- Make ILP formulation of Vertex Cover
- Solve relaxation
- All vertices v with $x_v > \frac{1}{2}$: put v in set
- All vertices v with $x_v < \frac{1}{2}$: v is not in the set
- Remove all vertices except those with value ¹/₂, and decrease *k* accordingly
- Gives kernel with at most 2k vertices, but why is it correct?

Nemhauser Trotter proof plan

- 1. Write down the ILP for Vertex Cover
- 2. There is always an optimal solution of the relaxation with only values 1, 0 and $\frac{1}{2}$
- 3. There is always an optimal solution of the ILP where all vertices with value 1 are in the vertex cover set and all vertices with value 0 are not in the vertex cover set
 - Compare the solution of part 2 with a hypothetical optimal solution of the ILP

ILP

 $\min \sum x_{v}$ $v \in V$ $\forall \{v, w\} \in E : x_v + x_w \geq 1$ $x_{v} \in \{0,1\}$

Universiteit Utrecht

Relaxation

 $\min \sum x_{v}$ $v \in V$ $\forall \{v, w\} \in E : x_v + x_w \geq 1$ $\chi_{v} \geq 0$

Universiteit Utrecht

There is always ...

- ... an optimal solution of the relaxation with only values 0, $\frac{1}{2}$ and 1
- While not, repeat: take a vertex v with the largest value < 1, say $c > \frac{1}{2}$. Look at the graph induced by vertices with weights c and 1-c.
- If the number of vertices with weights c and 1-c are not equal, the solution is not optimal.
- If these numbers are equal, change c to 1 and 1-c to 0.
- Repeat till we have the desired form

Vertices with weight 0 and 1

- There is an optimal solution of the ILP with vertices with weight 0 and weight 1 in the relaxation not changed
- A = weight in relaxation 1
- $\mathbf{B} =$ weight in relaxation 0
- C = weight in relaxation $\frac{1}{2}$
- Note: no edges from B to C
- Take ILP solution x and relation y
 - Follow x on C and y on A and B: this is a solution
 - It is optimal, otherwise, taking y on C and x on A and B was not an optimal solution for the relaxation

2k kernel for Vertex Cover

- Solve the relaxation (polynomial time with the ellipsoid method, practical with Simplex)
- If the relaxation has optimum more than 2k, then say no
- Otherwise, get rid of the 0's and 1's, decrease k accordingly
- At most 2k vertices have weight ¹/₂ in the relaxation
- So, kernel has 2k vertices.
- It can (and will often) have a quadratic number of edges

Maximum Satisfiability

Given: Boolean formula in conjunctive normal form; integer *k*Parameter: *k*

Question: Is there a truth assignment that satisfies at least k clauses?

• Denote: number of clauses: C

Universiteit Utrecht

Reducing the number of clauses

• If $C \ge 2k$, then answer is YES

- Look at arbitrary truth assignment, and truth assignment where we flip each value
- Each clause is satisfied in one of these two assignment
- So, one assignment satisfies at least half of all clauses

Universiteit Utrecht

Bounding number of long clauses

- Long clause: has at least *k* literals
- Short clause: has at most *k*-1 literals
- Let L be number of long clauses
- If $L \ge k$: answer is YES
 - Select in each long clause a literal, whose complement is not yet selected
 - Set these all to true
 - All long clauses are satisfied

Reducing to only short clauses

• If less than k long clauses

- Make new instance, with only the short clauses and k
 set to k-L
- There is a truth assignment that satisfies at least k-L
 short clauses, if and only if there is a truth assignment
 that satisfies at least k clauses
 - =>: choose for each satisfied short clause a variable that makes the clause true. We may change all other variables, and can choose for each long clause another variable that makes it true
 - <=: trivial

An O(k^2) kernel for Maximum Satisfiability

- If at least 2k clauses then return YES
- If at least k long clauses then return YES
- Else
 - remove all L long clauses
 - set k = k-L

Kernelisation for cluster editing

- General form:
- Repeat rules, until no rule is possible
 - Rules can do some necessary modification and decrease k by one
 - Rules can remove some part of the graph
 - Rules can output YES or NO

Trivial rules and plan

- **Rule 1**: If a connected component of G is a clique, remove this connected component
- Rule 2: If we have more than k connected components and Rule 1 does not apply: Answer NO
- *Consequence*: after Rule 1 and Rule 2, there are at most *k* connected component
- *Plan*: find rules that make connected component small
- We change the input: some pairs are **permanent** and others are **forbidden**.

Observation and rule 3

- If two vertices v, w have k+1 neighbors in common, they must belong to the same clique in a solution
 - If the edge did not exist, add it and decrease k by 1
 - Set the edge {*v*,*w*} to be **permanent**

Another observation and rule 4

- If there are at least k+1 vertices that are adjacent to exactly one of v and w, then {v,w} cannot be an edge in the solution If {v,w} is an edge: delete it and decrease k by one
 - Mark the pair {*v*,*w*} as forbidden
- Rule 5: if a pair is forbidden and permanent then there is no solution

Transitivity

- Rule 6: if {v,w} is permanent, and {w,x} is permanent, then set {w,x} to be permanent (if the edge was nonexisting, add it, and decrease k by one)
- Rule 7: if {v,w} is permanent and {w,x} is forbidden, then set {w,x} to be forbidden (if the edge existed, delete it, and decrease k by one)

Counting

- Rules can be executed in polynomial time
- One can find in $O(n^3)$ time an instance to which no rules apply (with properly chosen data structures)
- Consider a connected component C with at least 4k+1 vertices.
- At least 2k+1 vertices are not involved in a modification, say this is the set W
- W must form a clique, and all edges in W become permanent

Counting continued

- Each vertex in C-W that is incident to k+1 or more vertices in W has a permanent edge to a vertex in W, and then gets permanent edges to all vertices in W, and then becomes member of W
- Each vertex in C-W for which at least *k*+1 vertices in W are not adjacent: it gets a forbidden edge to each vertex in W
- Each vertex in C-W is handled as |W| > 2k.
- So, each connected component has size at most 4k
- In total at most $4k^2$ vertices

Comments

- This argument is due to Gramm et al.
- Better and more recent algorithms exist: faster branching (2.7^k) and linear kernels

Non-blocker

- Given: graph G=(V,E), integer k
- Parameter k
- Question: Does G have a dominating set of size at most |V|-k?

Nonblocker kernels

- First idea: quadratic kernel
- Rules:
 - 1. If *v* has degree at least *k*, say YES
 - *v* and all vertices not a neighbor of *v* are a solution
 - 2. If *v* has degree 0, remove *v*

Universiteit Utrecht

- 3. If rules 1 and 2 do not apply, and we have more than k(k+1) vertices, say YES
 - What would be the correct value here?

Lemma and simple kernel

- If G does not have vertices of degree 0, then G has a dominating set with at most |V|/2 vertices
 - Proof: per connected component: build spanning tree. The vertices on the odd levels form a ds, and the vertices on the even levels form a ds. Take the smaller of these.
- 2k kernel for non-blocker after removing vertices of degree 0

Improvements

- Lemma (Blank and McCuaig, 1973) If a connected graph has minimum degree at least two and at least 8 vertices, then the size of a minimum dominating set is at most 2|V|/5.
- Lemma (Reed) If a connected graph has minimum degree at least three, then the size of a minimum dominating set is at most 3|V|/8.

Getting rid of vertices of degree 1

- Idea: we get rid of *all but one* vertices of degree 1
- Rule: if v and w have degree 1, then identify the neighbor of v and w and remove w
- Intuition: we can assume that a neighbor of a vertex of degree 1 is in the dominating set
- Possibly, replace in the end vertex of degree 1 by triangle

Universiteit Utrecht

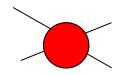
Degree two

v

• If we have an induced path like this:

 $\boldsymbol{\chi}$

• Then remove the two middle vertices and identify the endpoints



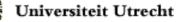
Universiteit Utrecht

Iterative compression

• FPT-technique

Feedback Vertex Set

- Instance: graph G=(V,E)
- Parameter: integer k
- Question: Is there a set of at most *k* vertices W, such that G-W is a forest?
 - <mark>K</mark>nown in FPT
 - Here: recent algorithm $O(5^k p(n))$ time algorithm
 - Can be done in O(5^k kn) or less with kernelisation



Iterative compression technique

- Number vertices $v_1, v_2, ..., v_n$
- Let $X = \{v_1, v_2, ..., v_k\}$
- **for** i = k+1 **to** *n* **do**
 - Add v_i to X
 - Note: X is a FVS of size at most k+1 of $\{v_1, v_2, ..., v_i\}$
 - Call a subroutine that either
 - Finds (with help of X) a feedback vertex set Y of size at most k in {v₁, v₂, ..., v_i}; set X = Y OR
 - Determines that Y does not exist; stop, return NO

Universiteit Utrecht

Compression subroutine

- Given: graph G, FVS X of size k + 1
- Question: find if existing FVS of size *k* – Is subroutine of main algorithm
- for all subsets S of X do
 Determine if there is a FVS of size at most k that contains all vertices in S and no vertex in X S

Yet a deeper subroutine

- Given: Graph G, FVS X of size k+1, set S
- Question: find if existing a FVS of size k containing all vertices in S and no vertex from X S
- 1. Remove all vertices in S from G
- 2. Mark all vertices in X S
- 3. If marked cycles contain a cycle, then return NO
- 4. While marked vertices are adjacent, contract them
- 5. Set k = k |S|. If k < 0, then return NO
- 6. If G is a forest, then return YES; S
- 7. ...

Subroutine continued

- 7. If an unmarked vertex *v* has at least two edges to marked vertices
 - If these edges are parallel, i.e., to the same neighbor, then *v* must be in a FVS (we have a cycle with *v* the only unmarked vertex)
 - Put *v* in S, set k = k 1 and recurse
 - Else recurse twice:
 - Put *v* in S, set k = k 1 and recurse
 - Mark *v*, contract *v* with all marked neighbors and recurse
 - The number of marked vertices is one smaller

Universiteit Utrecht

Other case

- 8. Choose an unmarked vertex *v* that has at most one unmarked neighbor (a leaf in G[V-X])
 - > By step 7, it also has at most one marked neighbor
 - If v is a leaf in G, then remove v

Universiteit Utrecht

• If v has degree 2, then remove v and connect its neighbors

Analysis

- Precise analysis gives $O^*(5^k)$ subproblems in total
- Imprecise: 2^k subsets S
- Only branching step:
 - -k is decreased by one, or
 - Number of marked vertices is decreased by one
- Initially: number of marked vertices + k is at most 2k
- Bounded by $2^k \cdot 2^{2k} = 8^k$

Conclusions

- Similar techniques work (usually much more complicated) for many other problems
- W[...]-hardness results indicate that FPTalgorithms do not exist for other problems
- Note similarities and differences with exponential time algorithms

