
Fixed Parameter Complexity

Algorithms and Networks

Fixed Parameter Complexity 2

Fixed parameter complexity

• Analysis what happens to problem when

some parameter is small

• Definitions

• Fixed parameter tractability techniques

– Branching

– Kernelisation

– Other techniques

Fixed Parameter Complexity 3

Motivation

• In many applications, some number can be

assumed to be small

– Time of algorithm can be exponential in this

small number, but should be polynomial in

usual size of problem

Fixed Parameter Complexity 4

Parameterized problem

• Given: Graph G, integer k, …

• Parameter: k

• Question: Does G have a ??? of size at least

(at most) k?

– Examples: vertex cover, independent set,

coloring, …

Fixed Parameter Complexity 5

Examples of parameterized

problems (1)

Graph Coloring

Given: Graph G, integer k

Parameter: k

Question: Is there a vertex coloring of G with k

colors? (I.e., c: V {1, 2, …, k} with for all

{v,w} E: c(v) c(w)?)

• NP-complete, even when k=3.

Fixed Parameter Complexity 6

Examples of parameterized

problems (2)

Clique

Given: Graph G, integer k

Parameter: k

Question: Is there a clique in G of size at least k?

• Solvable in O(nk) time with simple

algorithm. Complicated algorithm gives

O(n2k/3). Seems to require (nf(k)) time…

Fixed Parameter Complexity 7

Examples of parameterized

problems (3)

Vertex cover

Given: Graph G, integer k

Parameter: k

Question: Is there a vertex cover of G of size at

most k?

• Solvable in O(2k (n+m)) time

Fixed Parameter Complexity 8

Fixed parameter complexity

theory

• To distinguish between behavior:

O(f(k) * nc)

 (nf(k))

• Proposed by Downey and Fellows.

Fixed Parameter Complexity 9

Parameterized problems

• Instances of the form (x,k)

– I.e., we have a second parameter

• Decision problem (subset of {0,1}* x N)

Fixed Parameter Complexity 10

Fixed parameter tractable

problems

• FPT is the class of problems with an

algorithm that solves instances of the form

(x,k) in time p(|x|)*f(k), for polynomial p

and some function f.

Fixed Parameter Complexity 11

Hard problems

• Complexity classes

– FPT W[1] W[2] … W[i] … W[P]

– FPT is ‘easy’, all others ‘hard’

– Defined in terms of Boolean circuits

– Problems hard for W[1] or larger class are

assumed not to be in FPT

• Compare with P / NP

Fixed Parameter Complexity 12

Examples of hard problems

• Clique and Independent Set are W[1]-complete

• Dominating Set is W[2]-complete

• Version of Satisfiability is W[1]-complete

– Given: set of clauses, k

– Parameter: k

– Question: can we set (at most) k variables to true, and

al others to false, and make all clauses true?

Fixed Parameter Complexity 13

Techniques for showing fixed

parameter tractability

• Branching

• Kernelisation

• Iterative compression

• Other techniques (e.g., treewidth)

Fixed Parameter Complexity 14

A branching algorithm

for vertex cover

• Idea:

– Simple base cases

– Branch on an edge: one of the endpoints

belongs to the vertex cover

• Input: graph G and integer k

Fixed Parameter Complexity 15

Branching algorithm

for Vertex Cover

• Recursive procedure VC(Graph G, int k)

• VC(G=(V,E), k)

– If G has no edges, then return true

– If k == 0, then return false

– Select an edge {v,w} E

– Compute G’ = G [V – v]

– Compute G” = G [V – w]

– Return VC(G’,k – 1) or VC(G”,k – 1)

Fixed Parameter Complexity 16

Analysis of algorithm

• Correctness

– Either v or w must belong to an optimal VC

• Time analysis

– Recursion depth k

– At most 2k recursive calls

– Each recursive call costs O(n+m) time

– O(2k (n+m)) time: FPT

Fixed Parameter Complexity 17

Cluster editing

• Instance: undirected graph G=(V,E), integer K

• Parameter: K

• Question: can we make at most K modifications
to G, such that each connected component is a
clique, where each modification is an addition of
an edge or the deletion of an edge?

• Models biological question: partition species in
families, where available data contains mistakes

• With branching: O(3k p(n)) algorithm

Fixed Parameter Complexity 18

Lemma

• If G has a connected

component that is not

a clique, then G

contains the following

subgraph:

• Proof: there are

vertices w and x in the

connected component

that are not adjacent.

Take such w and x of

minimum distance.

Case analysis: distance

is 2 hence this

subgraph

w

v x

Fixed Parameter Complexity 19

Branching algorithm for

Cluster Editing

• If each connected component is a clique:
– Answer YES

• If k=0 and some connected components are not
cliques:
– Answer NO

• Otherwise, there must be vertices v, w, x with
{v,w} E, {v,x} E, and {w,x} E
– Go three times in recursion:

• Once with {v,w} removed and k = k – 1

• Once with {v,x} removed and k = k – 1

• Once with {w,x} added and k = k – 1

w

v x

Fixed Parameter Complexity 20

Analysis branching algorithm

• Correctness by lemma

• Time …

– 3k leaves of decision tree

Fixed Parameter Complexity 21

More on cluster editing

• Faster branching algorithms exist

• Important applications and practical

experiments

• We’ll see more when discussing

kernelisation

Fixed Parameter Complexity 22

Max SAT

• Variant of satisfiability, but now we ask: can we

satisfy at least k clauses?

• NP-complete

• With k as parameter: FPT

• Branching:

– Take a variable

– If it only appears positively, or negatively, then …

– Otherwise: Branch! What happens with k?

Fixed Parameter Complexity 23

Independent Set

on planar graphs
Given: a planar graph G=(V,E), integer k

Parameter: k

Question: Does G have an independent set with at
least k vertices, i.e., a set W of size at least k
with for all v, w V: {v,w}

• NP-complete

• Easy to see that it is FPT by kernelisation…

• Here: O(6k n) algorithm

Fixed Parameter Complexity 24

The red vertices

form an independent set

Fixed Parameter Complexity 25

Branching

• Each planar graph has a vertex of degree at most 5

• Take vertex v of minimum degree, say with
neighbors w1, …, wr, r at most 5

• A maximum size independent set contains v or one
of its neighbors

– Selecting a vertex is equivalent to removing it and its
neighbors and decreasing k by one

• Create at most 6 subproblems, one for each x
{v, w1, …, wr}. In each, we set k = k – 1, and
remove x and its neighbors

Fixed Parameter Complexity 26

v

w2

w1

Fixed Parameter Complexity 27

Closest string

Given: k strings s1, …,sk each of length L, integer
d

Parameter: d

Question: is there a string s with Hamming
distance at most d to each of s1, …,sk

• Application in molecular biology

• Here: FPT algorithm

• (Gramm and Niedermeier, 2002)

Fixed Parameter Complexity 28

Subproblems

• Subproblems have form

– Candidate string s

– Additional parameter r

– We look for a solution to original problem, with

additional condition:

• Hamming distance at most r to s

• Start with s = s1 and r=d (= original

problem)

Fixed Parameter Complexity 29

Branching step

• Choose an sj with Hamming distance > d to s

• If Hamming distance of sj to s is larger than d+r:

NO

• For all positions i where sj differs from s

– Solve subproblem with

• s changed at position i to value sj (i)

• r = r – 1

• Note: we find a solution, if and only one of these

subproblems has a solution

Fixed Parameter Complexity 30

Example

• Strings 01112, 02223, 01221, d=3

– First position in solution will be a 0

– First subproblem (01112, 3)

– Creates three subproblems

• (02113, 2)

• (01213, 2)

• (01123, 2)

Fixed Parameter Complexity 31

Time analysis

• Recursion depth d

• At each level, we branch at most at d + r 2d

positions

• So, number of recursive steps at most 2dd+1

• Each step can be done in polynomial time: O(kdL)

• Total time is O(2dd+1 . kdL)

• Speed up possible by more clever branching and

by kernelisation

Fixed Parameter Complexity 32

More clever branching

• Choose an sj with Hamming distance > d to s

• If Hamming distance of si to s is larger than d+r:
NO

• Choose arbitrarily d+1 positions where sj differs
from s

– Solve subproblem with

• s changed at position i to value sj (j)

• r = r – 1

• Note: still correct, and running time can be made
O(kL + kd dd)

Fixed Parameter Complexity 33

Technique

• Try to find a branching rule that

– Decreases the parameter

– Splits in a bounded number of subcases

• YES, if and only if YES in at least one subcase

Fixed Parameter Complexity 34

Kernelisation

• Preprocessing rules reduce starting instance

to one of size f(k)

– Should work in polynomial time

• Then use any algorithm to solve problem on

kernel

• Time will be p(n) + g(f(k))

Fixed Parameter Complexity 35

Kernelization

• Helps to analyze preprocessing

• Much recent research

• Today: definition and some examples

Fixed Parameter Complexity 36

Formal definition of kernelisation

• Let P be a parameterized problem. (Each
input of the form (I,k).)
A reduction to a problem kernel is an
algorithm A, that transforms inputs of P to
inputs of P, such that

– (I,k) P, if and only if A(I,k) P for all (I,k)

– If A(I,k) = (I’,k’), then k’ f(k), and |I’| g(k)
for some functions f, g

– A uses time, polynomial in |I| and k

Fixed Parameter Complexity 37

Kernels and FPT

• Theorem. Consider a decidable parameterized

problem. Then the problem belongs to FPT, if and

only if it has a kernel

• <= Build the kernel and then solve the problem on

the kernel

• => Suppose we have an f(k)nc algorithm. Run the

algorithm for nc+1 steps. If it did not yet solve the

problem, return the input as kernel: it has size at

most f(k). If it solved the problem, then …

Fixed Parameter Complexity 38

Consequence

• If a problem is W[1]-hard, it has no kernel,

unless FPT=W[1]

• There are also techniques to give evidence

that problems have no kernels of

polynomial size

– If problem is compositional and NP-hard, then

it has no polynomial kernel

– Example is e.g., LONG PATH

First kernel: Convex string

recoloring
• Application from molecular biology

• Given: string s in *, integer k

• Parameter: k

• Question: can we change at most k characters in the
string s, such that s becomes convex, i.e., for each
symbol, the positions with that symbol are
consecutive.

• Example of convex string: aaacccbxxxffff

• Example of string that is not convex: abba

• Instead of symbols, we talk about colors

Fixed Parameter Complexity 39

Kernel for convex string

recoloring

• Theorem: Convex string recoloring has a

kernel with O(k2) characters.

Fixed Parameter Complexity 40

Notions

• Notion: good and bad colors

• A color is good, if it is consecutive in s,

otherwise it is bad

• abba: a is bad and b is good

• Notion: block: consecutive occurrences of

the same color: aaabbbaccc has four blocks

• Convex: each color has one block

Fixed Parameter Complexity 41

Stepwise construction of kernel

• Step 1: limit the number of blocks of bad

colors

• Step 2: limit the number of good colors

• Step 3: limit the number of characters in s

per block

• Step 4: count

Fixed Parameter Complexity 42

Rule 1

• If there are more than 4k blocks of bad

colors, say NO

– Formally, transform to trivial NO-instance, e.g.

(aba, 0)

– Why correct?

Fixed Parameter Complexity 43

Rule 2

• If we have two consecutive blocks of good

colors, then change the color of the second

block to that of the first

• E.g: abbbbcca -> abbbbbba

• Why correct?

Fixed Parameter Complexity 44

Rule 3

• If a block has more than k+1 characters,

delete all but k+1 of the block

• Correctness: a block of such a size will

never be changed

Fixed Parameter Complexity 45

Counting

• After the rules have been applied, we have at
most:
– 4k blocks of bad colors

– 4k+1 blocks of good colors: at most one between
each pair of bad colors, one in front and one in the
end

– Each block has size at most k+1

• String has size at most (8k+1)(k+1)

• This can be improved by better analysis, more
rules, ...

Fixed Parameter Complexity 46

Fixed Parameter Complexity 47

Vertex cover: observations that

helps for kernelisation

• If v has degree at least k+1, then v belongs

to each vertex cover in G of size at most k.

– If v is not in the vertex cover, then all its

neighbors are in the vertex cover.

• If all vertices have degree at most k, then a

vertex cover has at least m/k vertices.

– (m=|E|). Any vertex covers at most k edges.

Fixed Parameter Complexity 48

Kernelisation for Vertex Cover

H = G; (S = ;)

While there is a vertex v in H of degree at least k+1
do

Remove v and its incident edges from H

k = k – 1; (S = S + v ;)

If k < 0 then return false

If H has at least k2+1 edges, then return false

Remove vertices of degree 0

Solve vertex cover on (H,k) with some algorithm

Fixed Parameter Complexity 49

Time

• Kernelisation step can be done in O(n+m)

time

• After kernelisation, we must solve the

problem on a graph with at most k2 edges,

e.g., with branching this gives:

– O(n + m + 2k k2) time

– O(kn + 2k k2) time can be obtained by noting

that there is no solution when m > kn.

Fixed Parameter Complexity 50

Better kernel for vertex cover

• Nemhauser-Trotter: kernel of at most 2k vertices

• Make ILP formulation of Vertex Cover

• Solve relaxation

• All vertices v with xv > ½ : put v in set

• All vertices v with xv < ½ : v is not in the set

• Remove all vertices except those with value ½,
and decrease k accordingly

• Gives kernel with at most 2k vertices, but why is it
correct?

Fixed Parameter Complexity 51

Nemhauser Trotter proof plan

1. Write down the ILP for Vertex Cover

2. There is always an optimal solution of the

relaxation with only values 1, 0 and ½

3. There is always an optimal solution of the ILP

where all vertices with value 1 are in the vertex

cover set and all vertices with value 0 are not in

the vertex cover set

• Compare the solution of part 2 with a hypothetical

optimal solution of the ILP

Fixed Parameter Complexity 52

ILP

}1,0{

1:},{

min

v

wv

Vv

v

x

xxEwv

x

Fixed Parameter Complexity 53

Relaxation

0

1:},{

min

v

wv

Vv

v

x

xxEwv

x

Fixed Parameter Complexity 54

There is always …

• … an optimal solution of the relaxation with only
values 0, ½ and 1

• While not, repeat: take a vertex v with the largest
value < 1, say c> ½. Look at the graph induced by
vertices with weights c and 1-c.

• If the number of vertices with weights c and 1-c
are not equal, the solution is not optimal.

• If these numbers are equal, change c to 1 and 1-c
to 0.

• Repeat till we have the desired form

Fixed Parameter Complexity 55

Vertices with weight 0 and 1

• There is an optimal solution of the ILP with vertices with
weight 0 and weight 1 in the relaxation not changed

• A = weight in relaxation 1

• B = weight in relaxation 0

• C = weight in relaxation ½

• Note: no edges from B to C

• Take ILP solution x and relation y

– Follow x on C and y on A and B: this is a solution

– It is optimal, otherwise, taking y on C and x on A and B was not an
optimal solution for the relaxation

Fixed Parameter Complexity 56

2k kernel for Vertex Cover

• Solve the relaxation (polynomial time with the ellipsoid
method, practical with Simplex)

• If the relaxation has optimum more than 2k, then say no

• Otherwise, get rid of the 0’s and 1’s, decrease k
accordingly

• At most 2k vertices have weight ½ in the relaxation

• So, kernel has 2k vertices.

• It can (and will often) have a quadratic number of edges

Fixed Parameter Complexity 57

Maximum Satisfiability

Given: Boolean formula in conjunctive normal

form; integer k

Parameter: k

Question: Is there a truth assignment that satisfies

at least k clauses?

• Denote: number of clauses: C

Fixed Parameter Complexity 58

Reducing the number of clauses

• If C 2k, then answer is YES

– Look at arbitrary truth assignment, and truth

assignment where we flip each value

– Each clause is satisfied in one of these two

assignment

– So, one assignment satisfies at least half of all

clauses

Fixed Parameter Complexity 59

Bounding number of long clauses

• Long clause: has at least k literals

• Short clause: has at most k-1 literals

• Let L be number of long clauses

• If L k: answer is YES

– Select in each long clause a literal, whose
complement is not yet selected

– Set these all to true

– All long clauses are satisfied

Fixed Parameter Complexity 60

Reducing to only short clauses

• If less than k long clauses

– Make new instance, with only the short clauses and k

set to k-L

– There is a truth assignment that satisfies at least k-L

short clauses, if and only if there is a truth assignment

that satisfies at least k clauses

• =>: choose for each satisfied short clause a variable that makes

the clause true. We may change all other variables, and can

choose for each long clause another variable that makes it true

• <=: trivial

Fixed Parameter Complexity 61

An O(k2) kernel for

 Maximum Satisfiability

• If at least 2k clauses then return YES

• If at least k long clauses then return YES

• Else

– remove all L long clauses

– set k=k-L

Fixed Parameter Complexity 62

Kernelisation for cluster editing

• General form:

• Repeat rules, until no rule is possible

– Rules can do some necessary modification and

decrease k by one

– Rules can remove some part of the graph

– Rules can output YES or NO

Fixed Parameter Complexity 63

Trivial rules and plan

• Rule 1: If a connected component of G is a clique, remove
this connected component

• Rule 2: If we have more than k connected components and
Rule 1 does not apply: Answer NO

• Consequence: after Rule 1 and Rule 2, there are at most k
connected component

• Plan: find rules that make connected component small

• We change the input: some pairs are permanent and
others are forbidden.

Fixed Parameter Complexity 64

Observation and rule 3

• If two vertices v, w have k+1 neighbors in

common, they must belong to the same

clique in a solution

– If the edge did not exist, add it and decrease k

by 1

– Set the edge {v,w} to be permanent

Fixed Parameter Complexity 65

Another observation and rule 4

• If there are at least k+1 vertices that are

adjacent to exactly one of v and w, then

{v,w} cannot be an edge in the solution

– If {v,w} is an edge: delete it and decrease k by

one

– Mark the pair {v,w} as forbidden

• Rule 5: if a pair is forbidden and

permanent then there is no solution

Fixed Parameter Complexity 66

Transitivity

• Rule 6: if {v,w} is permanent, and {w,x} is

permanent, then set {w,x} to be permanent

(if the edge was nonexisting, add it, and

decrease k by one)

• Rule 7: if {v,w} is permanent and {w,x} is

forbidden, then set {w,x} to be forbidden (if

the edge existed, delete it, and decrease k by

one)

Fixed Parameter Complexity 67

Counting

• Rules can be executed in polynomial time

• One can find in O(n3) time an instance to which no
rules apply (with properly chosen data structures)

• Consider a connected component C with at least
4k+1 vertices.

• At least 2k+1 vertices are not involved in a
modification, say this is the set W

• W must form a clique, and all edges in W become
permanent

Fixed Parameter Complexity 68

Counting continued

• Each vertex in C-W that is incident to k+1 or more
vertices in W has a permanent edge to a vertex in
W, and then gets permanent edges to all vertices in
W, and then becomes member of W

• Each vertex in C-W for which at least k+1 vertices
in W are not adjacent: it gets a forbidden edge to
each vertex in W

• Each vertex in C-W is handled as |W|>2k.

• So, each connected component has size at most 4k

• In total at most 4k2 vertices

Fixed Parameter Complexity 69

Comments

• This argument is due to Gramm et al.

• Better and more recent algorithms exist:

faster branching (2.7k) and linear kernels

Fixed Parameter Complexity 70

Non-blocker

• Given: graph G=(V,E), integer k

• Parameter k

• Question: Does G have a dominating set of

size at most |V|-k ?

Fixed Parameter Complexity 71

Nonblocker kernels

• First idea: quadratic kernel

• Rules:

1. If v has degree at least k, say YES

• v and all vertices not a neighbor of v are a solution

2. If v has degree 0, remove v

3. If rules 1 and 2 do not apply, and we have

more than k(k+1) vertices, say YES

– What would be the correct value here?

Fixed Parameter Complexity 72

Lemma and simple kernel

• If G does not have vertices of degree 0, then
G has a dominating set with at most |V|/2
vertices

– Proof: per connected component: build
spanning tree. The vertices on the odd levels
form a ds, and the vertices on the even levels
form a ds. Take the smaller of these.

• 2k kernel for non-blocker after removing
vertices of degree 0

Fixed Parameter Complexity 73

Improvements

• Lemma (Blank and McCuaig, 1973) If a

connected graph has minimum degree at least two

and at least 8 vertices, then the size of a minimum

dominating set is at most 2|V|/5.

• Lemma (Reed) If a connected graph has minimum

degree at least three, then the size of a minimum

dominating set is at most 3|V|/8.

Fixed Parameter Complexity 74

Getting rid of vertices of degree 1

• Idea: we get rid of all but one vertices of
degree 1

• Rule: if v and w have degree 1, then identify
the neighbor of v and w and remove w

• Intuition: we can assume that a neighbor of
a vertex of degree 1 is in the dominating set

• Possibly, replace in the end vertex of degree
1 by triangle

Fixed Parameter Complexity 75

Degree two

• If we have an induced path like this:

• Then remove the two middle vertices and

identify the endpoints

x y

Fixed Parameter Complexity 76

Iterative compression

• FPT-technique

Fixed Parameter Complexity 77

Feedback Vertex Set

• Instance: graph G=(V,E)

• Parameter: integer k

• Question: Is there a set of at most k vertices W,

such that G-W is a forest?

– Known in FPT

– Here: recent algorithm O(5k p(n)) time algorithm

– Can be done in O(5k kn) or less with kernelisation

Fixed Parameter Complexity 78

Iterative compression technique

• Number vertices v1, v2, …, vn

• Let X = {v1, v2, …, vk}

• for i = k+1 to n do

• Add vi to X

– Note: X is a FVS of size at most k+1 of {v1, v2, …, vi}

• Call a subroutine that either

– Finds (with help of X) a feedback vertex set Y of size at

most k in {v1, v2, …, vi}; set X = Y OR

– Determines that Y does not exist; stop, return NO

Fixed Parameter Complexity 79

Compression subroutine

• Given: graph G, FVS X of size k + 1

• Question: find if existing FVS of size k

– Is subroutine of main algorithm

for all subsets S of X do

Determine if there is a FVS of size at most k that

contains all vertices in S and no vertex in X – S

Fixed Parameter Complexity 80

Yet a deeper subroutine

• Given: Graph G, FVS X of size k+1, set S

• Question: find if existing a FVS of size k containing all
vertices in S and no vertex from X – S

1. Remove all vertices in S from G

2. Mark all vertices in X – S

3. If marked cycles contain a cycle, then return NO

4. While marked vertices are adjacent, contract them

5. Set k = k - |S|. If k < 0, then return NO

6. If G is a forest, then return YES; S

7. …

Fixed Parameter Complexity 81

Subroutine continued

7. If an unmarked vertex v has at least two edges to

marked vertices

• If these edges are parallel, i.e., to the same neighbor,

then v must be in a FVS (we have a cycle with v the

only unmarked vertex)

• Put v in S, set k = k – 1 and recurse

• Else recurse twice:

• Put v in S, set k = k – 1 and recurse

• Mark v, contract v with all marked neighbors and recurse

– The number of marked vertices is one smaller

Fixed Parameter Complexity 82

Other case

8. Choose an unmarked vertex v that has at

most one unmarked neighbor (a leaf in

G[V-X])
 By step 7, it also has at most one marked neighbor

• If v is a leaf in G, then remove v

• If v has degree 2, then remove v and connect

its neighbors

Fixed Parameter Complexity 83

Analysis

• Precise analysis gives O*(5k) subproblems in total

• Imprecise: 2k subsets S

• Only branching step:

– k is decreased by one, or

– Number of marked vertices is decreased by one

• Initially: number of marked vertices + k is at most

2k

• Bounded by 2k.22k = 8k

Fixed Parameter Complexity 84

Conclusions

• Similar techniques work (usually much

more complicated) for many other problems

• W[…]-hardness results indicate that FPT-

algorithms do not exist for other problems

• Note similarities and differences with

exponential time algorithms

