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Fixed parameter complexity 

• Analysis what happens to problem when 

some parameter is small 

• Definitions 

• Fixed parameter tractability techniques 

– Branching 

– Kernelisation 

– Other techniques 
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Motivation 

• In many applications, some number can be 

assumed to be small 

– Time of algorithm can be exponential in this 

small number, but should be polynomial in 

usual size of problem  
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Parameterized problem 

• Given: Graph G, integer k, … 

• Parameter: k 

• Question: Does G have a ??? of size at least 

(at most) k? 

– Examples: vertex cover, independent set, 

coloring, … 
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Examples of parameterized 

problems (1) 

Graph Coloring 

Given: Graph G, integer k 

Parameter: k 

Question: Is there a vertex coloring of G with k 

colors? (I.e., c: V  {1, 2, …, k} with for all 

{v,w}  E: c(v)  c(w)?) 

• NP-complete, even when k=3. 
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Examples of parameterized 

problems (2) 

Clique 

Given: Graph G, integer k 

Parameter: k 

Question: Is there a clique in G of size at least k? 

• Solvable in O(nk) time with simple 

algorithm. Complicated algorithm gives 

O(n2k/3). Seems to require (nf(k)) time… 
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Examples of parameterized 

problems (3) 

Vertex cover 

Given: Graph G, integer k 

Parameter: k 

Question: Is there a vertex cover of G of size at 

most k? 

• Solvable in O(2k (n+m)) time 
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Fixed parameter complexity 

theory 

• To distinguish between behavior: 

O( f(k) * nc) 

 ( nf(k)) 

• Proposed by Downey and Fellows. 
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Parameterized problems 

• Instances of the form (x,k) 

– I.e., we have a second parameter 

• Decision problem (subset of {0,1}* x N ) 
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Fixed parameter tractable 

problems 

• FPT is the class of problems with an 

algorithm that solves instances of the form 

(x,k) in time p(|x|)*f(k), for polynomial p 

and some function f. 
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Hard problems 

• Complexity classes 

– FPT  W[1] W[2]  … W[i]  …  W[P] 

– FPT is ‘easy’, all others ‘hard’ 

– Defined in terms of Boolean circuits 

– Problems hard for W[1] or larger class are 

assumed not to be in FPT 

• Compare with P / NP 



Fixed Parameter Complexity 12 

Examples of hard problems 

• Clique and Independent Set are W[1]-complete 

• Dominating Set is W[2]-complete 

• Version of Satisfiability is W[1]-complete 

– Given: set of clauses, k 

– Parameter: k 

– Question: can we set (at most) k variables to true, and 

al others to false, and make all clauses true? 
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Techniques for showing fixed 

parameter tractability 

• Branching 

• Kernelisation 

• Iterative compression 

• Other techniques (e.g., treewidth) 
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A branching algorithm  

for vertex cover 

• Idea: 

– Simple base cases 

– Branch on an edge: one of the endpoints 

belongs to the vertex cover 

• Input: graph G and integer k 
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Branching algorithm  

for Vertex Cover 

• Recursive procedure VC(Graph G, int k) 

• VC(G=(V,E), k) 

– If G has no edges, then return true 

– If k == 0, then return false 

– Select an edge {v,w}  E 

– Compute G’ = G [V – v] 

– Compute G” = G [V – w] 

– Return VC(G’,k – 1) or VC(G”,k – 1) 
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Analysis of algorithm 

• Correctness 

– Either v or w must belong to an optimal VC 

• Time analysis 

– Recursion depth k 

– At most 2k recursive calls 

– Each recursive call costs O(n+m) time 

– O(2k (n+m)) time: FPT 



Fixed Parameter Complexity 17 

Cluster editing 

• Instance: undirected graph G=(V,E), integer K 

• Parameter: K 

• Question: can we make at most K modifications 
to G, such that each connected component is a 
clique, where each modification is an addition of 
an edge or the deletion of an edge? 

• Models biological question: partition species in 
families, where available data contains mistakes 

• With branching: O(3k p(n)) algorithm 
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Lemma 

• If G has a connected 

component that is not 

a clique, then G 

contains the following 

subgraph: 

• Proof: there are 

vertices w and x in the 

connected component 

that are not adjacent. 

Take such w and x of 

minimum distance. 

Case analysis: distance 

is 2 hence this 

subgraph 

w 

v x 
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Branching algorithm for  

Cluster Editing 

• If each connected component is a clique:  
– Answer YES 

• If k=0 and some connected components are not 
cliques:  
– Answer NO 

• Otherwise, there must be vertices v, w, x with 
{v,w}  E, {v,x}  E, and {w,x}  E 
– Go three times in recursion: 

• Once with {v,w} removed and k = k – 1  

• Once with {v,x} removed and k = k – 1  

• Once with {w,x} added and k = k – 1  

w 

v x 
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Analysis branching algorithm 

• Correctness by lemma 

• Time … 

– 3k leaves of decision tree 
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More on cluster editing 

• Faster branching algorithms exist 

• Important applications and practical 

experiments 

• We’ll see more when discussing 

kernelisation 
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Max SAT 

• Variant of satisfiability, but now we ask: can we 

satisfy at least k clauses? 

• NP-complete 

• With k as parameter: FPT 

• Branching: 

– Take a variable 

– If it only appears positively, or negatively, then … 

– Otherwise: Branch! What happens with k? 
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Independent Set  

on planar graphs 
Given: a planar graph G=(V,E), integer k 

Parameter: k 

Question: Does G have an independent set with at 
least k vertices, i.e., a set W of size at least k 
with for all v, w  V: {v,w}  

• NP-complete 

• Easy to see that it is FPT by kernelisation… 

• Here: O(6k n) algorithm 
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The red vertices 

form an independent set 
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Branching 

• Each planar graph has a vertex of degree at most 5 

• Take vertex v of minimum degree, say with 
neighbors w1, …, wr, r at most 5 

• A maximum size independent set contains v or one 
of its neighbors 

– Selecting a vertex is equivalent to removing it and its 
neighbors and decreasing k by one 

• Create at most 6 subproblems, one for each x  
{v, w1, …, wr}. In each, we set k = k – 1, and 
remove x and its neighbors 
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v 

w2 

w1 
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Closest string 

Given: k strings s1, …,sk each of length L, integer 
d 

Parameter: d 

Question: is there a string s with Hamming 
distance at most d to each of s1, …,sk  

• Application in molecular biology 

• Here: FPT algorithm 

• (Gramm and Niedermeier, 2002) 
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Subproblems 

• Subproblems have form 

– Candidate string s 

– Additional parameter r 

– We look for a solution to original problem, with 

additional condition: 

• Hamming distance at most r to s 

• Start with s = s1 and r=d (= original 

problem) 
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Branching step 

• Choose an sj with Hamming distance > d to s 

• If Hamming distance of sj  to s is larger than d+r: 

NO 

• For all positions i where sj differs from s 

– Solve subproblem with 

•  s changed at position i to value sj (i) 

• r = r – 1  

• Note: we find a solution, if and only one of these 

subproblems has a solution 



Fixed Parameter Complexity 30 

Example 

• Strings 01112, 02223, 01221,  d=3 

– First position in solution will be a 0 

– First subproblem (01112, 3) 

– Creates three subproblems 

• (02113, 2) 

• (01213, 2) 

• (01123, 2) 
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Time analysis 

• Recursion depth d 

• At each level, we branch at most at d + r  2d 

positions 

• So, number of recursive steps at most 2dd+1 

• Each step can be done in polynomial time: O(kdL)  

• Total time is O(2dd+1 . kdL) 

• Speed up possible by more clever branching and 

by kernelisation 
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More clever branching 

• Choose an sj with Hamming distance > d to s 

• If Hamming distance of si  to s is larger than d+r: 
NO 

• Choose arbitrarily d+1 positions where sj differs 
from s 

– Solve subproblem with 

•  s changed at position i to value sj (j) 

• r = r – 1  

• Note:  still correct, and running time can be made 
O(kL + kd dd) 
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Technique 

• Try to find a branching rule that 

– Decreases the parameter 

– Splits in a bounded number of subcases 

• YES, if and only if YES in at least one subcase 
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Kernelisation 

• Preprocessing rules reduce starting instance 

to one of size f(k) 

– Should work in polynomial time 

• Then use any algorithm to solve problem on 

kernel 

• Time will be p(n) + g(f(k)) 
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Kernelization 

• Helps to analyze preprocessing 

• Much recent research 

• Today: definition and some examples 
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Formal definition of kernelisation 

• Let P be a parameterized problem. (Each 
input of the form (I,k).)  
A reduction to a problem kernel is an 
algorithm A, that transforms inputs of P to 
inputs of P, such that 

– (I,k)  P, if and only if A(I,k)  P for all (I,k) 

– If A(I,k) = (I’,k’), then k’  f(k), and |I’|  g(k) 
for some functions f, g 

– A uses time, polynomial in |I| and k 
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Kernels and FPT 

• Theorem. Consider a decidable parameterized 

problem. Then the problem belongs to FPT, if and 

only if it has a kernel 

• <= Build the kernel and then solve the problem on 

the kernel 

• => Suppose we have an f(k)nc algorithm. Run the 

algorithm for nc+1 steps. If it did not yet solve the 

problem, return the input as kernel: it has size at 

most f(k). If it solved the problem, then … 
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Consequence 

• If a problem is W[1]-hard, it has no kernel, 

unless FPT=W[1] 

• There are also techniques to give evidence 

that problems have no kernels of 

polynomial size 

– If problem is compositional and NP-hard, then 

it has no polynomial kernel 

– Example is e.g., LONG PATH 



First kernel: Convex string 

recoloring 
• Application from molecular biology 

• Given: string s in *, integer k 

• Parameter: k 

• Question: can we change at most k characters in the 
string s, such that s becomes convex, i.e., for each 
symbol, the positions with that symbol are 
consecutive. 

• Example of convex string: aaacccbxxxffff 

• Example of string that is not convex: abba 

• Instead of symbols, we talk about colors 

Fixed Parameter Complexity 39 



Kernel for convex string 

recoloring 

• Theorem: Convex string recoloring has a 

kernel with O(k2) characters. 
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Notions 

• Notion: good and bad colors 

• A color is good, if it is consecutive in s, 

otherwise it is bad 

• abba: a is bad and b is good 

• Notion: block: consecutive occurrences of 

the same color: aaabbbaccc has four blocks 

• Convex: each color has one block 
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Stepwise construction of kernel 

• Step 1: limit the number of blocks of bad 

colors 

• Step 2: limit the number of good colors 

• Step 3: limit the number of characters in s 

per block 

• Step 4: count 
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Rule 1 

• If there are more than 4k blocks of bad 

colors, say NO 

– Formally, transform to trivial NO-instance, e.g. 

(aba, 0) 

 

– Why correct?  
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Rule 2 

• If we have two consecutive blocks of good 

colors, then change the color of the second 

block to that of the first 

 

• E.g: abbbbcca -> abbbbbba 

 

• Why correct? 
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Rule 3 

• If a block has more than k+1 characters, 

delete all but k+1 of the block 

 

• Correctness: a block of such a size will 

never be changed 
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Counting 

• After the rules have been applied, we have at 
most: 
– 4k blocks of bad colors 

– 4k+1 blocks of good colors: at most one between 
each pair of bad colors, one in front and one in the 
end 

– Each block has size at most k+1 

• String has size at most (8k+1)(k+1) 

• This can be improved by better analysis, more 
rules, ... 
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Vertex cover: observations that 

helps for kernelisation 

• If v has degree at least k+1, then v belongs 

to each vertex cover in G of size at most k. 

– If v is not in the vertex cover, then all its 

neighbors are in the vertex cover. 

• If all vertices have degree at most k, then a 

vertex cover has at least m/k vertices. 

– (m=|E|). Any vertex covers at most k edges. 
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Kernelisation for Vertex Cover 

H = G;  ( S = ; ) 

While there is a vertex v in H of degree at least k+1 
do 

Remove v and its incident edges from H 

k = k – 1; ( S = S + v ;) 

If k < 0 then return false 

If H has at least k2+1 edges, then return false 

Remove vertices of degree 0 

Solve vertex cover on (H,k) with some algorithm 
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Time 

• Kernelisation step can be done in O(n+m) 

time 

• After kernelisation, we must solve the 

problem on a graph with at most k2 edges, 

e.g., with branching this gives: 

– O( n + m + 2k k2) time 

– O( kn + 2k k2) time can be obtained by noting 

that there is no solution when m > kn. 
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Better kernel for vertex cover 

• Nemhauser-Trotter: kernel of at most 2k vertices 

• Make ILP formulation of Vertex Cover 

• Solve relaxation 

• All vertices v with xv > ½ : put v in set 

• All vertices v with xv < ½ : v is not in the set 

• Remove all vertices except those with value ½, 
and decrease k accordingly 

• Gives kernel with at most 2k vertices, but why is it 
correct? 
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Nemhauser Trotter proof plan 

1. Write down the ILP for Vertex Cover 

2. There is always an optimal solution of the 

relaxation with only values 1, 0 and ½ 

3. There is always an optimal solution of the ILP 

where all vertices with value 1 are in the vertex 

cover set and all vertices with value 0 are not in 

the vertex cover set 

• Compare the solution of part 2 with a hypothetical 

optimal solution of the ILP 
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ILP 

}1,0{

1:},{

min

v

wv

Vv

v

x

xxEwv

x
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Relaxation 

0

1:},{

min

v

wv

Vv

v

x

xxEwv

x
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There is always … 

• … an optimal solution of the relaxation with only 
values 0, ½ and 1 

• While not, repeat: take a vertex v with the largest 
value < 1, say c> ½. Look at the graph induced by 
vertices with weights c and 1-c. 

• If the number of vertices with weights c and 1-c 
are not equal, the solution is not optimal. 

• If these numbers are equal, change c to 1 and 1-c 
to 0.  

• Repeat till we have the desired form 
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Vertices with weight 0 and 1 

• There is an optimal solution of the ILP with vertices with 
weight 0 and weight 1 in the relaxation not changed  

• A = weight in relaxation 1 

• B = weight in relaxation 0 

• C = weight in relaxation ½ 

• Note: no edges from B to C 

• Take ILP solution x and relation y 

– Follow x on C and y on A and B: this is a solution 

– It is optimal, otherwise, taking y on C and x on A and B was not an 
optimal solution for the relaxation  
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2k kernel for Vertex Cover 

• Solve the relaxation (polynomial time with the ellipsoid 
method, practical with Simplex) 

• If the relaxation has optimum more than 2k, then say no 

• Otherwise, get rid of the 0’s and 1’s, decrease k 
accordingly 

• At most 2k vertices have weight ½ in the relaxation 

• So, kernel has 2k vertices. 

• It can (and will often) have a quadratic number of edges 
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Maximum Satisfiability 

Given: Boolean formula in conjunctive normal 

form; integer k 

Parameter: k 

Question: Is there a truth assignment that satisfies 

at least k clauses? 

• Denote: number of clauses: C 
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Reducing the number of clauses 

• If C 2k, then answer is YES 

– Look at arbitrary truth assignment, and truth 

assignment where we flip each value 

– Each clause is satisfied in one of these two 

assignment 

– So, one assignment satisfies at least half of all 

clauses 
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Bounding number of long clauses 

• Long clause: has at least k literals 

• Short clause: has at most k-1 literals 

• Let L be number of long clauses 

• If L  k: answer is YES 

– Select in each long clause a literal, whose 
complement is not yet selected 

– Set these all to true 

– All long clauses are satisfied  
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Reducing to only short clauses 

• If less than k long clauses 

– Make new instance, with only the short clauses and k 

set to k-L 

– There is a truth assignment that satisfies at least k-L 

short clauses, if and only if there is a truth assignment 

that satisfies at least k clauses 

• =>: choose for each satisfied short clause a variable that makes 

the clause true. We may change all other variables, and can 

choose for each long clause another variable that makes it true 

• <=: trivial 
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An O(k2) kernel for 

 Maximum Satisfiability 

• If at least 2k clauses then return YES 

• If at least k long clauses then return YES 

• Else  

– remove all L long clauses 

– set k=k-L 
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Kernelisation for cluster editing 

• General form: 

• Repeat rules, until no rule is possible 

– Rules can do some necessary modification and 

decrease k by one 

– Rules can remove some part of the graph 

– Rules can output YES or NO 
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Trivial rules and plan 

• Rule 1: If a connected component of G is a clique, remove 
this connected component 

• Rule 2: If we have more than k connected components and 
Rule 1 does not apply: Answer NO 

• Consequence: after Rule 1 and Rule 2, there are at most k 
connected component 

• Plan: find rules that make connected component small 

• We change the input: some pairs are permanent and 
others are forbidden. 
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Observation and rule 3 

• If two vertices v, w have k+1 neighbors in 

common, they must belong to the same 

clique in a solution 

– If the edge did not exist, add it and decrease k 

by 1 

– Set the edge {v,w} to be permanent 
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Another observation and rule 4 

• If there are at least k+1 vertices that are 

adjacent to exactly one of v and w, then 

{v,w} cannot be an edge in the solution 

– If {v,w} is an edge: delete it and decrease k by 

one 

– Mark the pair {v,w} as forbidden 

• Rule 5: if a pair is forbidden and 

permanent then there is no solution 
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Transitivity 

• Rule 6: if {v,w} is permanent, and {w,x} is 

permanent, then set {w,x} to be permanent 

(if the edge was nonexisting, add it, and 

decrease k by one) 

• Rule 7: if {v,w} is permanent and {w,x} is 

forbidden, then set {w,x} to be forbidden (if 

the edge existed, delete it, and decrease k by 

one) 
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Counting 

• Rules can be executed in polynomial time 

• One can find in O(n3) time an instance to which no 
rules apply (with properly chosen data structures) 

• Consider a connected component C with at least 
4k+1 vertices. 

• At least 2k+1 vertices are not involved in a 
modification, say this is the set W 

• W must form a clique, and all edges in W become 
permanent 
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Counting continued 

• Each vertex in C-W that is incident to k+1 or more 
vertices in W has a permanent edge to a vertex in 
W, and then gets permanent edges to all vertices in 
W, and then becomes member of W 

• Each vertex in C-W for which at least k+1 vertices 
in W are not adjacent: it gets a forbidden edge to 
each vertex in W 

• Each vertex in C-W is handled as |W|>2k. 

• So, each connected component has size at most 4k 

• In total at most 4k2 vertices 
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Comments 

• This argument is due to Gramm et al. 

• Better and more recent algorithms exist: 

faster branching (2.7k) and linear kernels 
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Non-blocker 

• Given: graph G=(V,E), integer k 

• Parameter k 

• Question: Does G have a dominating set of 

size at most |V|-k ? 
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Nonblocker kernels 

• First idea: quadratic kernel 

• Rules: 

1. If v has degree at least k, say YES 

• v and all vertices not a neighbor of v are a solution 

2. If v has degree 0, remove v 

3. If rules 1 and 2 do not apply, and we have 

more than k(k+1) vertices, say YES 

– What would be the correct value here? 
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Lemma and simple kernel 

• If G does not have vertices of degree 0, then 
G has a dominating set with at most |V|/2 
vertices 

– Proof: per connected component: build 
spanning tree. The vertices on the odd levels 
form a ds, and the vertices on the even levels 
form a ds. Take the smaller of these. 

• 2k kernel for non-blocker after removing 
vertices of degree 0 
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Improvements 

• Lemma (Blank and McCuaig, 1973) If a 

connected graph has minimum degree at least two 

and at least 8 vertices, then the size of a minimum 

dominating set is at most 2|V|/5. 

• Lemma (Reed) If a connected graph has minimum 

degree at least three, then the size of a minimum 

dominating set is at most 3|V|/8. 
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Getting rid of vertices of degree 1 

• Idea: we get rid of all but one vertices of 
degree 1 

• Rule: if v and w have degree 1, then identify 
the neighbor of v and w and remove w 

• Intuition: we can assume that a neighbor of 
a vertex of degree 1 is in the dominating set 

• Possibly, replace in the end vertex of degree 
1 by triangle 
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Degree two 

• If we have an induced path like this: 

 

• Then remove the two middle vertices and 

identify the endpoints 

 

x y 
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Iterative compression 

• FPT-technique 
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Feedback Vertex Set 

• Instance: graph G=(V,E) 

• Parameter: integer k 

• Question: Is there a set of at most k vertices W, 

such that G-W is a forest? 

– Known in FPT 

– Here: recent algorithm O(5k p(n)) time algorithm 

– Can be done in O(5k kn) or less with kernelisation 



Fixed Parameter Complexity 78 

Iterative compression technique 

• Number vertices v1, v2, …, vn 

• Let X = {v1, v2, …, vk} 

• for i = k+1 to n do 

• Add vi to X 

– Note: X is a FVS of size at most k+1 of {v1, v2, …, vi} 

• Call a subroutine that either 

– Finds (with help of X) a feedback vertex set Y of size at 

most k in {v1, v2, …, vi}; set X = Y OR 

– Determines that Y does not exist; stop, return NO 
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Compression subroutine 

• Given: graph G, FVS X of size k + 1 

• Question: find if existing FVS of size k 

– Is subroutine of main algorithm 

for all subsets S of X do 

Determine if there is a FVS of size at most k that 

contains all vertices in S and no vertex in X – S  
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Yet a deeper subroutine 

• Given: Graph G, FVS X of size k+1, set S 

• Question: find if existing a FVS of size k containing all 
vertices in S and no vertex from X – S  

1. Remove all vertices in S from G 

2. Mark all vertices in X – S 

3. If marked cycles contain a cycle, then return NO 

4. While marked vertices are adjacent, contract them 

5. Set k = k - |S|. If k < 0, then return NO 

6. If G is a forest, then return YES; S 

7. … 
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Subroutine continued 

7. If an unmarked vertex v has at least two edges to 

marked vertices 

• If these edges are parallel, i.e., to the same neighbor, 

then v must be in a FVS (we have a cycle with v the 

only unmarked vertex) 

• Put v in S, set k = k – 1 and recurse 

• Else recurse twice:  

• Put v in S, set k = k – 1 and recurse 

• Mark v, contract v with all marked neighbors and recurse 

– The number of marked vertices is one smaller 
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Other case 

8. Choose an unmarked vertex v that has at 

most one unmarked neighbor (a leaf in 

G[V-X]) 
 By step 7, it also has at most one marked neighbor 

• If v is a leaf in G, then remove v 

• If v has degree 2, then remove v and connect 

its neighbors 
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Analysis 

• Precise analysis gives O*(5k) subproblems in total 

• Imprecise: 2k subsets S 

• Only branching step:  

– k is decreased by one, or 

– Number of marked vertices is decreased by one 

• Initially: number of marked vertices + k is at most 

2k 

• Bounded by 2k.22k = 8k 
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Conclusions 

• Similar techniques work (usually much 

more complicated) for many other problems 

• W[…]-hardness results indicate that FPT-

algorithms do not exist for other problems 

• Note similarities and differences with 

exponential time algorithms 


