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Overview 

• Historic introduction: Series parallel graphs 

• Dynamic programming on trees 

• Dynamic programming on series parallel 
graphs 

• Treewidth 

• Dynamic programming on graphs of small 
treewidth 

• Finding tree decompositions 



Treewidth 3 

Computing the Resistance With 

the Laws of Ohm 
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Repeated use of the rules 
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A tree structure 
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Carry on! 

• Internal structure of 

graph can be forgotten 

once we know 

essential information 

about it! 
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• Network is ‘series parallel graph’ 

• 196*, 197*: many problems that are hard 

for general graphs are easy for  

– Trees 

– Series parallel graphs 

• Many well-known problems 

Using tree structures for solving 

hard problems on graphs 1 

Linear / polynomial 

time computable 

e.g.: 

NP-complete 



Treewidth 8 

Weighted Independent Set 

• Independent set: set of vertices that are pair 

wise non-adjacent. 

• Weighted independent set 

– Given: Graph G=(V,E), weight w(v) for each 

vertex v. 

– Question: What is the maximum total weight of 

an independent set in G? 

• NP-complete 
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Weighted Independent Set 

 on Trees 

• On trees, this problem can be solved in linear time 

with dynamic programming. 

• Choose root r. For each v, T(v) is subtree with v as 

root. 

• Write 

A(v) = maximum weight of independent set S in T(v)  

B(v) = maximum weight of independent set S in T(v), 

such that v S. 
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Recursive formulations 

• If v is a leaf: 

– A(v) = w(v) 

– B(v) = 0 

• If v has children x1, … , xr: 

A(v) = max{ w(v) + B(x1) + … + B(xr) ,  

A(x1) + … A(xr) } 

B(v) = A(x1) + … A(xr)  
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Linear time algorithm 

• Compute A(v) and B(v) for each v, bottom-

up. 

– E.g., in postorder 

• Constructing corresponding sets can also be 

done in linear time. 
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Second example: 

Weighted dominating set 

• A set of vertices S is dominating, if each 
vertex in G belongs to S or is adjacent to a 
vertex in S. 

• Problem: given a graph G with vertex 
weights, what is the minimum total weight 
of a dominating set in G? 

• Again, NP-complete, but linear time on 
trees. 
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Subproblems 

• C(v) = minimum weight of dominating set S 

of T(v) 

• D(v) = minimum weight of dominating set S 

of T(v) with v  S. 

• E(v) = minimum weight of a set S of T(v) 

that dominates all vertices, except possibly 

v. 
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Recursive formulations 

• If v is a leaf, … 

• If v has children x1, … , xr: 

– C(v) = the minimum of: 

• w(v) + E(x1) + … + E(xr) 

• C(x1) + … + C(xi-1) + D(xi) + C(xi+1) + … + C(xr), 
over all i, 1  i  r. 

– D(v) = w(v) + E(x1) + … + E(xr) 

– E(v) = min { w(v) + E(x1) + … + E(xr), C(x1) + 
… + C(xr) } 
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Gives again a linear time 

algorithm 

• Compute bottom up (e.g., postorder), and 

use another type of dynamic programming 

for the values C(v). 

• Constructing sets can also be done in linear 

time 
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Generalizing to series parallel 

graphs 

• A 2-terminal graph is a graph G=(V,E) with two 

special vertices s and t, its terminals. 

• A 2-terminal (multi)-graph is series parallel, 

when it is: 

– A single edge (s,t). 

– Obtained by series composition of 2 series parallel 

graphs 

– Obtained by parallel composition of 2 series parallel 

graphs 
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Series composition 

s1 s2 
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Parallel composition 
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Series Parallel Graphs 

 have an SP-tree 
P 

6
 

2
 

6
 

2
 

5
 

1
 

7
 

P P 

S S 

5
 

6
 

6
 

2
 

2
 

7
 

1
 



Treewidth 20 

G(i) 

• Associate to each node i of SP 

tree a 2-terminal graph G(i). 
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Maximum weighted independent 

set for series parallel graphs 
• G(i), say with terminals s and t 

• AA(i) = maximum weight of independent set S of 
G(i) with s  S, t  S 

• BA(i) = maximum weight of independent set S of 
G(i) with s  S, t  S 

• AB(i) = maximum weight of independent set S of 
G(i) with s  S, t  S 

• BB(i) = maximum weight of independent set S of 
G(i) with s  S, t  S 
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Maximum weighted independent 

set of series parallel graphs 2 

• Computing AA, AB, BA, BB for 

– Leaves of SP-tree: trivial 

– Series, parallel composition: case analysis, 
using values for sub-sp-graphs G(i1), G(i2) 

– E.g., series operation, s’ terminal between i1 
and i2 

• AA(i) = max {AA(i1)+AA(i2) – w(s’), AB(i1) + 
BA(i2) } 

• O(1) time per node of SP-tree: O(n) total. 
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Many generalizations 

• Many other problems 

• Other classes of graphs to which we can 

assign a tree-structure, including 

– Graphs of treewidth k, for small k. 
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Tree decomposition 
• A tree decomposition: 

– Tree with a vertex set 

associated to every 

node. 

– For all edges {v,w}: 

there is a set containing 

both v and w. 

– For every v: the nodes 

that contain v form a 

connected subtree. 
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Tree decomposition 
• A tree decomposition: 

– Tree with a vertex set 

associated to every 

node. 

– For all edges {v,w}: 

there is a set containing 

both v and w. 

– For every v: the nodes 

that contain v form a 

connected subtree. 
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Treewidth (definition) 

• Width of tree 

decomposition: 

 

• Treewidth of graph G: 

tw(G)= minimum 

width over all tree 

decompositions of G. 
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Some graphs have small 

treewidth 

• Appearing in some applications (e.g., 

probabilistic networks) 

• Trees have treewidth 1 

• Series Parallel graphs have treewidth 2. 

• … 
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Trees have treewidth one 

• Choose a root r 

• Take Xr = {r}, and for 

each other node i: 

Xi = {i, parent(i)} 

• T with these bags 

gives a tree 

decomposition of 

width 2 
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Algorithms using tree 

decompositions 

• Step 1: Find a tree decomposition of width 
bounded by some small k. 

– Heuristics. 

– O(f(k)n) in theory. 

– Fast O(n) algorithms for k=2, k=3. 

– By construction, e.g., for trees, sp-graphs. 

• Step 2. Use dynamic programming, bottom-
up on the tree. 
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Determining treewidth 

• Treewidth problem (decision version): 
– Given: Graph G, integer k 

– Question: Is the treewidth of G at most k 

• Treewidth problem (construction version): 
– Given: Graph G 

– Question: construct a tree decomposition of G with minimum width 

• NP-complete (Arnborg, Proskurowski) 

• (n) time algorithm for fixed k (B.) 

• Practical O(n) algorithms for k= 1, 2, 3 (Arnborg, Corneil, 
Proskurowski) 

• Practical O*(2n) algorithm for small graphs (B. et al.) 

• Many (often good) heuristics 



Treewidth 31 

Separator property 

i 

v 

w 

If both v and w not in Xi, then 

v and w are not adjacent 
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Nice tree decompositions 

• Rooted tree, and four types of nodes i: 

– Leaf: leaf of tree with |Xi| = 1. 

– Join: node with two children j, j’ with Xi = Xj = Xj’. 

– Introduce: node with one child j with Xi = Xj  {v} for 

some vertex v 

– Forget: node with one child j with Xi = Xj  {v} for 

some vertex v 

• There is always a nice tree decomposition with the 

same width. 
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Define G(i) 

• Nice tree decomposition. 

• For each node i, G(i) subgraph of G, formed 

by all nodes in sets Xj, with j=i or j a 

descendant of i in tree. 

– Notate: G(i) = ( V(i), E(i) ). 
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Maximum weighted independent 

set on graphs with treewidth k 

• For node i in tree decomposition, S  Xi 

write 

– R(i, S) = maximum weight of independent set 

W of G(i) with W Xi = S,  

• –  if such W does not exist 
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Leaf nodes 

• Let i be a leaf node. Say Xi = {v}. 

• R(i,{v}) = w(v) 

• R(i,  ) = 0 
v 

G(i) is a graph with one vertex 
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Join nodes 

• Let i be a join node with children j1, j2. 

• R(i, S) = R(j1, S) + R(j2, S) – w(S). 

+ 
= 
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Introduce nodes 

• Let i be a node with child j, 
with Xi = Xj  {v}.  

• Let S  Xj. 

• R(i,S) = R(j,S). 

• If v not adjacent to vertex in 
S:  
R(i,S {v})=R(j,S) + w(v) 

• If v adjacent to vertex in S: 
R(i,S  {v}) = – . 

v 
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Forget nodes 

• Let i be a node with child 

j, with Xi = Xj  {v}.  

• Let S  Xi. 

• R(i,S) = max (R(j,S), 

R(j,S  {v})) 

 

v v 
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Maximum weighted independent 

set on graphs with treewidth k 
• For node i in tree decomposition, S  Xi write 

– R(i, S) = maximum weight of independent set W of G(i) 
with W Xi = S, –  if such W does not exist 

• Compute for each node i, a table with all values 
R(i, …). 

• Each such table can be computed in O(2k) time 
when treewidth at most k. 

• Gives O(n) algorithm when treewidth is (small) 
constant. 
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Frequency assignment problem 

• Given: 

– Graph G=(V,E) 

– Frequency set F(v)  N for all v  V 

– Cost function 

• c(e,r,s) , e = {v,w}, r a frequency of v, s a frequency of w 

• Question 

– Find a function g with 

• For all v V: g(v)  F(v) 

• The total sum over all edges e={v,w} of c(e,g(v),g(w)) is as 
small as possible 



Treewidth 41 

Frequency assignment when 

treewidth is small 

• Suppose sets F(v) are small 

• Suppose G has small treewidth 

• Algorithm exploits tree decomposition 
What tables are we computing? 

– Leaf: trivial 

– Introduce: … 

– Forget: projection 

– Join: sum but subtract double terms 
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General method 

• Compute a tree decomposition 

– E.g., with minimum degree heuristic 

– Make it nice 

– Use dynamic programming 

• Works for many problems 

– Courcelle: those that can be formulated in monadic 
second order logic 

– Practical: TSP, frequency assignment, problems on 
planar graphs like dominating set, probabilistic 
inference 
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A lemma 

• Let ({Xi | i I},T) be a tree decomposition 

of G. Let Z be a clique in G. Then there is a 

j  I with Z  Xj. 

– Proof: Take arbitrary root of T. For each v  Z, 

look at highest node containing v. Look at such 

highpoint of maximum depth. 
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The minimum degree heuristic 

• Repeat: 

– Take vertex v of minimum degree 

– Make neighbors of v a clique 

– Remove v, and repeat on rest of G 

– Add v with neighbors to tree decomposition 

N(v) N(v) v 

N(v) 

A heuristic for treewidth 

Works often well 
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Other heuristics 

• Minimum fill-in heuristic 

– Similar to minimum degree heuristic, but takes 

vertex with smallest fill-in: 

• Number of edges that must be added when the 

neighbours of v are made a clique 

• Other choices of vertices, refining, using 

separators, … 



Treewidth 46 

Representation as permutation 

• A correspondence between tree decompositions 
and permutations of the vertices 

– Repeat: remove superfluous leaf bag, or take vertex that 
appears in 1 leaf bag and no other bag 

– Make neighbours of v = (1) into a clique; recursively 
make tree decomposition of graph – v; add bag with v 
and neighbours 

• Used in heuristics, and local search methods (e.g., 
taboo search, simulated annealing) and genetic 
algorithms  
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Connection to Gauss eliminating 

• Consider Gauss elimination on a symmetric 
matrix 

• For n by n matrix M, let GM be the graph 
with n vertices, and edge (i,j) if Mij  0 

• If we eliminate a row and corresponding 
column, effect on G is: 

– Make neighbors of v a clique 

– Remove v 
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Application: Probabilistic networks 

• Lauritzen-Spiegelhalter algorithm for 

inference on probabilistic networks (belief 

networks) uses a tree decomposition of the 

moralized form of the network 

• Underlying several modern decision support 

networks 
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Designing a DP algorithm 

• Methodology: 

1. What are “partial certificates”? 

2. What characterizes a partial certificate (essential 
for extending to full certificate)? Gives set of 
subproblems 

3. Give recurrences for subproblems 

4. Find order in which recurrences are evaluated; or 
use memorization 

5. Give algorithm; possibly save memory or make 
construction version 

Treewidth 50 
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Conclusions 

• Dynamic programming for graphs with tree-

like structure 

• Works for a large collection of problems, as 

long as there is (and we can find) such a 

structure… 


