
Treewidth

Algorithms and Networks

Treewidth 2

Overview

• Historic introduction: Series parallel graphs

• Dynamic programming on trees

• Dynamic programming on series parallel
graphs

• Treewidth

• Dynamic programming on graphs of small
treewidth

• Finding tree decompositions

Treewidth 3

Computing the Resistance With

the Laws of Ohm

21

111

RRR
21 RRR

R1 R2
R1

R2
Two resistors

in series

Two resistors

in parallel

1789-1854

Treewidth 4

Repeated use of the rules

6

2

6

2

5

1

Has resistance 4

1/6 + 1/2 = 1/(1.5)

1.5 + 1.5 + 5 = 8

1 + 7 = 8

1/8 + 1/8 = 1/4

7

Treewidth 5

A tree structure

P

6

2

6

2

5

1

7

P P

S S

5

6

6

2

2

7

1

Treewidth 6

Carry on!

• Internal structure of

graph can be forgotten

once we know

essential information

about it!

6

2

6

2
5

1 7

4

¼ + ¼ = ½

Treewidth 7

• Network is ‘series parallel graph’

• 196*, 197*: many problems that are hard

for general graphs are easy for

– Trees

– Series parallel graphs

• Many well-known problems

Using tree structures for solving

hard problems on graphs 1

Linear / polynomial

time computable

e.g.:

NP-complete

Treewidth 8

Weighted Independent Set

• Independent set: set of vertices that are pair

wise non-adjacent.

• Weighted independent set

– Given: Graph G=(V,E), weight w(v) for each

vertex v.

– Question: What is the maximum total weight of

an independent set in G?

• NP-complete

Treewidth 9

Weighted Independent Set

 on Trees

• On trees, this problem can be solved in linear time

with dynamic programming.

• Choose root r. For each v, T(v) is subtree with v as

root.

• Write

A(v) = maximum weight of independent set S in T(v)

B(v) = maximum weight of independent set S in T(v),

such that v S.

Treewidth 10

Recursive formulations

• If v is a leaf:

– A(v) = w(v)

– B(v) = 0

• If v has children x1, … , xr:

A(v) = max{ w(v) + B(x1) + … + B(xr) ,

A(x1) + … A(xr) }

B(v) = A(x1) + … A(xr)

Treewidth 11

Linear time algorithm

• Compute A(v) and B(v) for each v, bottom-

up.

– E.g., in postorder

• Constructing corresponding sets can also be

done in linear time.

Treewidth 12

Second example:

Weighted dominating set

• A set of vertices S is dominating, if each
vertex in G belongs to S or is adjacent to a
vertex in S.

• Problem: given a graph G with vertex
weights, what is the minimum total weight
of a dominating set in G?

• Again, NP-complete, but linear time on
trees.

Treewidth 13

Subproblems

• C(v) = minimum weight of dominating set S

of T(v)

• D(v) = minimum weight of dominating set S

of T(v) with v S.

• E(v) = minimum weight of a set S of T(v)

that dominates all vertices, except possibly

v.

Treewidth 14

Recursive formulations

• If v is a leaf, …

• If v has children x1, … , xr:

– C(v) = the minimum of:

• w(v) + E(x1) + … + E(xr)

• C(x1) + … + C(xi-1) + D(xi) + C(xi+1) + … + C(xr),
over all i, 1 i r.

– D(v) = w(v) + E(x1) + … + E(xr)

– E(v) = min { w(v) + E(x1) + … + E(xr), C(x1) +
… + C(xr) }

Treewidth 15

Gives again a linear time

algorithm

• Compute bottom up (e.g., postorder), and

use another type of dynamic programming

for the values C(v).

• Constructing sets can also be done in linear

time

Treewidth 16

Generalizing to series parallel

graphs

• A 2-terminal graph is a graph G=(V,E) with two

special vertices s and t, its terminals.

• A 2-terminal (multi)-graph is series parallel,

when it is:

– A single edge (s,t).

– Obtained by series composition of 2 series parallel

graphs

– Obtained by parallel composition of 2 series parallel

graphs

Treewidth 17

Series composition

s1 s2

t1 t2

s1

s2 s2=t1

t2

+

Treewidth 18

Parallel composition

s2

t2

s1

t1

s1

t1

s1=s2

t1=t2

+

Treewidth 19

Series Parallel Graphs

 have an SP-tree
P

6

2

6

2

5

1

7

P P

S S

5

6

6

2

2

7

1

Treewidth 20

G(i)

• Associate to each node i of SP

tree a 2-terminal graph G(i).
P

P P

S S

5

6

6

2

2

7

1

6

2

6

2

5

Treewidth 21

Maximum weighted independent

set for series parallel graphs
• G(i), say with terminals s and t

• AA(i) = maximum weight of independent set S of
G(i) with s S, t S

• BA(i) = maximum weight of independent set S of
G(i) with s S, t S

• AB(i) = maximum weight of independent set S of
G(i) with s S, t S

• BB(i) = maximum weight of independent set S of
G(i) with s S, t S

Treewidth 22

Maximum weighted independent

set of series parallel graphs 2

• Computing AA, AB, BA, BB for

– Leaves of SP-tree: trivial

– Series, parallel composition: case analysis,
using values for sub-sp-graphs G(i1), G(i2)

– E.g., series operation, s’ terminal between i1
and i2

• AA(i) = max {AA(i1)+AA(i2) – w(s’), AB(i1) +
BA(i2) }

• O(1) time per node of SP-tree: O(n) total.

Treewidth 23

Many generalizations

• Many other problems

• Other classes of graphs to which we can

assign a tree-structure, including

– Graphs of treewidth k, for small k.

Treewidth 24

Tree decomposition
• A tree decomposition:

– Tree with a vertex set

associated to every

node.

– For all edges {v,w}:

there is a set containing

both v and w.

– For every v: the nodes

that contain v form a

connected subtree.

b c

d e
f

a a
b

c
c

c d
e

h

h f
f

a
g

g

a g

Treewidth 25

Tree decomposition
• A tree decomposition:

– Tree with a vertex set

associated to every

node.

– For all edges {v,w}:

there is a set containing

both v and w.

– For every v: the nodes

that contain v form a

connected subtree.

b c

d e
f

a a
b

c
c

c d
e

h

h f
f

a
g

g

a g

Treewidth 26

Treewidth (definition)

• Width of tree

decomposition:

• Treewidth of graph G:

tw(G)= minimum

width over all tree

decompositions of G.

b c

d e
f

a a
b

c
c

c d
e

h

h f
f

a
g

g

a b
c

d e f
g h

g a

1||max iIi X

Treewidth 27

Some graphs have small

treewidth

• Appearing in some applications (e.g.,

probabilistic networks)

• Trees have treewidth 1

• Series Parallel graphs have treewidth 2.

• …

Treewidth 28

Trees have treewidth one

• Choose a root r

• Take Xr = {r}, and for

each other node i:

Xi = {i, parent(i)}

• T with these bags

gives a tree

decomposition of

width 2

a

b

c d

e

a

b a

c b d b

e a

Treewidth 29

Algorithms using tree

decompositions

• Step 1: Find a tree decomposition of width
bounded by some small k.

– Heuristics.

– O(f(k)n) in theory.

– Fast O(n) algorithms for k=2, k=3.

– By construction, e.g., for trees, sp-graphs.

• Step 2. Use dynamic programming, bottom-
up on the tree.

Treewidth 30

Determining treewidth

• Treewidth problem (decision version):
– Given: Graph G, integer k

– Question: Is the treewidth of G at most k

• Treewidth problem (construction version):
– Given: Graph G

– Question: construct a tree decomposition of G with minimum width

• NP-complete (Arnborg, Proskurowski)

• (n) time algorithm for fixed k (B.)

• Practical O(n) algorithms for k= 1, 2, 3 (Arnborg, Corneil,
Proskurowski)

• Practical O*(2n) algorithm for small graphs (B. et al.)

• Many (often good) heuristics

Treewidth 31

Separator property

i

v

w

If both v and w not in Xi, then

v and w are not adjacent

Treewidth 32

Nice tree decompositions

• Rooted tree, and four types of nodes i:

– Leaf: leaf of tree with |Xi| = 1.

– Join: node with two children j, j’ with Xi = Xj = Xj’.

– Introduce: node with one child j with Xi = Xj {v} for

some vertex v

– Forget: node with one child j with Xi = Xj {v} for

some vertex v

• There is always a nice tree decomposition with the

same width.

Treewidth 33

Define G(i)

• Nice tree decomposition.

• For each node i, G(i) subgraph of G, formed

by all nodes in sets Xj, with j=i or j a

descendant of i in tree.

– Notate: G(i) = (V(i), E(i)).

Treewidth 34

Maximum weighted independent

set on graphs with treewidth k

• For node i in tree decomposition, S Xi

write

– R(i, S) = maximum weight of independent set

W of G(i) with W Xi = S,

• – if such W does not exist

Treewidth 35

Leaf nodes

• Let i be a leaf node. Say Xi = {v}.

• R(i,{v}) = w(v)

• R(i,) = 0
v

G(i) is a graph with one vertex

Treewidth 36

Join nodes

• Let i be a join node with children j1, j2.

• R(i, S) = R(j1, S) + R(j2, S) – w(S).

+
=

Treewidth 37

Introduce nodes

• Let i be a node with child j,
with Xi = Xj {v}.

• Let S Xj.

• R(i,S) = R(j,S).

• If v not adjacent to vertex in
S:
R(i,S {v})=R(j,S) + w(v)

• If v adjacent to vertex in S:
R(i,S {v}) = – .

v

Treewidth 38

Forget nodes

• Let i be a node with child

j, with Xi = Xj {v}.

• Let S Xi.

• R(i,S) = max (R(j,S),

R(j,S {v}))

v v

Treewidth 39

Maximum weighted independent

set on graphs with treewidth k
• For node i in tree decomposition, S Xi write

– R(i, S) = maximum weight of independent set W of G(i)
with W Xi = S, – if such W does not exist

• Compute for each node i, a table with all values
R(i, …).

• Each such table can be computed in O(2k) time
when treewidth at most k.

• Gives O(n) algorithm when treewidth is (small)
constant.

Treewidth 40

Frequency assignment problem

• Given:

– Graph G=(V,E)

– Frequency set F(v) N for all v V

– Cost function

• c(e,r,s) , e = {v,w}, r a frequency of v, s a frequency of w

• Question

– Find a function g with

• For all v V: g(v) F(v)

• The total sum over all edges e={v,w} of c(e,g(v),g(w)) is as
small as possible

Treewidth 41

Frequency assignment when

treewidth is small

• Suppose sets F(v) are small

• Suppose G has small treewidth

• Algorithm exploits tree decomposition
What tables are we computing?

– Leaf: trivial

– Introduce: …

– Forget: projection

– Join: sum but subtract double terms

Treewidth 42

General method

• Compute a tree decomposition

– E.g., with minimum degree heuristic

– Make it nice

– Use dynamic programming

• Works for many problems

– Courcelle: those that can be formulated in monadic
second order logic

– Practical: TSP, frequency assignment, problems on
planar graphs like dominating set, probabilistic
inference

Treewidth 43

A lemma

• Let ({Xi | i I},T) be a tree decomposition

of G. Let Z be a clique in G. Then there is a

j I with Z Xj.

– Proof: Take arbitrary root of T. For each v Z,

look at highest node containing v. Look at such

highpoint of maximum depth.

Treewidth 44

The minimum degree heuristic

• Repeat:

– Take vertex v of minimum degree

– Make neighbors of v a clique

– Remove v, and repeat on rest of G

– Add v with neighbors to tree decomposition

N(v) N(v) v

N(v)

A heuristic for treewidth

Works often well

Treewidth 45

Other heuristics

• Minimum fill-in heuristic

– Similar to minimum degree heuristic, but takes

vertex with smallest fill-in:

• Number of edges that must be added when the

neighbours of v are made a clique

• Other choices of vertices, refining, using

separators, …

Treewidth 46

Representation as permutation

• A correspondence between tree decompositions
and permutations of the vertices

– Repeat: remove superfluous leaf bag, or take vertex that
appears in 1 leaf bag and no other bag

– Make neighbours of v = (1) into a clique; recursively
make tree decomposition of graph – v; add bag with v
and neighbours

• Used in heuristics, and local search methods (e.g.,
taboo search, simulated annealing) and genetic
algorithms

Treewidth 47

Connection to Gauss eliminating

• Consider Gauss elimination on a symmetric
matrix

• For n by n matrix M, let GM be the graph
with n vertices, and edge (i,j) if Mij 0

• If we eliminate a row and corresponding
column, effect on G is:

– Make neighbors of v a clique

– Remove v

Treewidth 48

Application: Probabilistic networks

• Lauritzen-Spiegelhalter algorithm for

inference on probabilistic networks (belief

networks) uses a tree decomposition of the

moralized form of the network

• Underlying several modern decision support

networks

Treewidth 49

Designing a DP algorithm

• Methodology:

1. What are “partial certificates”?

2. What characterizes a partial certificate (essential
for extending to full certificate)? Gives set of
subproblems

3. Give recurrences for subproblems

4. Find order in which recurrences are evaluated; or
use memorization

5. Give algorithm; possibly save memory or make
construction version

Treewidth 50

Treewidth 51

Conclusions

• Dynamic programming for graphs with tree-

like structure

• Works for a large collection of problems, as

long as there is (and we can find) such a

structure…

