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Overview

Historic introduction: Series parallel graphs
Dynamic programming on trees

Dynamic programming on series parallel
graphs

Treewidth

Dynamic programming on graphs of small
treewidth

Finding tree decompositions
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Computing the Resistance With
the Laws of Ohm -

R=R, +R,
Two resistors

Two resistors
IN series
In parallel
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Repeated use of the rules
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1/6 + 1/2 = 1/(1.5)
15+15+5=8
1+7=8

1/8 + 1/8 = 1/4
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A tree structure




Carry on!

e |Internal structure of

{:}{:}l graph can be forgotten
o once we know

- . .
essential information
about it!
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Using tree structures for solving
hard problems on graphs 1

* Network 1s ‘series parallel graph’

e 196%*, 197*: many problems that are hard
for general graphs are easy for

e.g.: I
— Trees NP-complete

— Series parallel graphs
« Many well-known problems

Linear / polynomial
time computable
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Weighted Independent Set

* Independent set: set of vertices that are pair
wise non-adjacent.

» \Weighted independent set

— Given: Graph G=(V,E), weight w(v) for each
vertex v.

— Question: What Is the maximum total weight of
an independent set In G?

* NP-complete
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Weighted Independent Set
on Trees

On trees, this problem can be solved in linear time

with dynamic programming.

Choose root r. For each v, T(v) Is subtree with v as

root.
Write

A(v) = maximum weight of independent set S in T(v)
B(v) = maximum weight of independent set S in T(v),

such thatv ¢ S.
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Recursive formulations

« Ifvisa leaf:
— A(v) =w(v)
— B(v) =0
e Ifvhas childrenx,, ..., X
A(V) = max{ w(v) + B(x,) +... + B(X,),
A(X)) + ... Ax,) }
B(V) = A(X)) + ... A(X,)

10
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Linear time algorithm

« Compute A(v) and B(v) for each v, bottom-
up.
— E.Q., In postorder

« Constructing corresponding sets can also be
done in linear time.
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Second example:
Weighted dominating set

A set of vertices S Is dominating, If each
vertex in G belongs to S or Is adjacent to a
vertex in S.

» Problem: given a graph G with vertex
welights, what Is the minimum total weight
of a dominating set in G?

» Again, NP-complete, but linear time on
trees.
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Subproblems

* C(V) = minimum weight of dominating set S
of T(Vv)

* D(V) = minimum weight of dominating set S
of T(v) withv € S.

* E(V) = minimum weight of a set S of T(V)
that dominates all vertices, except possibly
V.
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Recursive formulations

e [fvisaleaf, ...
e Ifv haschildrenx,, ..., X

-
— C(v) = the minimum of:
e W(V) + E(X)) + ... T E(X,)
* C(xp) + ... + C(Xip) + D) + C(xiy) + ... + C(x)),
overalli,1<i<r.
— D(v) =w(v) + E(xy) + ... T E(X,)
— E(v) =min { w(v) + E(xy) + ... + E(X,), C(X,) +
..+ C(x) }
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Gives again a linear time
algorithm

« Compute bottom up (e.g., postorder), and
use another type of dynamic programming
for the values C(v).

« Constructing sets can also be done in linear
time
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Generalizing to series parallel
graphs

« A 2-terminal graph is a graph G=(V,E) with two
special vertices s and t, its terminals.
« A 2-terminal (multi)-graph is series parallel,
when 1t Is:
— A single edge (s,t).
— Obtained by series composition of 2 series parallel
graphs
— Obtained by parallel composition of 2 series parallel
graphs

16
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Series composition
Q ’
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Parallel composition
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Series Parallel Graphs
have an SP-tree
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G(1)

e Associate to each node 1 of SP
tree a 2-terminal graph G(i).

'\

20
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Maximum weighted Iindependent
set for series parallel graphs

« G(1), say with terminals s and t

« AA(1) = maximum weight of independent set S of
G(l)withs e S, te S

« BA(1) = maximum weight of independent set S of
G() withs ¢ S,t e S

» AB(1) = maximum weight of independent set S of
G() withse S, t ¢ S

« BB(1) = maximum weight of independent set S of
G()withs ¢ S;t g S
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Maximum weighted Iindependent

set of series parallel graphs 2

« Computing AA, AB, BA, BB for
— Leaves of SP-tree: trivial

— Series, parallel composition: case analysis,
using values for sub-sp-graphs G(i,), G(i,)

— E.g., series operation, s’ terminal between I,
and I,
o AA(I) = max {AA(I,)+AA(i,) — w(s’), AB(i,) +
BA(i,) }
* O(1) time per node of SP-tree: O(n) total.
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Many generalizations

« Many other problems

 Other classes of graphs to which we can
assign a tree-structure, including

— Graphs of treewidth k, for small k.

23
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Tree decomposition

 Atree decomposition: d

— Tree with a vertex set
associated to every
node.

— For all edges {v,w}:
there Is a set containing
both v and w.

— For every v: the nodes
that contain v form a
connected subtree.

# Universiteit Utrecht
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Tree decomposition
g

« A tree decomposition: d h

— Tree with a vertex set b<_c
associated to every

f
d —e
e (5
— For all edges {v,w}:
there Is a set containing

both v and w. @

— For every v: the nodes
that contain v form a
/ connected subtree.

25
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Treewidth (definition)

a 9
Width of tree b<_c
decomposition: 4 e
r.naxiel ‘ Xi ‘_1
Treewidth of graph G:
tw(G)= minimum
width over all tree
decompositions of G.
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Some graphs have small
treewidth

 Appearing in some applications (e.g.,
probabilistic networks)
 Trees have treewidth 1

» Series Parallel graphs have treewidth 2.

27
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Trees have treewidth one

e Choosearootr

« Take X, = {r}, and for
each other node I:
X. = {1, parent(i) }

» T with these bags

gives a tree
decomposition of

width 2 @ @

28 i iteit Utrecht Treewidth




Algorithms using tree

decompositions

» Step 1: Find a tree decomposition of width
bounded by some small k.

— Heuristics.

— O(f(k)n) In theory.

— Fast O(n) algorithms for k=2, k=3.

— By construction, e.g., for trees, sp-graphs.

 Step 2. Use dynamic programming, bottom-
up on the tree.
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Determining treewidth

Treewidth problem (decision version):
— Given: Graph G, integer k
— Question: Is the treewidth of G at most k
Treewidth problem (construction version):
— Given: Graph G
— Question: construct a tree decomposition of G with minimum width
NP-complete (Arnborg, Proskurowski)
®@(n) time algorithm for fixed k (B.)

Practical O(n) algorithms for k=1, 2, 3 (Arnborg, Corneil,
Proskurowski)

Practical O*(2") algorithm for small graphs (B. et al.)
Many (often good) heuristics
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Separator property

If both v and w not in X;, then
v and w are not adjacent

Treewidth




Nice tree decompositions

» Rooted tree, and four types of nodes I:
— Leaf: leaf of tree with |Xi| = 1.
— Join: node with two children j, j* with X; = X; = X...

— Introduce: node with one child j with X; = X; U {v} for
some vertex v

— Forget: node with one child j with X; = X;— {v} for
some vertex v

» There Is always a nice tree decomposition with the
same width.

32
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Define G(1I)

 Nice tree decomposition.

» For each node I, G(i) subgraph of G, formed
by all nodes in sets X;, with j=1or j a
descendant of i in tree.

— Notate: G(i) = (V(i), E(i) ).
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Maximum weighted Iindependent
set on graphs with treewidth k

 For node I In tree decomposition, S < X,
write

— R(1, S) = maximum weight of independent set
W of G(i) with W n X; = S,
« — oo If such W does not exist

34

_ : s Universiteit Utrecht Treewidth



|_eaf nodes

 Letibe aleaf node. Say X; = {v}.

* R(1,{v}) = w(v)

. R(i, @) =0 .

G(1) 1s a graph with one vertex
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Join nodes

* Let 1 be a join node with children j,, J,.
* R(i, S) = R(jy, S) + R(jy, S) — W(S).
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Introduce nodes

Let 1 be a node with child |,
with X; = X; U {v}.

LetS Xj.

R(1,S) = R(],S).

If v not adjacent to vertex in
S:

R(1,SU{v})=R(],S) + w(v)
If v adjacent to vertex in S:
R(1,S U {v}) = - .

Treewidth



Forget nodes

 Let i be anode with child
J, with X; = X;— {v}.

* LetSc X.

* R(1,S) = max (R(],S), —
R(@,S v {v}))

38
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Maximum weighted Iindependent
set on graphs with treewidth k

For node 1 in tree decomposition, S < X; write

— R(1, S) = maximum weight of independent set W of G(i)
with W m X, =S, — oo If such W does not exist

« Compute for each node I, a table with all values
R(, ...).

« Each such table can be computed in O(2%) time
when treewidth at most k.

» Gives O(n) algorithm when treewidth is (small)
constant.
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Frequency assignment problem

« Glven:
— Graph G=(V,E)
— Frequency set F(v) c N forallv e V
— Cost function
« c(e,r,s), e =9{v,w}, rafrequency of v, s a frequency of w
* Question

— Find a function g with
e Forallv e V:g(v) € F(V)

« The total sum over all edges e={v,w} of c(e,g(v),g(w)) is as
small as possible
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Frequency assignment when
treewidth 1s small

 Suppose sets F(v) are small
« Suppose G has small treewidth

 Algorithm exploits tree decomposition
What tables are we computing?
— Leaf: trivial
— Introduce: ...
— Forget: projection
— Join: sum but subtract double terms
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General method

« Compute a tree decomposition
— E.g., with minimum degree heuristic
— Make it nice
— Use dynamic programming

» Works for many problems

— Courcelle: those that can be formulated in monadic
second order logic

— Practical: TSP, frequency assignment, problems on
planar graphs like dominating set, probabilistic
Inference
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A lemma

o Let ({X;|1 e I}, T) be atree decomposition
of G. Let Z be aclique in G. Then there is a
JelwithZc X;

— Proof: Take arbitrary root of T. Foreach v € Z,

look at highest node containing v. Look at such
highpoint of maximum depth.
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The minimum degree heuristic

A heuristic for treewidth
Repeat: Works often well

— Take vertex v of minimum degree

— Make neighbors of v a clique

— Remove v, and repeat on rest of G

— Add v with neighbors to tree decomposition

Treewidth




Other heuristics

e« Minimum fill-in heuristic
— Similar to minimum degree heuristic, but takes
vertex with smallest fill-in:

« Number of edges that must be added when the
neighbours of v are made a clique

 Other choices of vertices, refining, using
separators, ...

45
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Representation as permutation

* A correspondence between tree decompositions
and permutations of the vertices

— Repeat: remove superfluous leaf bag, or take vertex that
appears in 1 leaf bag and no other bag

— Make neighbours of v = (1) into a clique; recursively
make tree decomposition of graph — v; add bag with v

and neighbours
» Used in heuristics, and local search methods (e.g.,

taboo search, simulated annealing) and genetic
algorithms
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Connection to Gauss eliminating

« Consider Gauss elimination on a symmetric
matrix

 For n by n matrix M, let G,, be the graph
with n vertices, and edge (1,§) If M;; = 0

* If we eliminate a row and corresponding
column, effect on G is:
— Make neighbors of v a clique
— Remove v
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Application: Probabilistic networks

o Lauritzen-Spiegelhalter algorithm for
Inference on probabilistic networks (belief
networks) uses a tree decomposition of the
moralized form of the network

 Underlying several modern decision support
networks
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Designing a DP algorithm

» Methodology:

1.
2.

50

What are “partial certificates?

What characterizes a partial certificate (essential
for extending to full certificate)? Gives set of
subproblems

Give recurrences for subproblems

Find order in which recurrences are evaluated: or
use memorization

Give algorithm; possibly save memory or make

construction version
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Conclusions

« Dynamic programming for graphs with tree-
like structure
» Works for a large collection of problems, as

long as there Is (and we can find) such a
structure...

51 i iteit Utrecht Treewidth




