Coloring

Algorithms and Networks

Universiteit Utrecht

Graph coloring

- Vertex coloring:
 - Function f: V \rightarrow C, such that for all {*v*,*w*} \in E:
 - $f(v) \neq f(w)$
- Chromatic number of G: χ(G): minimum size of C such that there is a vertex coloring to C.
- Vertex coloring problem:
 - Given: graph G, integer k
 - Question: Is there a vertex coloring of G with k colors?

Set coloring

- Given: graph G=(V,E), set of colors $C(v) \subseteq C$ for all $v \in V$.
- Question: is there a vertex coloring *f* of G with also for all $v \in V$: $f(v) \in C(v)$?

Set coloring is NP-complete

- In NP: trivial.
- Transform from 3-sat. Take a vertex for each variable, and a vertex for each clause.
- $C(x_i) = \{x_i, not x_i\}$
- C(clause) = variables in clause
- Coloring a vertex x_i means setting that variable to the value not the color
 - E.g.: setting x_i to true means coloring x_i with (*not* x_i)

Coloring is NP-complete

- Transform from set coloring
- Take instance of set coloring. Let C be set of all colors.
- Add a clique with one vertex per color in C.
- Add an edge between vertex v in original graph and color vertex c if $c \notin C(v)$

Famous bounds

- Four color theorem:
 - The chromatic number of a planar graph is at most four.
- A graph is bipartite, if and only if it has chromatic number 2.
- The chromatic number of a graph is at most the maximum degree of a vertex plus 1.
 - Improvement: Brooks' theorem

Heuristics

Greedy coloring

- Take some permutation of the vertices.
- for *i* = 1 to *n* do
 - Color the *i*th vertex
 with a color different
 from its colored
 neighbors.

Universiteit Utrecht

7

Independent sets

- *k* = 1
- repeat until all vertices are colored
 - Find a (maximal)
 independent set of
 uncolored vertices
 - Color these with k

- *k*++

Simple lemma

• The chromatic number of a graph is the maximum of the chromatic number of its biconnected components.

Brooks' theorem

- Suppose G is a connected graph, with the maximum vertex degree Δ(G). Suppose G is not a complete graph or a cycle of odd length. Then χ(G)≤ Δ(G).
- Pro<mark>of:</mark>
 - Suppose G is biconnected. (If not, see previous lemma; ...)
 - Two cases.

Universiteit Utrecht

Case 1: There are nonadjacent u and v with G - u - v disconnected

- Write $k = \Delta(G)$.
- Assume $\Delta(G) > 2$.
- $\Delta(\mathbf{G}_1) \le k$
- $\Delta(\mathbf{G}_2) \le k$
- Induction: $\chi(G_1) \le k; \chi(G_2) \le k.$
- Again two cases:

Two cases

Case 1a. In G_1 and in G_2 , we have a *k*-coloring with *u* and *w* different colors.

Permute the colors in
 G₂ and form a coloring
 of G by taking `union'
 of colorings.

Case 1b. In G_1 every *k*-coloring has the same color for *u* and for *w*.

- u and w must have degree k-1 in G_1 .
- u and w have degree 1 in G_2 .
- There is a *k*-coloring of G_2 with *u* and *w* the same color.
- Permute the colors in G_2 and form coloring of G.
- Case 1c. In G₂ every *k*-coloring has the same color for *u* and for *w*. Similar.

Case 2: For all non-adjacent u, v, G - u - v is connected

- Let *v* be vertex of maximum degree.
- *v* must have non-adjacent neighbors *u*, *w*. (Why?)
- G u w is connected. Choose spanning tree T of G u w.
- Choose v as root of T.
- Color *u* and *w* by 1, and then color the vertices in T in postorder, greedily.
 - k colors are sufficient: vertices except v have an uncolored neighbor; v has two neighbors with same color.

Coloring interval graphs

- Sort vertices with respect to non-decreasing right endpoints
- Greedy coloring with this ordering gives optimal coloring!
 - Number of colors equals maximum clique size

Non-approximability

- Lund, Yannakakis, 1994
- There is an ε>0: Unless P=NP, then no polynomial time algorithm with ratio n^ε

Chromatic index

- Edge coloring
 - Problem statement
 - Vizings theorem: G is edge-colorable with $\Delta(G)$ or $\Delta(G)+1$ colors
 - NP-complete to decide which holds of these two options.
 - Edge coloring equals vertex coloring of edge graph

Coloring and Sodoku

- Solving a soduku
 - Model as precoloring extension problem
 - Translate to set coloring, or coloring

Networks and graphs are everywhere

• If you are a carpenter, everything looks like a hammer

1								6
		6		2		7		
7	8	9	4	5		1		3
			8		7			4
				3				
	9				4	2		1
3	1	2	9	7			4	
	4			1	2		7	8
9		8						

