
Dept. of Information and Computing Sciences, Utrecht University

Generic Programming 2012

Solutions to Exercise Set 1

Sean Leather, Johan Jeuring

Tuesday, 11 September, 2012

1 General Information

Read the following instructions and notes.

1.1 Instructions

1. Read through all of the exercises before starting, so that you have an overall idea of what
is expected and how much time to plan for each.

2. Create a file called <First><Last>1.lhs with <First> replaced by your first name
(e.g. Alonzo) and <Last> replaced by your surname (e.g. Church). Include your name
and student number in comments.

3. Write your solution to each exercise in the file. Number the solutions in comments to
match the exercise numbers.

4. Submit your file as an email attachment to leather@cs.uu.nl before the following deadline:

13:15 – Tuesday, 18 September, 2012

1.2 Notes

• We recommend writing out answers by hand on paper before typing them. This will help
you practice for the quizzes.

• You will need to install the latest ligd package from Hackage.

• You may discuss the exercises amongst each other or with the lecturers at a conceptual
level (in person, over IRC, or via email), but you cannot copy or share solutions. All work
should be your own.

1

mailto:leather@cs.uu.nl
http://hackage.haskell.org/package/ligd

• Use the literate Haskell format for your submitted file. (Code follows > or goes between
\begin{code} and \end{code} commands.) You don’t need to do any other special
formatting.

• Use GHC 7.4.*. GHC 7.4.1 comes with Haskell Platform 2012.2.0.0. GHC 7.6.1 is also
available, but be aware that you may encounter issues if you use a version different from
others.

• All code should type-check when the file is loaded into GHCi.

• The maximum possible score for the exercise set is 10. Next to each exercise number is
its maximum possible score in parentheses.

Good luck!

2 Exercises

1. (1.5) Consider each of the following Haskell datatypes.

data Tree a b = Tip a | Branch (Tree a b) b (Tree a b)
data GList f a= GNil | GCons a (f a)
data Bush a = Bush a (GList Bush (Bush a))

data HFix f a = HIn {hout :: f (HFix f) a}
data Exists bwhere
Exists ::a→ (a→ b)→ Exists b

data Expwhere
Bool ::Bool → Exp
Int :: Int → Exp
IsZero ::Exp → Exp
Add ::Exp→ Exp → Exp
If ::Exp→ Exp→ Exp→ Exp

a) (0.5) What are the possible classifications of each datatype? (For example, an Int
is both a primitive and a finite type.)

Solution. The italicized term is required. The others are optional.

• Tree : regular

• GList : higher-kinded, regular, finite

• Bush : nested

• HFix : higher-kinded, nested

• Exists : existential, GADT, finite

• Exp : regular, not GADT even though it uses GADT syntax

2

http://www.haskell.org/onlinereport/literate.html
http://hackage.haskell.org/platform/

b) (0.5) What is the kind of each datatype?

Solution.

Tree ::∗→ ∗→ ∗
GList :: (∗→ ∗)→∗→ ∗
Bush ::∗→ ∗
HFix :: ((∗→ ∗)→∗→ ∗)→∗→ ∗
Exists ::∗→ ∗
Exp ::∗

c) (0.5) If possible, give the LIGD representation of each type. If not possible, explain
why.

This solution will appear with the next exercise set.

2. (4.5) Use the Exp datatype above to do the following exercises.

a) (0.5) Write a function to interpret the Exp datatype above. Use the following type
signature:

eval ::Exp→Maybe (Either Int Bool)

Note:

• IsZero expects an expression that evaluates to an Int and itself evalutes to
True if the integer is 0 and False otherwise.

• Add takes two integer expressions and returns their sum.

• If takes one boolean expression and two other expressions of undetermined
type. If the first argument evaluates to True , the second argument is returned.
Otherwise, the third argument is returned.

Solution. This is one approach. Since Maybe is a Monad , it can also be written
monadically.

eval (Bool b) = Just (Right b)
eval (Int i) = Just (Left i)
eval (IsZero e) = case eval e of

Just (Left i)→ Just (Right (i≡ 0))
→ Nothing

eval (Add e1 e2) = case eval e1 of
Just (Left i1)→ case eval e2 of

Just (Left i2)→ Just (Left (i1+ i2))
→ Nothing

→ Nothing
eval (If c e1 e2) = case eval c of

Just (Right b)→ if b then eval e1 else eval e2
→ Nothing

3

b) (0.5) Define a type ExpF such that Exp′ is isomorphic to Exp .

newtype Fix f = In {out :: f (Fix f)}
type Exp′ = Fix ExpF

Solution.

data ExpF ::∗→ ∗where
BoolF ::Bool → ExpF r
IntF :: Int → ExpF r
IsZeroF :: r → ExpF r
AddF :: r→ r → ExpF r
IfF :: r→ r→ r→ ExpF r

c) (1) Give the Functor instance for ExpF and the evaluation algebra evalAlg such

that for all isomorphic expressions e ::Exp and e′ ::Exp′ , eval e≡ eval′ e′ .

fold ::Functor f⇒ (f a→ a)→ Fix f→ a
fold f = f ◦ fmap (fold f)◦out
eval′ ::Exp′→Maybe (Either Int Bool)
eval′ = fold evalAlg

Solution.

instance Functor ExpFwhere
fmap f (BoolF b) = BoolF b
fmap f (IntF i) = IntF i
fmap f (IsZeroF e) = IsZeroF (f e)
fmap f (AddF e1 e2) = AddF (f e1) (f e2)
fmap f (IfF c e1 e2) = IfF (f c) (f e1) (f e2)

evalAlg ::ExpF (Maybe (Either Int Bool))→Maybe (Either Int Bool)
evalAlg (BoolF b) = Just (Right b)
evalAlg (IntF i) = Just (Left i)
evalAlg (IsZeroF e) = case e of

Just (Left i)→ Just (Right (i≡ 0))
→ Nothing

evalAlg (AddF e1 e2) = case e1 of
Just (Left i1)→ case e2 of

Just (Left i2)→ Just (Left (i1+ i2))
→ Nothing

→ Nothing
evalAlg (IfF c e1 e2) = case c of

Just (Right b)→ if b then e1 else e2
→ Nothing

4

d) (1) Define a GADT ExpTF such that ExpT′ is well-typed (using type indexes)

and isomorphic to Exp′ if the extra types are erased.

type ExpT′ = HFix ExpTF

Solution.

data ExpTF :: (∗→ ∗)→∗→ ∗where
BoolTF ::Bool → ExpTF r Bool
IntTF :: Int → ExpTF r Int
IsZeroTF :: r Int → ExpTF r Bool
AddTF :: r Int→ r Int → ExpTF r Int
IfTF :: r Bool→ r a→ r a→ ExpTF r a

What is an expression e ::Exp that evaluates successfully (i.e. eval e does not re-

sult in Nothing or ⊥) but cannot be defined in ExpT′ ?

Solution. Something using If where the “true” and “false” terms have different
types. Example:

e= If (Bool True) (Int 5) (Bool False)

e) (1.5) Study the code below carefully. Give the HFunctor instance for ExpTF and

the evaluation algebra evalAlgT such that for all expressions e′ ::ExpT′ such that

evalT′ e′ evaluates to a value v , the expression eval e in which is e is isomorphic
to e′ also evaluates to v .

class HFunctor f where
hfmap :: (∀b . g b→ h b)→ f g a→ f h a

hfold ::HFunctor f⇒ (∀b . f r b→ r b)→ HFix f a→ r a
hfold f = f.hfmap (hfold f)◦hout
newtype Id a= Id {unId ::a}
evalT′ ::ExpT′ a→ a
evalT′ = unId◦hfold evalAlgT
evalAlgT ::ExpTF Id a→ Id a

Solution.

5

instance HFunctor ExpTFwhere
hfmap f (BoolTF b) = BoolTF b
hfmap f (IntTF i) = IntTF i
hfmap f (IsZeroTF e) = IsZeroTF (f e)
hfmap f (AddTF e1 e2) = AddTF (f e1) (f e2)
hfmap f (IfTF c e1 e2) = IfTF (f c) (f e1) (f e2)

evalAlgT (BoolTF b) = Id b
evalAlgT (IntTF i) = Id i
evalAlgT (IsZeroTF (Id x)) = Id (x≡ 0)
evalAlgT (AddTF (Id i1) (Id i2)) = Id (i1+ i2)
evalAlgT (IfTF (Id c) (Id e1) (Id e2)) = Id (if c then e1 else e2)

3. (2) Define the generic function typeInfo in LIGD. The function should compute the sum

of integers (Int), the maximum character (Char), and the list of constructors names (i.e.
a value of type [String]).

This solution will appear with the next exercise set.

4. (2) Define a type class Desum with an associated type Desummed and a function
desum . The goal of desum is to take a value of a type a to a more general type,
Desummed a , in which every use of Either a b is “flattened” to a pair (Maybe a,Maybe b) .

Given instances for () , Int , (a,b) , and Either a b .

Solution.

class Desum awhere
type Desummed a
desum ::a→ Desummed a

instance Desum ()where
type Desummed () = ()
desum= id

instance Desum Intwhere
type Desummed Int= Int
desum= id

instance (Desum a,Desum b)⇒ Desum (a,b)where
type Desummed (a,b) = (Desummed a,Desummed b)
desum (x,y) = (desum x,desum y)

instance (Desum a,Desum b)⇒ Desum (Either a b)where
type Desummed (Either a b) = (Maybe (Desummed a),Maybe (Desummed b))
desum (Left x) = (Just (desum x),Nothing)
desum (Right y) = (Nothing,Just (desum y))

6

	General Information
	Instructions
	Notes

	Exercises

