
Dept. of Information and Computing Sciences, Utrecht University

Generic Programming 2012

Solutions to the Final Exercise Set

Sean Leather, Johan Jeuring

Sunday, 04 November, 2012

1 General Information

Read the following instructions and notes.

1.1 Instructions

1. Read through all of the exercises before starting, so that you have an overall idea of what
is expected and how much time to plan for each exercise.

2. Create a file called <First><Last>4.lhs with <First> replaced by your first name
(e.g. Alan) and <Last> replaced by your surname (e.g. Turing). Include your name and
student number in comments.

3. Write your solution to each exercise in the file. Number the solutions in comments to
match the exercise numbers.

4. Submit your file as an email attachment to leather@cs.uu.nl before the following deadline:

23:59 – Sunday, 11 November, 2012

1.2 Notes

• This exercise set contains exercises developed by your fellow classmates. It is not allowed
to ask the developer of the exercise for hints.

• You may discuss the exercises amongst each other or with the lecturers at a conceptual
level (in person, or via email), but you cannot copy or share solutions. All work should be
your own.

• Direct your questions to both lecturers, in case one of them is not available to respond.

1

mailto:leather@cs.uu.nl

• Use the literate Haskell format for your submitted file. (Code follows > or goes between
\begin{code} and \end{code} commands.) You don’t need to do any other special
formatting.

• Use GHC 7.4.*. GHC 7.4.1 comes with Haskell Platform 2012.2.0.0. GHC 7.6.1 is also
available, but be aware that you may encounter issues if you use a version different from
others.

• All code should type-check when the file is loaded into GHCi.

• The maximum possible score for the exercise set is 10. Next to each exercise number is
its maximum possible score in parentheses.

Good luck!

2 Exercises

1. (3) For this question, refer to the paper “Uniform Boilerplate and List Processing” and/or
the presentation by Jaap van der Plas. Use the “uniplate” package.

Consider the following datatype:

data Expr
= Add Expr Expr
| Let String Expr Expr
| Val Int
| Var String

a) (0.5) Define an instance of Expr for the Uniplate class by generating it (e.g. using
the tool and Hackage package “derive”) or by writing it yourself (e.g. adapting the
instance of the similar datatype in the paper).

Solution. This is one possible instance:

instance Uniplate Expr where
uniplate (Add e1 e2) = plate Add |∗ e1 |∗ e2
uniplate (Let s e1 e2) = plate Let |− s |∗ e1 |∗ e2
uniplate x = plate x

b) (1.5) Define a function –

removeUnusedBinds ::Expr→ Expr

– that removes unused binds from an expression. An unused bind is a (non-recursive)
Let whose variable name (first argument) is not referenced by a Var in the body

(third argument). For example, the expression (in concrete syntax) –

2

http://www.haskell.org/onlinereport/literate.html
http://hackage.haskell.org/platform/

1+(let x= 1 in 2)

– should be transformed into the expression:

1+2

All operations that query or transform should be done with generic functions.

Solution. This is one possible solution, using transform and universe :

removeUnusedBinds e= transform f e
where
f (Let v e1 e2) | isUsed v e2= Let v e1 e2

| otherwise = e2
f e′ = e′

isUsed ::String→ Expr→ Bool
isUsed v e= any (≡ v) [v′ | Var v′← universe e]

c) (1) (Only attempt this part after successfully implementing part 1b.) Be sure that
removeUnusedBinds properly handles shadowed bindings. The expression –

let x= 3 in (let x= 1 in 2+x)

– should be transformed into:

let x= 1 in 2+x

Note that x is shadowed by the inner binding, so the outer binding of x can be
removed. Rewrite removeUnusedBinds if necessary.

Solution. The outer part of this solution is mostly unchanged from before. Below
are two possible definitions of a function to determine if a variable is free in an
expression.

3

removeUnusedBinds e= transform f e
where
f (Let v e1 e2) | isFree v e2= Let v e1 e2

| otherwise = e2
f e′ = e′

isFree ::String→ Expr→ Bool
isFree v = go
where
go ::Expr→ Bool
go (Let v′ e1 e2) | v ≡ v′ = go e1
go (Var v′) | v ≡ v′ = True
go e′ = or (map go (children e′))

isFree ::String→ Expr→ Bool
isFree v = para f
where
f ::Expr→ [Bool]→ Bool
f (Let v′ e1 e2) | v ≡ v′ = head
f (Var v′) | v ≡ v′ = const True
f e′ = or

2. (4) For this question, refer to the paper “Primitive (Co)Recursion and Course-of-Value
(Co)Iteration, Categorically” and/or the presentation by João Alpuim.

For each of the following functions –

a) catamorphism (cata)

b) anamorphism (ana)

c) paramorphism (para)

d) apomorphism (apo)

– do the following:

a) Give a brief description of the function and its relationship to the functions before it
in the list (e.g. how anamorphism is related to catamorphism, not vice versa).

b) Define the function using the following incomplete definitions:

newtype Fix f = In {out :: f (Fix f)}
(&&&) :: (c→ a)→ (c→ b)→ c→ (a,b)
(|||) :: (a→ c)→ (b→ c)→ Either a b→ c

c) Give an example of the function’s use, including any datatypes and type class in-
stances needed.

4

Note that due to the flexible nature of the notation used in this paper, the notation will not
always match the function types you expect. For example, the combinators are used for
both functor and non-functor types. Feel free to define the examples in a different way
than given in the paper.

Solution.

We first define the basic combinators:

f &&&g = λx→ (f x,g x)
f |||g = λx→ case x of
Left y→ f y
Right y→ g y

For lists, we use the following:

data ListF a r = NilF | ConsF a r
type List a= Fix (ListF a)

instance Functor (ListF a)where
fmap NilF = NilF
fmap f (ConsF a r) = ConsF a (f r)

data NatF r = ZeroF | SuccF r
type Nat= Fix NatF

instance Functor NatFwhere
fmap ZeroF = ZeroF
fmap f (SuccF r) = SuccF (f r)

zero′ = In ZeroF
succ′ n= In (SuccF n)

The catamorphism is the natural recursion scheme of induction on an algebraic datatype.
It is also called iteration.

cata ::Functor f⇒ (f a→ a)→ Fix f→ a
cata f = f ◦ fmap (cata f)◦out
(|− |) :: c→ (a→ b→ c)→ ListF a b→ c
f |− |g = λx→ case x of
NilF → f
ConsF a r→ g a r

sum′ ::List Integer→ Integer
sum′ = cata (0 |− | (+))

The anamorphism is the natural corecursion scheme of coinduction on an coalgebraic
codatatype. It is also called coiteration. It is the dual of the catamorphism.

5

ana ::Functor f⇒ (a→ f a)→ a→ Fix f
ana f = In◦ fmap (ana f)◦ f
(><) :: (a→ c)→ (b→ d)→ (a,b)→ (c,d)
f><g = (f ◦ fst)&&& (g ◦ snd)
zip′ :: (Fix ((,) c),Fix ((,) d))→ Fix ((,) (c,d))
zip′ = ana (((fst>< fst)&&& (snd>< snd))◦ (out><out))

The paramorphism is the primitive recursion scheme. It allows functions to “eat the argu-
ment and keep it too.” It is a generalization of the catamorphism.

para ::Functor f⇒ (f (a,Fix f)→ a)→ Fix f→ a
para f = f ◦ fmap (para f &&& id)◦out

-- Alternative
para ::Functor f⇒ (f (a,Fix f)→ a)→ Fix f→ a
para f = fst◦ cata (f &&& (In◦ fmap snd))

mult :: (Nat,Nat)→ Nat
mult (In ZeroF,n) = In ZeroF
mult (In (SuccF r),n) =mult (r,n)

(|+ |) :: c→ (b→ c)→ NatF b→ c
f |+ |g = λx→ case x of
ZeroF→ f
SuccF r→ g r

fact ::Nat→ Nat
fact= para (succ′ zero′ |+ | (mult◦ (id>< succ′)))

The apomorphism is the primitive corecursion scheme. It is a generalization of the anamor-
phism and the dual of the paramorphism.

apo ::Functor f⇒ (a→ f (Either a (Fix f)))→ a→ Fix f
apo f = In◦ fmap (apo f ||| id)◦ f

-- Alternative
apo ::Functor f⇒ (a→ f (Either a (Fix f)))→ a→ Fix f
apo f = ana (f ||| (fmap Right◦out))◦Left
append ::List a→ List a→ List a
append l= apo (((fmap Right (out l)) |− |ConsF)◦ fmap Left◦out)

3. (3) For this question, refer to the paper “Data Types à la Carte” and/or the presentation by
Wout Elsinghorst.

We wish to distinguish input and output IO operations by type. For this exercise, we
want to define everything necessary for the following two functions:

getLine :: (Input :<: f)⇒ Term f String
getLine= inject (GetLine Pure)

putStrLn :: (Output :<: f)⇒ String→ Term f ()
putStrLn s= inject (PutStrLn s (Pure ()))

6

Then, we can write IO functions that use only getLine or only putStrLn or a combi-
nation of both, as in the following example:

prompt ::Term (Input :+:Output) ()
prompt= do
s← getLine
putStrLn ("You wrote: "++ s)

test prompt :: IO ()
test prompt= exec prompt

Define the datatypes Input and Output and a minimal “à la carte” library that imple-
ments the necessary functionality. Be sure that all code is included and that the above
code works.

Solution. The datatypes follow:

data Input r = GetLine (String→ r)
data Output r = PutStrLn String r

They require the following instances:

instance Functor Inputwhere
fmap f (GetLine g) = GetLine (f ◦g)

instance Functor Outputwhere
fmap f (PutStrLn s m) = PutStrLn s (f m)

instance Exec Inputwhere
execAlgebra (GetLine f) = Prelude.getLine>>= f

instance Exec Outputwhere
execAlgebra (PutStrLn s io) = Prelude.putStrLn s>> io

The rest of the library is mostly from the paper:

7

data (f :+:g) e= Inl (f e) | Inr (g e)
instance (Functor f,Functor g)⇒ Functor (f :+:g)where
fmap f (Inl x) = Inl (fmap f x)
fmap f (Inr x) = Inr (fmap f x)

class (Functor sub,Functor sup)⇒ sub :<: supwhere
inj :: sub a→ sup a

instance Functor f⇒ f :<: f where
inj= id

instance (Functor f,Functor g)⇒ f :<: (f :+:g)where
inj= Inl

instance (Functor f,Functor g,Functor h, f :<:g)⇒ f :<: (h :+:g)where
inj= Inr ◦ inj

data Term f a= Pure a | Impure (f (Term f a))

instance Functor f⇒ Functor (Term f)where
fmap f (Pure x) = Pure (f x)
fmap f (Impure t) = Impure (fmap (fmap f) t)

instance Functor f⇒Monad (Term f)where
return= Pure
Pure x >>= f = f x
Impure t>>= f = Impure (fmap (>>=f) t)

inject :: (g :<: f)⇒ g (Term f a)→ Term f a
inject= Impure◦ inj
foldTerm ::Functor f⇒ (a→ b)→ (f b→ b)→ Term f a→ b
foldTerm pure imp (Pure x) = pure x
foldTerm pure imp (Impure t) = imp (fmap (foldTerm pure imp) t)

class Functor f⇒ Exec f where
execAlgebra :: f (IO a)→ IO a

-- This instance is omitted from the paper.
instance (Exec f,Exec g)⇒ Exec (f :+:g)where
execAlgebra (Inl x) = execAlgebra x
execAlgebra (Inr x) = execAlgebra x

exec ::Exec f⇒ Term f a→ IO a
exec= foldTerm return execAlgebra

8

	General Information
	Instructions
	Notes

	Exercises

