
A Generic Deriving Mechanism for Haskell

Jose ´ Pedro Magalh˜a es1 Atze Dijkstra1 Johan Jeuring1,2 Andres L¨o h1
1Department of Information and Computing Sciences, Utrecht University, P .O. Box 80.089, 3508 TB Utrecht, The Netherlands

2School of Computer Science, Open University of the Netherlands, P.O. Box 2960, 6401 DL Heerlen, The Netherlands

{jpm ,atze,johanj ,andres}@cs.uu .n l

Abstract

Haskell’s deriving mechanism supports the automatic generation
of instances for a number of functions. The Haskell 98 Report
only specifies how to generate instances for the Eq, Ord, Enum,
Bounded, Show, and R ead classes. The description of how to gen-
erate instances i s largely informal. The generation of instances
imposes restrictions on the shape of datatypes, depending on the
particular class to derive. As a consequence, the portability of in-
stances across different compilers is not guaranteed.

We propose a new approach to Haskell’s deriving mechanism,
which allows users to specify how to derive arbitrary class in-
stances using standard datatype-generic p rogramming techniques.
Generic functions, including the methods from six standard Haskell
98 derivable classes, can b e specified entirely within Haskell 98
plus multi-parameter type classes, making them lightweight and
portable. We can also express Functor, Typeable, and many other
derivable classes with our technique. We implemented our deriving
mechanism together with many new derivable classes in the Utrecht
Haskell Compiler.

Categories and Subject D escriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Languages

1. Introduction

Generic programming has come a long way: from its roots in
category theory (Backhouse et al. 1999), passing through dedi-
cated languages (Jansson and Jeuring 1997), language extensions
and p re-processors (Hinze et al. 2007; L o¨h 2004) until the flurry
of library-based approaches of today (Rodriguez Yakushev et al.
2008). In this evolution, expressivity has not always increased:
many generic p rogramming libraries of today still cannot compete
with the Generic Haskell pre-processor, for instance. The same ap-
plies to p erformance, as libraries tend to do little regarding code
optimization, whereas meta-programming techniques such as Tem-
plate Haskell (Sheard and Peyton Jones 2002) can generate near-
optimal code. Instead, generic programming techniques seem to
evolve in the direction of b etter availability and usability: it should
be easy to define generic functions and it should b e trivial to use
them. Certainly some of the success of the Scrap Your Boilerplate

Permission t o make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies b ear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to r edistribute
to lists, requires prior specific permission and/or a fee.
Haskell’ ’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright ?c 2010 ACM 978-1-4503-0252-4/10/09. . .$10.00
approach (SYB, L ¨ammel and Peyton J ones 2003, 2004) is due to its
availability: it comes with the Glasgow Haskell Compiler (GHC),
the main Haskell compiler, which can even derive the necessary
type class instances t o make everything work without clutter.

To improve the usability of generics in Haskell, we believe
a tighter integration with the compiler is necessary. In fact, the

Haskell 98 standard already contains some generic p rogramming,
in the form of derived instances (Peyton Jones et al. 2003, Chapter
10). Unfortunately, the report does not formally specify how to
derive instances, and it restricts the classes that can b e derived to
six only (Eq, Ord, Enum, Bounded, Show, and Read). GHC has
since long extended these with D ata and Typeable (the b asis of
SYB), and more recently with Functor, Foldable and Traversable.
Due to the lack of a unifying formalism, these extensions are not
easily mimicked in other compilers, which need to reimplement the
instance code generation mechanism.

To address these issues, we propose an approach to specifying
how to derive an instance of a class, together with new behavior for
the deriving mechanism in Haskell to automatically derive such
a class. To allow for portability across compilers, our approach
requires only Haskell 98 with multi-parameter type classes and
support for a new compiler pragma. Specifically, our contributions
are:

• We describe a new datatype-generic programming library for
Haskell. Although similar in many aspects to other approaches,
our library requires almost no extensions to Haskell 98; the
most significant r equirement is support for multi-parameter
type classes.

• We show how this library can b e used to e xtend the deriving
mechanism in Haskell, and provide sample derivings, notably
for the Functor class.

• We provide a detailed description of how the representation for
a datatype is generated. In particular, we can represent almost
all Haskell 98 datatypes.

• We provide a fully functional implementation of our library
in the Utrecht Haskell Compiler (UHC, Dijkstra et al. 2009).

Many useful generic functions are defined using generic deriv-
ing in the compiler.

We also provide a package which compiles b oth in UHC and GHC,
showing in detail the code that needs to added to the compiler, the

pcoordteatb hleatb s ehtwouelednb c eomg epnielreratse.d1b yt hec ompiler,a ndt hec odet hati s
The r emainder of this p aper is structured as follows: first we

give a brief introduction to generic p rogramming in Haskell (Sec-
tion 2), which also introduces the particular library we use. W e pro-
ceed to show how to define generic functions (Section 3), and then

1http ://dreixel .net/research/code/gdmh .tar .gz

describe the necessary modifications to the compiler for supporting
our approach (Section 4). Finally, we discuss alternative designs
(Section 5), r eview related work (Section 6), propose future work
(Section 7) and conclude in Section 8.

2. Generic programming

We use the generic function encode as a running example through-
out this p aper. This function transforms a value into a sequence of
bits:

data Bit = 0 | 1

class E ncode α where
encode :: α → [Bit]

We want the user to be able to write

data Exp = Const Int | Plus Exp Exp
dtae rEivxipn =g (C Sohonwst, I IEnntc| o Pdlues)

and to use encode like

test :: [Bit]
test = encode (Plus (Const 1) (Const 2))

This should be all that is necessary to use encode. The user should
need no further knowledge of generics, and encode can b e used in
the same way as show, for instance.

Behind the scenes, the compiler generates an instance for
Encode Exp b ased on a generic specification of instances of class
Encode. There are several ways to specify such an instance,
both using code generation and datatype-generic approaches. W e
choose a datatype-generic approach because it is type-safe and el-
egant (Hinze et al. 2007). We will discuss alternative designs and

motivate our choice in m ore detail in Section 5. For now we pro-
ceed to describe our new generic p rogramming library. The three
basic ingredients for generic p rogramming, as described by Hinze
and L o¨h (2009), are:

1. Support for overloaded functions

2. A run-time type r epresentation

3. A generic view on data

Since we use Haskell, (1) is easy: an overloaded (ad-hoc polymor-
phic) function is a method of a type class. For (2), we introduce a
type representation similar to the one used in the regular (Van
Noort et al. 2008) and instant-generics (Chakravarty et al.
2009) libraries, in Section 2.1. For (3), we again use type classes
to encode embedding-projection pairs for user-defined datatypes in
Section 2.3.

2.1 A run-time type representation

The choice of a run-time type representation affects not only the
compiler writer but also the expressiveness of the whole approach.
A simple representation is easier to derive, but might not allow
the definition of some generic functions. More complex representa-
tions are more expressive, but require more work for the automatic
derivation of instances.

We present a set of representation types that tries to balance
these factors. W e use the common sum-of-products r epresentation
without explicit fixpoints but with explicit abstraction over a sin-
gle p arameter. Therefore, r epresentable types are functors, and we
can compose types. Additionally, we provide useful types for en-
coding meta-information (such as constructor names) and tagging
arguments to constructors. We show examples of how these repre-
sentation types are used in Section 2.4.

The basic ingredients of the sum-of-products r epresentation
types are:

data U1 ρ = U1

data (+) φ ψ ρ = L 1 {unL1 :: φ ρ } | R 1 {unR1 :: ψ ρ }

data (×) φ ψ ρ = φ ρ ×ψ ρ

We encode lifted sums with (+) and lifted products with (×).
Nullary products are emnsco wdeitdh w(+ith) li afntedd iufntiedt d(U p1ro).d2u

The type variable ρ i s present in all r epresentation types: it
represents the p arameter over which we abstract. We use an explicit
combinator to mark the occurrence of this parameter:

newtype Par1 ρ = P ar1 {unPar1 ::ρ }

As our representation i s functorial, we can encode composition.
Although we cannot express this in the kind system, we require the
first argument of composition to be a representable type construc-
tor. The second argument can only be the parameter, a recursive
occurrence of a functorial datatype, or again a composition. We use
Rec1 to represent recursion, and (◦) for composition:

newtype R ec1 φ ρ = R ec1 {unRec1 :: φ ρ }

newtype (◦) φ ψ ρ = Comp1 (φ (ψ ρ))

PolyP (Jansson and Jeuring 1997) treats composition in a similar
way.

Finally, we h ave two types for representing meta-information
and tagging:

newtype K1 ι γ ρ = K1 {unK1 ::γ}

newtype M 1 ι γ φ ρ = M 1 {unM1 :: φ ρ }

We use K1 for tagging and M 1 for storing meta-information. The
role of the ι parameter in these types is made explicit b y the

following type synonyms:

data D type D1 = M 1 D
data C type C1 = M 1 C
data S type S1 = M 1 S

data R type R ec0 = K1 R
data P type Par0 = K1 P

We use R ec0 to tag occurrences of (possibly recursive) types of
kind ? and P ar0 to mark additional parameters of kind ? (other than
ρ). For meta-information, we use D 1 for datatype information, C1
for constructor i nformation and S1 for record selector i nformation.
We group five combinators into two because in many generic func-
tions the behavior is independent of the meta-information or t ags.
In this way, f ewer trivial cases h ave to be given. We present the
meta-information associated with M 1 in detail in the next section.

Note that we abstract over a single parameter ρ of kind ?. This
means we will b e able to express generic functions such as

fmap :: (α → β) → φ α → φ β

but not

bimap :: (α → γ) → (β → δ) → φ α β → φ γ δ

For bimap we need another type representation that can distinguish
between the parameters. All representation types need to carry one
additional type argument. However, we think that, in p ractice, few
generic functions require abstraction over more than a single type
parameter.

2.2 Meta-information

For some generic functions we need information about datatypes,
constructors, and records. This information is stored in the type

representation:

2Wea lsoh avel iftedv oid(V1) tor epresentn ullarys ums,b utf ors implicity
we omit it from this discussion and from the generic functions in Section 3.

class Datatype γ where
datatypeName ::γ → String
mdaotadutylpeNeNaamme :::: γ →→ SSttrriinngg

class Selector γ where
selName ::γ → String
sseellNNaammee =::γ γc→ ons Stt r"i "n

class Constructor γ where
conName :: γ → String

conFixity :: γ → Fixity
ccoonnFFiixxiittyy =::γ c →on sFti Pxirtyefix

conIsRecord :: γ → Bool
ccoonnIIssRReeccoorrdd =::γ γc →onBs t oFoallse

Names are unqualified. We provide the datatype name together with
the module name. This is the only meta-information we store for a
datatype, although it could be easily extended to add the kind, for
example. We only store the name of a selector. For a constructor, we
also store its fixity and mark if it has fields. This last information is
not strictly necessary, as it can be inferred by looking for non-empty
selNames, but it simplifies some generic function definitions. The
datatypes Fixity and A ssociativity are u nsurprising:

data Fixity = Prefix | I nfix A ssociativity Int

data A ssociativity = L eftAssociative | RightAssociative
=| L NeofttAAssssoocciiaattiivvee

We provide default definitions for conFixity and conIsRecord to

nsiomtaptliiofyn.3i nstantiationf orp refixc onstructorst hatd on otu se record

Finally, we tie the meta-information to the representation:

instance (Datatype γ) ⇒ Datatype (M1 D γ φ ρ) where
sdtaantacteyp (eDNaatmatye p=e dγa) ⇒taty DpaeNtaatmypee e◦(uMnMeta
mdaotadutylpeNeNaamme == mdaotadutylpeNeNaamme ◦◦ uunnMMeettaa

instance (Constructor γ) ⇒ Constructor (M1 C γ φ ρ) where
sctoannNcaem (Ce =n sctorunNctoamrγ e))◦⇒ ⇒un MCoentast

instance (Selector γ) ⇒ Selector (M1 S γ φ ρ) where
sstealNncaem (Se l=e cstoelNrγ a)m⇒ e S◦ eulneMctoetra(

unMeta ::M1 ι γ φ ρ → γ
unMeta = ⊥

Function unMeta operates at the type-level only, so it does not need
an implementation. We provide more details in Section 4.5, and the
examples later in Section 2.4 and Section 3.6 also clarify how we
use these classes.

Note that we could encode the meta information as an extra
argument to M1:

data M 1 ι γ φ ρ = M 1 Meta (φ ρ)

data M eta = M eta String Fixity . . .

However, with this encoding we have trouble writing generic pro-
ducers, since when we are p roducing an M 1 we have to produce
a M eta for which we have no information. With the above repre-
sentation we avoid this problem b y using type-classes to fill in the
right information for us. See Section 3.5 for an example of how this
works.

3Wea lsop rovidea ne mptyd efaults elName because all constructor argu-
ments will be wrapped in an S1, independently of using r ecord notation or

not. We omit this in the example representations of this section for space
reasons, but it becomes clear in Section 4.

2.3 A generic view on data

We obtain a generic view on data b y defining an embedding-
projection p air between a datatype and its type representation. W e
use the following classes for this purpose:

class R epresentable0 α τ where
from0 :: α → τ χ
to0 :: :: τα χ →→τ χα

class R epresentable1 φ τ where
from1 :: φ ρ → τ ρ
to1 :::: τφ ρ →→ τφ ρ

We use τ to encode the representation of a standard type. Since τ is
built from r epresentation types, it is functorial. I n R epresentable1 ,
we encode types of k ind ? → ?, so w e h ave the p arameter ρ. In
Rweepe rnesceondtaebt lyep0e tsh oerfek iisn dn?o p→ara? m,s eotewr , esoh wvee ithnevep natr aam veatreiarbρ le. χ
which is n ever used.

All types need to have an instance of Representable0. Types of
kind ? → ? also need an instance of R epresentable1 . T his sepa-
rkaintiodn? i→s necessary b eedca aunsi en sstoamnce ege onfeR riecp rfuensecnttiaonbsle (like f map or
traverse) require explicit abstraction from a single type parame-
ter, whereas others (like show or enum) do not. Given the different
kinds involved, it is unavoidable to have two type classes for t his
representation. Note, however, that we have a single set of repre-
sentation types (apart from the duplication for tagging recursion
and parameters).

Avoiding e xtensions Since we want to avoid using advanced
Haskell extensions such as type families (Schrijvers et al. 2008)
or functional dependencies (Jones 2000), we use a simple multi-

parameter t ype class for embedding-projection p airs. In fact, τ is
uniquely determined by α (and φ). W e could encode the represen-
tation type more naturally with a type family:

class R epresentable0 α where
type R ep0 α ::? → ?

from0 :: α →α : R:?ep→ 0 α? χ
to0 :::: Rαe→ p0 Rαe χ → α

Since type families and functional dependencies are not yet p art
of any Haskell standard, we do not use them. Instead, we use
multi-parameter type classes, and solve the ambiguities that arise
by coercing with a sTypeOf.

2.4 Example representations

We now show how to represent some standard datatypes. N ote
that all the code in t his section is automatically generated by the
compiler, as described in Section 4 .

Representing Exp. The meta-information for datatype Exp looks
as follows:

data $Exp
data $ConstExp
data $PlusExp

instance Datatype $Exp where
moduleName = "ModuleName"
datatypeName = "Exp"

instance Constructor $ConstExp where conName = "Const "
instance Constructor $PlusExp where conName = "Plus "

In moduleName, "ModuleName " is the name of the module where
Exp lives. The particular datatypes we use for r epresenting the
meta-information at the t ype-level are not needed for defining

generic functions, so they are not visible to the u ser. In this pa-
per, we prefix them with a $.

The type representation ties the meta-information to the sum-
of-products r epresentation of Exp:

typeR ep0Exp =
D1 $Exp (C1 $ConstExp (Rec0 Int)

+ C1 $PlusExp (Rec0 Exp ×R ec0 Exp))

wNeotue s tehE atx thp,ea r nedprn eosteR nteaptiE0oxnpi .ss hallow:a tt her ecursiveo ccurrences
betwTeheene Emxbpea dnddinR g-epp0Eroxpje:ctionp airi mplementst hei somorphism

instance R epresentable0 Exp Rep0Exp where
from0 (Const n) = M 1 (L1 (M1 (K1 n)))
from0 (Plus e e0) = M 1 (R1 (M1 (K1 e ×K1 e0)))

to0 (M1 (L1 (M1 (K1 n)))) = Const n
to0 (M1 (R1 (M1 (K1 e ×K 1 e0)))) = Plus e e0

Here it is clear thatf rom0 and to0 are inverses: the pattern of from0
is the same as the expression in to0, and vice-versa.

Representing lists. The r epresentation for a type of k ind ? → ?

requires an instance fTorh eb r otehp r eRseepnrteasteinotnabf oler1a a tnydp eR e opfrk eisnednt? ab→ le0? .
For lists

data L ist ρ = Nil | Cons ρ (List ρ) deriving (Show, Encode)

we generate the following code:

type Rep0List ρ =
D1 $List (C1 $NilList U1

+ C1 $ConsList (Par0 ρ ×R ec0 (List ρ)))

instance R epresentable0 (List ρ) (RepL0ist ρ) where
from0 Nil = M 1 (L1 (M1 U1))
from0 (Cons h t) = M 1 (R1 (M1 (K1 h ×K1 t)))

to0 (M1 (L1 (M1 U1))) = Nil
to0 (M1 (R1 (M1 (K1 h ×K1 t)))) = Cons h t

We omit the definitions for the meta-information, which are similar
to the previous example. We use P ar0 to tag the parameter ρ, as we
view lists as a kind ? datatype for R epresentable0. T his is different
in the R epresentable1 instance:

type RepL1ist = D 1 $List (C1 $NilList U1
+ C1 $ConsList (Par1 ×R ec1 List))

insftraomnc1eN Rielpresenta=bl Me11L(List1R(Mep11LUist1w))here
from1 (Cons h t) = M 1 (R1 (M1 (Par1 h ×R ec1 t)))

to1 (M1 (L1 (M1 U1))) = Nil
to1 (M1 (R1 (M1 (Par1 h ×R ec1 t)))) = Cons h t

IWPnae Rrt1erpea0Lnadtispt Rwarecaem1 uiseentes Ptreasaard0n,adw nrdheci cRuehrscs 0iotonforedritm hffeeerrp eeant ratalgmygiienntgeRr;ei a pnn0LdR isett hpa1Lneidsr teRcweuepr1Lsu iissvete.
occurrence of a type constructor, r espectively. We will see later
when defining generic functions (Section 3) how these are u sed.

Representing t ype c omposition. We now present a larger exam-
ple, involving more complex datatypes, to show the expressiveness
of our approach. Datatype Expr r epresents abstract syntax trees of
a small language:

infixr 6 ∗

data E xpr ρ = Const Int
| E xpr ρ ∗ E xpr ρ
|| VarExpr ∗{ EuxnpVarrρ :: Var ρ }
|| VL aetr [Dec{l ρ]V a(Erx:p:Vra aρr) ρ

data D ecl ρ = D ecl (Var ρ) (Expr ρ)

data Var ρ = Var ρ | VarL (Var [ρ])

Note that E xpr makes use of an infix constructor (∗), has a selector
N(unotVeat rh),a taE ndxp rusm esa kliesstsu sine Lo feta . nD iantfaixtycp oen Vsatrru cist nre (s∗te),d h, assin aces e ilenc ttoher
VarL constructor Var is called with [ρ]. These oddities are present
only for illustrating how our approach r epresents them. We show
only the essentials of the encoding of this set of mutually recursive
datatypes, starting with the meta-information:

data $TimesExpr
data$ VarExprExpr

data $UnVar

instance Constructor $TimesExpr where
conName = "*"
conFixity = Infix RightAssociative 6

instance Constructor $VarExprExpr where

conName = "Var_Expr"
conIsRecord = True

instance Selector $UnVar where selName = "unVar"

We have to store the fixity of the ∗ constructor, and also the fact that
WVaerE hxapvr eh taos sat orerecot hrde.f iWxiet ys toofret h iets∗ n caomnest rinu cthtoer i,a nsntdana cleso oft ohre eSf ealectc tthoart,
and tie the meta-information to the r epresentation:

typeR ep1Expr = D 1 $Expr
((C1 $ConstExpr (Rec0 Int)

+ C1 $TimesExpr (Rec1 Expr ×R ec1 Expr))
+ (C1 $VarExprExpr (S1 $UEnxVparr ×(RR ece1c Var))

+ C1 $LetExpr (([] ◦ R ec1 Decl) ×R ec1 Expr)))

In RepE1xpr we see the use of S1. Also interesting is the represen-
tation of the Let constructor: the list datatype is applied not to the
parameter ρ but to Decl ρ, so we use composition to denote this.
Note also that we are using a balanced encoding for the sums (and
also for the p roducts). T his improves the p erformance of the type-
checker, and makes generic encoding more space-efficient, for in-
stance.

We omit the r epresentation for D ecl. For Var we use composi-
tion again:

typeR ep1Var = D 1 $Var
(C1 $VarVar Par1

+ C1 $VarLVar (Var ◦ R ec1 []))

Ian cot hmepV oasritLiocnon wsittrhucR teocr,1V [a]r.i s appliedt o[ρ].W er epresentt hisa s
When we use composition, the embedding-projection p airs be-

come slightly more complicated:

instance R epresentable1 Expr RepE1xpr where
from1 (Const i) = M 1 (L1 (L1 (M1 (K1 i))))
from1 (e1 ∗ e2) = M 1 (L1 (R1 (M1 (Rec1 e1 ×R ec1 e2))))
from1 (Var∗Ee xpr v) = M 1 (R1 (L1 (M1 (M1 (Rec1× vR)e)c)))
from1 (Let d e) =

M1 (R1 (R1 (M1 (Comp1 (fmap R ec1 d) ×Rec1 e))))

to1 (M1 (L1 (L1 (M1 (K1 i))))) = Const i

to1 (M1 (L1 (R1 (M1 (Rec1 e1 ×R ec1 e2))))) = e1 ∗ e2

to1 (M1 (R1 (L1 (M1 (M1 (Rec1× v R)e)c)))) = VarExpr v
to1 (M1 (R1 (R1 (M1 (Comp1 d ×R ec1 e))))) =

Let (fmap unRec1 d) e

We need to usef map to apply the R ec1 constructor i nside the lists.
In this case we could use map instead, but in general we require the
first argument to ◦ t o have a Functor instance so we can usef map.
Ifinr stot 1a wguem mneenedtt too ◦cto onvh earvt eba acF ku, tnhctiso trii mnse amnacpepis nogw uen cRaenc1u .

For Var, the embedding-projection pair is similar:

instance Representable1 Var Rep1Var where
from1 (Var x) = M 1 (L1 (M1 (Par1 x)))
from1 (VarL xs) = M 1 (R1 (M1 (Comp1 (fmap R ec1 xs))))

to1 (M1 (L1 (M1 (Par1 x)))) = Var x
to1 (M1 (R1 (M1 (Comp1 xs)))) = VarL (fmap unRec1 xs)

Note that composition is used both in the r epresentation for the
first argument ofconstructor Let (oftype [Decl ρ]) and in the nested
recursion of VarL (of type Var [ρ]). In b oth cases, we have a recur-
sive occurrence of a p arametrized datatype where the p arameter is
not j ust the variable ρ. Recall our definition of composition:

data (◦) φ ψ ρ = Comp1 (φ (ψ ρ))

The type φ is applied not to ρ, but to the result of applying ψ to ρ.
This is why we use ◦ when the recursive argument to a datatype is
nThoti sρi ,s lw ikhey iwn e[Du esecl ◦ρw w] ahendn Vhaer r [ecρu u] . s Wivheea nr itu mise nρt, twoe a cd aanta tsyimppeli sy
use R ec1 .

We have seen how to represent many features of Haskell
datatypes in our approach. W e give a detailed discussion of the
supported datatypes in Section 7.1.

3. Generic functions

In this section we show how to define type classes with derivable
functions.

3.1 Generic function definition

Function encode is a method of a type-class:

data Bit = 0 | 1

class E ncode α where
encode :: α → [Bit]

We cannot provide instances of Encode for our r epresentation
types, as those have kind ? → ?, and E ncode expects a parameter of
tkyipndes ,?a. sW t heo tsheer haefvoerek inddefi ?ne→ →a? h,ea lnpderE nclcaossd,e th exisp eticmtsea p paarraammeetrteizroe df
over a variable of kind ? → ?:

class Encode1 φ where
encode1 :: φ χ → [Bit]

For constructors without arguments we return the empty list, as
there is nothing to encode. Meta-information is discarded:

instance Encode1 U1 where
encode1 = []

instance (Encode1 φ) ⇒ Encode1 (M1 ι γ φ) where
encode1 (M1 a) =φ)e⇒n coE den1c a

For a value of a sum type we produce a single bit to record the
choice. For products we concatenate the encoding of each element:

instance (Encode1 φ, Encode1 ψ) ⇒ Encode1 (φ + ψ) where
encode1 (L1 a) = 0 : encodeψ1 a
encode1 (R1 a) = 1: encode1 a

instance (Encode1 φ, Encode1 ψ) ⇒ Encode1 (φ ×ψ) where
encode1 (a ×b) = encode1 aψ ψ++) ⇒ ⇒enc Eondceo1d be

It remains to encode constants. Since constant types have kind ?,

we r esort to Encode:

instance (Encode φ) ⇒ Encode1 (K1 ι φ) where
setnacnocdee 1(E (nKc1o da)e φ=) e ⇒nc oEdnec oad

Note t hat while the instances for the representation types are given

for the Encode1 class, only the Encode class is exported and al-
lowed to be derived. This is because its type is more general, and
because we need a two-level approach to deal with r ecursion: for
the K1 instance, we recursively call encode instead of encode1 .Re-
call our representation for Exp (simplified and with t ype synonyms
expanded):

typeR ep0Exp = K1 RI nt + K1 R Exp ×K1 R Exp

Since Int and Exp appear as arguments to K1, and our instance
of Encode1 for K1 ι φ requires an instance of Encode φ, we need
instances of Encode for Int and for Exp. W e deal with Int in the next
section, and Exp in Section 3.3. Finally, note that we do not need
Encode1 instances for R ec1 , P ar1 or (◦). These are only required
for generic functions which m ake u osre (◦of) .thT eh eR seepar ereseno tnalbyler 1e culiarsesd.
We will see an example in Section 3.4.

3.2 Base types

We have to provide the instances of Encode for the base types:

instance Encode Int where encode = . . .
instance Encode Char where encode = . . .

Since Encode is exported, a user can also provide additional base
type instances, or ad-hoc instances (types for which the required
implementation is different from the derived generic b ehavior).

3.3 Default definition

We miss an instance of E ncode for E xp. Instances of generic func-
tions for r epresentable types r ely on the embedding-projection
pair to convert from/to the type r epresentation and then apply the
generic function:

encodeDefault :: (Representable0 α τ, Encode1 τ)
⇒ τ χ → α → [Bit]

encodeDefault rep τx χ=→ →enαc od→ e1[B((itfr]om0 x) ‘asTypeOf‘ rep)

Function encodeDefault tells the compiler what to fill in for the
instance of each of the derived types. Because we do not want
to use functional dependencies for p ortability reasons, we pass
the r epresentation t ype explicitly to function encodeDefault. This
function uses the r epresentation type to coerce the r esult type of
from0 with a sTypeOf. T his slight complication is a small p rice to
pay for extended p ortability.

Now we can show the instance of E ncode for Exp and L ist:

instance Encode Exp where

encode = encodeDefault (⊥::Rep0Exp χ)

instance (Encode ρ) ⇒ E ncode (List ρ) where
setnacnocdee (= encodeDefault (⊥ :: Rep0List ρ χ)

Both instances look similar and trivial. However, the instance for
List requires scoped type v ariables to type-check. W e can avoid the
need for scoped type variables if we create an auxiliary local func-
tion encodeList with the same type and behavior of encodeDefault:

instance (Encode ρ) ⇒ E ncode (List ρ) where
setnacnocdee (E=n ecnocdoedeρ)Li⇒s t ⇒⊥E nwchoedree

encodeList :: (Encode ρ) ⇒ RepL0ist ρ χ → L ist ρ → [Bit]

encodeList =::(encodeDefault

Here, the local function encodeList encodes i n its type the corre-
spondence between the type List ρ and its representation RepL0ist ρ.
Its type signature is required, but can easily be obtained from the
type of encodeDefault by replacing the t ype variables α and τ with
the concrete types for this instance.

For completeness, we give the instance for Exp in the same
fashion:

instance Encode Exp where
encode = encodeExp ⊥ where

encodeExp ::RepE0xp χ → Exp → [Bit]
encodeExp = encodeDefault

It might seem strange that we choose not t o use Haskell’s b uilt-
in functionality for default definitions for class methods. Unfortu-
nately we cannot use default methods, for two reasons:

1. Since we avoid using type families and functional dependen-
cies, we need to explicitly pass the r epresentation type as an
argument to encodeDefault.

2. A default case would force us to move the R epresentable0 α τ
and Encode1 τ class constraints to the Encode class, possibly
preventing ad-hoc instances for non-representable t ypes and
exposing Encode1 to the user.

However, if the compiler is to generate instances for Exp and
other r epresentable datatypes automatically, how does it k now
which function to use as default? The alternative to standard
Haskell default methods is to use a naming convention for this
function (like appending Default to the class function name, as in
our example). It is more reliable to use a pragma:

{−# D ERIVABLE Encode encode encodeDefault #−}

This p ragma takes three arguments, which represent (respectively):

1. The class which we are defining as derivable

2. The method of the class which is generic (and therefore needs
a default definition)

3. The name of the function which serves as a default definition

Such a pragma also has the advantage of indicating derivability
for a particular class. We could use a keyword such as derivable to

signal that a class is allowed to b e derived:

derivable class Encode α where . . .

However, by using a pragma instead (as described above) we ensure
more portability, as compilers without support for our derivable
type classes can still compile the code.

Since a class can have multiple generic methods, multiple p rag-
mas can b e used for this purpose. Note, however, that a derivable
class can only have non-generic methods if there is a default def-
inition for these, as otherwise we have no means for implement-
ing the non-generic methods. Alternatively, we could treat generic
methods as default methods, filling in the generic definition auto-
matically if the user does not give a definition. This would allow
classes to h ave normal, generic, and default methods. However, i t
would complicate the code generation mechanism.

3.4 Generic map

In this subsection we define the generic map functionf map, which
implements the Prelude’s f map. Function f map requires access to
the p arameter in the representation type. As before, we export a
single class together with an internal class where we define the
generic instances:

class Functor φ where
fmap :: (ρ → α) → φ ρ → φ α

class Functor1 φ where
fmap1 :: (ρ → α) → φ ρ → φ α

Unlike in Encode, the type arguments t o Functor and Functor1
have the same kind, so we do not r eally need two classes. How-
ever, for consistency, we use the same style as for kind ? generic

functions.
We apply the argument function in the parameter case:
instance Functor1 Par1 where

fmap1 f (Par1 a) = P ar1 (f a)

Unit and constant values do not change, as there is nothing we can
map over. W e apply f map1 recursively to meta-information, sums
and products:

instance Functor1 U1 where
fmap1f U1 = U1

instance Functor1 (K1 ι γ) where
fmap1 f (K1 a) = K 1 a

instance (Functor1 φ) ⇒ Functor1 (M1 ι γ φ) where
fmap1 f (M1 a) =φ)M ⇒ 1 (fFmuanpc1t ofr a)

instance (Functor1 φ ,Functor1 ψ) ⇒ Functor1 (φ + ψ) where
fmap1 f (L1 a) = L 1 (fmap1 ψf)a ⇒)
fmap1 f (R1 a) = R 1 (fmap1f a)

instance (Functor1 φ ,Functor1 ψ) ⇒ Functor1 (φ ×ψ) where
fmap1 f (a ×b) =f map1 f a ×ψ) fm⇒ ap1F ufn nbc

If we find a recursive occurrence of a functorial type, we callf map
again, to tie the recursive knot:

instance (Functor φ) ⇒ Functor1 (Rec1 φ) where
sftmanapce1 (f F(Runecc1to ar)φ =) ⇒R eFc 1u (nfcmtoarpf a)

The remaining case is composition:

instance (Functor φ, Functor1 ψ) ⇒ Functor1 (φ ◦ ψ) where
fmap1 f (Comp1 x) = Comp1ψ ψ()fm ⇒apF (ufmncatpo1r f)(φx)◦

Recall t hat we require the first argument of (◦) to b e a user-defined
Rdaetcatalylp teh,a atnw de etr heeq sueicreont dhe etof i br set aa rrg eupmreesnetnto afti(o◦n) ttyop bee. aTh usereer-fodrefei, weed

use f map1 for the inner mapping (as it will map over a represen-
tation type) but f map for the outer mapping (as it will require an
embedding-projection pair). This is the general structure of the in-
stance of (◦) for a generic function.

nFcienao lfly (,◦ w)f eo drea fing een ntherei cdfe ufancultti omn.ethod:

{−# DERIVABLE Functorf mapf mapDefault #−}
fmapDefault :: (Representable1 φ τ, Functor1 τ)

⇒ τ ρ → (ρ → α) → φ ρ → φ α

fmapDefault ⇒repτ f x =→ to1 →(fmα ap)1→ →f φ(frρ om→ 1 x ‘ αasTypeOf‘ rep))

Now Functor can be derived for user-defined datatypes. The usual
restrictions apply: only types with at least one type parameter and
whose last type argument is of kind ? can derive Functor. The
compiler derives the following instance for L ist:

instance Functor L ist where
fmap =f mapList (⊥ ::Rep1List ρ) where

fmapList ::Rep1List ρ → (ρ → α) → L ist ρ → List α

fmapList =f mapDefault
Note that the instance Functor L ist also guarantees that we can use
List as the first argument to (◦), as the embedding-projection pairs
fLoirs ts uacsht h ceof mirsptosa irgtioumnse nnete tod (to◦)u,s easf t mhaepe .

The instances derived for Expr, Decl, and Var are similar.

3.5 Generic empty

We can also easily express generic producers: functions which
produce data. W e will illustrate this with function empty, which
produces a single v alue of a given type:

class E mpty α where empty :: α

This function is perhaps the simplest generic p roducer, as it con-
sumes no data. It r elies only on the structure of the datatype to pro-

duce values. Other examples of generic p roducers are the methods
in R ead and the A rbitrary class from QuickCheck, and binary’s
get. As usual, we define an auxiliary type class:

class E mpty1 φ where
empty0 :: φ χ

Most instances of E mpty1 are straightforward:

instance Empty1 U1 where
empty0 = U1

instance (Empty1 φ) ⇒ E mpty1 (M1 ι γ φ) where
empty0 = M 1 emφp)ty ⇒0

instance (Empty1 φ, Empty1 ψ) ⇒ Empty1 (φ ×ψ) where
empty0 = empty0 ×empty0

instance (Empty φ) ⇒ Empty1 (K1 ι φ) where
setmanptcye0 (=E m K1p empty

For units we can only produce U1. Meta-information is produced
with M 1, and since we encode the meta-information using type
classes (instead of using extra arguments to M1) we do not have to
use ⊥ here. An empty product is the product of empty components,
ausnde ⊥fohr eKre1 Awne eremcuptrysi vperloyd uccatlli sem thpetpy .r oTdhuec too nflye minptteyrec sotimngp ocnheonictse,
is for the sum type:

instance (Empty1 φ) ⇒ Empty1 (φ + ψ) where
empty0 = L 1 empφty) 0⇒

In a sum, we always take the leftmost constructor for the empty
value. Since the leftmost constructor might be recursive, function
empty might not terminate. More complex implementations can
look ahead to spot recursion, or choose alternative constructors af-
ter recursive calls, for instance. Note also the similarity between our
Empty class and Haskell’s Bounded: if we were defining minBound
and maxBound generically, we could choose L 1 for minBound and
R1 for maxBound. This way we would preserve the semantics
for derived Bounded instances, as defined b y Peyton J ones et al.

(2003), while at the same time lifting the r estrictions on types that
can derive Bounded. A lternatively, to k eep the Haskell 98 behavior,
we could give no instance for ×,as enumeration types will not have
aw pe rc ooduuldct giinv ethn eoir irnesptranesceentf aotrio× n,sa .

The default method simply applies to0 to empty0:

{−# D ERIVABLE Empty empty emptyDefault #−}
emptyDefault :: (Representable0 α τ, Empty1 τ)

⇒ τ χ → α

emptyDefault rep τ=χ to0 (αempty0 ‘asTypeOf‘ rep)

Now the compiler can produce instances such as:

instance Empty Exp where
empty = emptyExp ⊥ where

emptyExp ::RepE0xp χ → Exp

emptyExp = emptyDefault
instance (Empty ρ) ⇒ Empty (List ρ) where

empty = (E emptyList ⇒⊥ Ewmhpertye
emptyList :: (Empty ρ) ⇒ Rep0List ρ χ → List ρ

emptyList =::(emptyDefault

Instances for other types are similar.

3.6 Generic show

To illustrate the use of constructor and selector labels, we define
the shows function generically:

class Show α where
shows ::α → ShowS

show ::α → String
sshhooww x :=α s →ho wSstr x "g "

We define a h elper class Show1 , with shows1 as the only method.
For each representation type there is an instance of Show1 . The
extra B ool argument will be explained later. Datatype meta-infor-
mation and sums are ignored. For units we h ave nothing to show,
and for constants we call shows recursively:

class Show1 φ where
shows1 ::Bool → φ χ → ShowS

instance (Show1 φ) ⇒ Show1 (D1 γ φ) where
shows1 b (M1 aφ) =⇒ shS ohwows1 b a

instance (Show1 φ ,Show1 ψ) ⇒ Show1 (φ + ψ) where
shows1 b (L1 a) = showψs1) b⇒ ⇒a

shows1 b (R1 a) = shows1 b a

instance Show1 U1 where
shows1 U1 = id

instance (Show φ) ⇒ Show1 (K1 ι φ) where
ssthaonwces1 (Sh(oKw1 φa)) ⇒= sShhoowws a

The most interesting instances are for the meta-information of a
constructor and a selector. For simplicity, we always place paren-
theses around a constructor and ignore infix operators. W e do dis-
play a labeled constructor with r ecord notation. At the constructor
level, we use conIsRecord to decide if we p rint surrounding brack-
ets or not. We use the Bool argument to shows1 to encode that we
are inside a labeled field, as we will need this for the product case:

instance (Show1 φ , Constructor γ) ⇒ Show1 (M1 C γ φ) where
shows1 c@ (Mφ1, Ca)o n=s

showString " (" ◦ showString (conName c)

◦ sshhoowwSSttrriinngg "" ""
◦◦ swhroawpSRtercionrgd"

(asphRoewcso1r (dconIsRecord c) a ◦ showString ") ")
where

wrapRecord ::ShowS → ShowS
wwrraappRReeccoorrdd :s: |S choonwIsSR→ ec oSrhdo wc S= showString "{ " ◦ s

◦ sshhoowwSSttrriinngg "" {}""
wrapRecord s | otherwise = s◦

For a selector, we print its label (as long as it is not empty), followed
by an "=" and the value. In the product, we use the B ool to decide
if we p rint a space (unlabeled constructors) or a comma:

instance (Show1 φ ,Selector γ) ⇒ Show1 (M1 S γ φ) where
shows1 b s@ (Mφ1, Sa)e

| null (selName s) = shows1 b a
|| onuthlelr(sweilsNe == sohwowsString (selName s)

◦ showString " = " ◦ shows1 b a

instance (Show1 φ ,Show1 ψ) ⇒ Show1 (φ ×ψ) where
shows1 b (a ×c) = shoψw)s1 ⇒ ⇒b Sa

=◦ sshhoowwsString (if b then " ," else " ")
◦◦ sshhoowwsS1t ibn cg

Finally, we provide the default:

{−# DERIVABLE Show s hows showsDefault #−}

showsDefault :: (Representable0 α τ, Show1 τ)
⇒ τ χ → α → ShowS

showsDefault rep τx χ=→ →shα ow→ s1 SFaholsweS (from0 x ‘asTypeOf‘ rep)

We have shown how to use meta-information to define a generic

show function. If we additionally account for infix constructors
and operator p recedence for avoiding unnecessary p arentheses,
we obtain a formal specification of how show behaves on every
Haskell 98 datatype.

4. Compiler support

We now describe in detail the required compiler support for our
generic deriving mechanism.

We start b y defining two p redicates on types, isRep0 (φ)
and isRep1 (φ), which hold if φ can be made an instance of
Representable0 and R epresentable1 , r espectively. The statement
isRep0 (φ) holds if φ i s any of the following:

1. A regular Haskell 98 datatype without context

2. An empty datatype

3. A type variable of kind ?

We also require that for every type ψ that appears as an argument
to a constructor of φ, isRep0 (ψ) h olds. φ cannot use existential
quantification, type equalities or any other extensions.

The statement isRep1 (φ) holds if the following conditions both
hold:

1. isRep0 (φ)

2. φ is of kind ? → ? or k → ? → ?, for any kind k

Note that isRep0 holds for all the types of Section 2.4, while isRep1
holds for List, Expr, D ecl, and Var.

Furthermore, we define the predicate ground (φ) to deter-
mine whether or not a datatype has type variables. For instance,
ground ([Int]) holds, but ground ([α]) not. Finally, we assume the

existence of an indexed fresh variable generator fresh p ji, which

binds pji to a unique fresh variable.
For the r emainder of this section, we consider a u ser-defined

datatype

data D α1 . .. αn = Con1 {l11 :: p11, .. .,lo11 ::p1o1 }

| Conm {l1m ::pm1, .. .,lomm ::pmom }

with n type parameters, m constructors and possibly labeled param-
eter lij of type pji at positionj of constructor Coni.

4.1 Type representation (kind ?)

In Figure 1, we show how we generate type representations for
a datatype D satisfying isRep0 (D). We generate a number of
empty datatypes which we use in the meta-information: one for the
datatype, one for each constructor and one for each argument to a
constructor.

The type r epresentation is a type synonym (Rep0D) with as many
type variables as D. It is a wrapped sum of wrapped p roducts: the
wrapping encodes the meta-information. W e wrap all arguments to
constructors, even if the constructor is not a record. Since we use
a balanced sum (resp. product) encoding, a generic function can
use the meta-information to find out when the sum (resp. product)
structure ends, which is when we reach C1 (resp. S1). E ach argu-
ment is tagged with P ar0 if it is one of the type variables, or R ec0
if it is anything else (type application or a concrete datatype).

4.2 Representable0 instance

The instance Representable0 Rep0D is defined in F igure 2, as in-
troduced in Section 2. The patterns of the f rom0 function are the
constructors of the datatype applied to fresh variables. The same
patterns become expressions in function to0. The patterns of to0
are also the same as the expressions of from0, and they represent
the different values of a balanced sum of balanced products, prop-

erly wrapped to account for the meta-information. Note that, for
Representable0, the functions tuple and wrap do not behave dif-
ferently depending on whether we are in from0 or to0, so for these
declarations the dir argument is not needed. Similarly, the wrap
function could h ave b een inlined. These definitions will b e refined
in Section 4.4.

4.3 Type representation (kind ? → ?)

See Figure 3 for the type representation of type constructors.
We keep the sum-of-products structure and meta-information un-
changed. At the arguments, however, we can use Par0, P ar1 ,R ec0,
Rec1, or composition. We use Par1 for the type variable α, and
Par0 for other type variables of kind ?. A recursive occurrence of
a type containing αn is marked with R ec1 . A recursive occurrence
of a type with no type variables is marked with R ec0, as there is
no variable to abstract from. Finally, for a recursive occurrence of
a type which contains something else than αn we use composition,
and recursively analyze the contained type.

4.4 Representable1 instance

The definition of the embedding-projection p air for kind ? → ?

dTahteatd yepfeisn,i tsiohonwo nf i tnh eFe igmurbee d 4d, nregfl-epcrtosj ethcteio nmop reai rcof omrpk liicnadte?d t→yp?e
representation. The patterns are u nchanged. However, the expres-
sions in to1 need some additional u nwrapping. This is encoded in
var and u nwC: an application to a t ype variable other than αn has
been encoded as a composition, so we need to unwrap the elements
of the contained type. We use f map for this purpose: since we re-
quire isRep1 (φ), we k now that we can usef map (see Section 3.4).
The user should always derive Functor for container types, as these
can appear to the left of a composition.

Unwrapping is dual to wrapping: we use Par1 for the type pa-
rameter αn, R ec1 for containers of αn, K1 for other type p arameters

and ground types, and composition for application to types other
than αn. Considering composition, in to1 we generate only Comp1
applied to a fresh variable, as this is a pattern; the necessary un-
wrapping of the contained elements is performed in the right-hand
side expression. In from1 the contained elements are tagged prop-
erly: this is performed by wCα.

4.5 Meta-information

We generate three meta-information instances. For datatypes, we
generate

instance Datatype $D where
moduleName =m Name
datatypeName =d Name ,

where d Name is a String with the unqualified name of datatype D
and mName is a String with the name of the module in which D is
defined.

For constructors, we generate

instance Constructor $Coni where
conName = name

{conFixity =f ixity }
{{ ccoonnIFsiRxietycord == Tfixriutye }} ,

where i∈ 1..m, and name is the unqualified name of constructor
wCohenir.e T ih∈ e b..rmac,ea sn darno uanmde c iosnt Fheixi utynq iunadliicfiaetde nthamate t ohifs omnesthtroucd oisr
only defined if Coni is an infix constructor. In that case, f ixity
is I nfix a ssoc p rio, where p rio is an integer denoting the priority
of Coni, and assoc is one of LeftAssociative, RightAssociative, or
NotAssociative. These are derived from the declaration of Coni as
an infix constructor. The braces around conIsRecord indicate t hat
this method is only defined if Coni uses r ecord notation.

For all i∈ {1..m}, we generate

instanceS elector $Lji {where selName = lij} ,

where j ∈ {1..oi}. The brackets indicate that the instance is only
gwihveenre eaj jb∈ od{ y1 .ifo C}o. nTi eusb esr rcekceotrsdi nndoitcaattieont h. aOtt htheerw iinsseta, ntchee dise foanulylt
implementation for selName is used, i.e. const " " .

ddaattaa $ $DCon1 type Rep0Dα1...αn=D 1$D(∑im=1(C1$Coni(∏jo=m1(S1$Lij(argp ij)))))... ∑in=1x | n ≡ 0 = V1

ddaattaa $ $CL1o1nm ∏in=1x| || nnoth≡ ≡ e0 r1wise== = ∑ xU im=11x +∑ in=−1mxw herem = b n/2c argp ji||∃o kth ∈e{r w1.i.sn}e:pij≡α k==P R eacr00ppijij.. | n ≡ 10 = x

data $Lomm | otherwise = ∏im=1x ×∏in=−1mxw here m = bn/2c

Figure 1. Code generation for the type r epresentation (kind ?)

instance R epresentable0 (D α1 . . . αn) (Rep0D α1 . . . αn) where {

from0 pat1from = expf1rom; to0 pat1to = exp1to; expito = patifrom = Coni (fresh pi1) . . .(freshp ioi).. .. expifrom = patito = M 1 (inji,m (M1 (tuplei (p1i . . .poii))))

from0 patmfrom = expfmrom; to0 patmto = expmto; }

injwi,mhexr||e| |ii m mi m60 >≡ 0 ≡=mm =0 01 0 b b== == mi/x/ L ⊥ R 21c12c((iinnjjii,0m,m0−x)m0x)twurpalpeiddiirrp(p ij=.. K.1piopi)| ||o oo witih≡h≡eer wrj 0eik se= = ==b o(M M tiu11/p(U2lwce1idrirap(pdii1r.(.f.rpeiks)h)p × ij)()tupleidir(pik+1...pim))
Figure 2 . Code generation for the R epresentable0 instance

type R ep1D α1 . . . αn−1 = D1 $D (∑mi=1 (C1 $Coni (∏oj=m1 (S1 $Lji (argp ji)))))

argp ij |∃k ∈ { 1..n−1 } :pji ≡ αk = Par0pij
|pji ≡ αn = Par1
|pji ≡ φ αn ∧ isRep1 (φ) = R ec1 pij ∑im=1x and ∏jn=1x as in Figure 1.

|pji≡ φ β ∧ isRep1 (φ) ∧ ¬ground (β) = φ ◦ arg β
|otherwise = R ec0 pij

Figure 3. Code generation for the type representation (kind ? → ?)

instance R epresentable1 (D α1 . . . αn−1) (Rep1D α1 . . . αn−1) where { expito = Coni (varp 1i) . . . (varp oii)

from1 pat1from = expf1rom; to1 pat1to =e xpt1o; varp ij |p ij ≡ φ α∧ α ≡ αn.. .. ∧ isRep1 (φ) =f map u nwCα (fresh pij)

from1 patmfrom = expfmrom; to1 patmto =e xptmo; } |otherwise =f reshp ij
patidir, expfirom, inji,m x, and tuplediir (p1 . . .pm) as i n Figure 2 (but using the new wrapdir x).

wrapdirpji|||||| ∃p p pp ojjkjiitjiih∈≡ ≡≡≡e {rφ φαφ w1.nα. i ααnse}n∧ ∧ ∧:p ¬ diij si r≡iRs≡ Reα pekf 1pro1(mφ()φ)= ===== RC C P K Kea1oo1rcmm1((1ffpprr((11feefrssr((ehheffsmrshpe hp ajsiij)hp)p p ijij))wp ijC)α(fresh pij))uwnCwαC||||αα g αα ||r||≡ ≡ o≡ α α α αu φφ nα ≡ ≡ ≡ ≡ dnβ α α φ φ φ (nnαβ β α ∧∧)ni i ss∧ ∧ ∧RRi g i eessrppRRo11eue((ppnφφ11d))(((φφ= = ==β)))C R K P == = = oea1crmu 1f u u 1mnpnnP1aRRap◦eercc(u 101fnmwapCw βC◦uβn)Comp1
Figure 4. Code generation for the Representable1 instance

4.6 Default instances

The instances of a class r epresenting the different cases of a generic
function on r epresentation types present somewhat more of a chal-
lenge because they r efer to a specific function defined by the
generic p rogrammer (in our running example encodeDefault). The
compiler knows which function to use due to the DEFAULT pragma
(Section 3.3).

After the default function has b een determined, the only other
concern is passing the explicit type representation, encoded as a
typed ⊥.

4.6.1 Generic functions on Representable0

For each generic functionf that is a method of the type class F, and
for every datatype D with type arguments α1 . .. αn and associated
representation type R ep0D α1 . . . αn χ, the compiler generates:

instance (C . ..) ⇒ F (D α1 . . . αn) where
sft a=nc fDe (⊥C w..h.e)⇒ re

fD :: (C. . .) ⇒ R ep0D α1 .. . αn χ → β
fD =f Default

The type β is the type of f specialized to D , and χ is a fresh
type variable. The context C is the same in the instance h ead and
in function fD. The exact context generated depends on the way
the user specified the deriving. I f deriving F →was attached to the
datatype, we generate a context F →−α 1, . . . ,F →−α n, where →α is the
variable α applied to enough fresh type variables to achieve full
saturation. This approach gives the correct behavior for Haskell 98
derivable classes like Show. In general, however, it is not correct:
we cannot assume that we require F αi for all i ∈ {1. .n}: generic

children, for instance, does not requirfeo any ic∈ ons {t1ra.i.nnts},: gase ite iisc
not a recursive function. W orse even, we might require constraints
other than these, as a generic function can use other functions, for
instance.

To avoid these problems we can use the standalone deriving
extension. If we have a standalone deriving

deriving instance (C . ..) ⇒ F (D α1 . . . αn)

we can simply use this context for the instance. Ingeneral, however,
the compiler should b e able to infer the right context b y analyzing
the context of the generic function and the structure of the datatype.

4.6.2 Generic functions on R epresentable1

For each generic functionf that is a method of the type class F, and
for every datatype D with type arguments α1 . .. αn and associated
representation type R ep1D α1 . . . αn, the compiler generates:

instance (C . ..) ⇒ F (D α1 . . . αn−1) where
sft a=nc fDe (⊥C w..h.e)⇒ re

fD :: (C. . .) ⇒ R ep1D α1 .. . αn → β

fD =f Default

The type β is the type of f specialized to D (in other words,
f :: β). This code is almost the same as that for generic functions
on R epresentable0, with a small e xception for handling the last
type variable (αn). The context can be copied from the standalone
deriving, if one was used, or just inferred by the compiler.

4.7 UHC specifics

We have a prototype implementation of our deriving mechanism
in UHC. Although generating the required datatypes and instances
is straightforward, we have to resolve some subtle issues. In our

implementation, the following issues arose:

Which s tage oft he c ompilerp ipeline g enerates the d atatypes and
instances? Ideally, all deriving-related code is generated as early
as possible, for example during desugaring, so later compiler stages
can type check the generated code. However, the generation needs
kind information of types and classes, which is only available af-
ter k ind checking. In UHC, the datatypes and instances are directly
generated as intermediate Core, directed b y kind information, and
only the derived instances are intertwined with type checking and
context reduction because of the use of the default deriving func-
tions.

Use o ff map. The generation of embedding-projection p airs for
types with composition requires f map, which in turn requires the
context reduction machinery to resolve overloading. This compli-
cates the interaction with the compiler pipeline, because the gen-
eration becomes not only kind-directed, but also context reduction
proof-directed. However, all occurrences of fmap are applied to the
identity function id, because wrappers like Par1 are defined as new-
types. In UHC, the use of context reduction is avoided assuming the
equalityf map id ≡ id.

Code s ize. Some quick measurements show a 10% increase in
the size of the generated code. Although language pragmas like
GenericDeriving and NoGenericDeriving could selectively switch
this feature on or off, this would defeat the purpose of generic-
ity. Once turned off for a datatype, no R epresentables are gener-
ated, and no generic instances can b e defined anymore. Instead,
later transformations should prune unused code. These issues need
further investigation.

Bootstrapping. As soon as a user defines a datatype, code gen-
eration generates the supporting datatypes. Such datatypes (e.g.

$Con1) and the datatypes used b y supporting datatypes (e.g. B ool,
used in the r eturn t ype of conIsRecord) are mutually dependent,
which is detected by binding group analysis. E ach binding group
type analysis must deal with mutually dependent datatypes. T his
also means that the supporting definitions must be available in the
first module that contains a d atatype.

Interaction with d esugaring. Currently, deriving clauses arej ust
syntactic sugar for standalone deriving. After desugaring, we can-
not decide to generate a R epresentable0 or a R epresentable1 in-
stance because k ind information is not available. A utomatically
generating the correct context for such an instance cannot be done
either. To work around this limitation, we only accept deriving
clauses for generic classes that use R epresentable0. D erivings for
Representable1 classes have to use standalone deriving syntax,
since then we no longer need to infer a context, and can let the
programmer provide the required context.

5. Alternatives

We have described how to implement a deriving mechanism that
can be used to specify many datatype-generic functions in Haskell.
There are other alternatives, of varying complexity and type-safety.

5.1 Pre-processors

The simplest, most powerful and least type safe alternative to
our approach is to implement deriving by pre-processing the
source file(s), analyzing the datatypes definitions and generating
the required instances with a tool such as DrIFT (Winstanley and
Meacham 2008). This requires no work from the compiler writer,
but does not simplify the task of adding new derivable classes, as
programming b y generating strings i s not very convenient.

Staged meta-programming lies in between a p re-processor and

an embedded datatype-generic r epresentation. GHC supports T em-
plate Haskell (Sheard and Peyton J ones 2002), which has b ecome
a standard tool for obtaining r eflection in Haskell. While Template
Haskell provides possibly more flexibility than the p urely library-
based approach we describe, it imposes a significant hurdle on the

compiler writer, who does not only h ave to implement a language
for staged programming (if one does not yet exist for the com-
piler, like in UHC), but also keep this complex component up-to-
date with the rest of the compiler, as it evolves. As an example,
Template Haskell support for GADTs and type families only ar-
rived much later than the features themselves. Also, for the deriv-
able class writer, using Template Haskell is more cumbersome and
error-prone t han writing a datatype-generic definition in Haskell it-
self.

For these reasons we think that our library-based approach,
while h aving some limitations, has a good balance of expressive
power, type safety, and the amount of implementation work re-
quired.

5.2 Generic programming libraries

Another design choice we made was in the specific library approach
to use. W e have decided not to use any of the existing libraries but
instead to develop yet another one. However, our library is merely a
variant of existing libraries, from which it borrows many ideas. We
see our representation as a mixture between regular (Van Noort
et al. 2008) and instant-generics (Chakravarty et al. 2009). W e
share the functorial view with regular; however, we abstract from
a single type parameter, and not from the r ecursive occurrence. Our
library can also be seen as instant-generics extended with a
single type p arameter. However, having one parameter allows us
to deal with composition effectively, and we do not duplicate the
representation for types without p arameters.

Since we wanted to avoid using GADTs, and we wanted an
extensible approach, we had to exclude most of the other generic
programming libraries. The only possible choice would have been
EMGM (Oliveira et al. 2007), which supports type p arameters, is
modular and does not require fancy extensions. However, EMGM

duplicates the representation for higher arities, and encodes the
representation of a type at the value level. W e p refer encoding the
representation only at the type level, as this has proven to allow for
type-indexed datatypes (see Section 7.2).

6. Related work

The generic programming library we present shares many aspects
with regular (Van N oort et al. 2008) and instant-generics
(Chakravarty et al. 2009). Clean (Alimarine and Plasmeijer 2001)
has also integrated generic programming directly in the language.
We think our approach is more lightweight: we express our generic
functions almost entirely in Haskell and require only one small
syntactic e xtension. On the other h and, the approach taken in Clean
allows defining generic functions with polykinded types (Hinze
2002), which means that the function bimap (see Section 2.1), for
instance, can be defined. Not all Clean datatypes are supported:
quantified types, for example, cannot derive generic functions. Our
approach does not support all features of Haskell datatypes, but
most common datatypes and generic functions are supported.

An extension for derivable type classes similar to ours has
been developed b y Hinze and Peyton Jones (2001) in GHC. As
in Clean, this extension requires special syntax for defining generic
functions, which makes it harder to implement and maintain. In
contrast, generic functions written in our approach are portable
across different compilers. Furthermore, Hinze and Peyton Jones’s
approach cannot express functions such as f map, as their type
representation does not abstract over type variables.

Rodriguez Yakushev et al. (2008) give criteria for comparing
generic p rogramming libraries. These criteria consider the library’s
use of types, and its expressiveness and u sability. Regarding types,
our library scores very good: we can represent regular, higher-

kinded, nested, and mutually r ecursive datatypes. W e can also ex-
press subuniverses: generic functions are only applicable to types
that derive the corresponding class. We only miss the ability to
represent nested h igher-kinded datatypes, as our representation ab-
stracts only over a parameter of kind ?.

Regarding expressiveness, our library scores good for most cri-
teria: we can abstract over type constructors, give ad-hoc definitions
for datatypes, our approach is extensible, supports multiple generic
arguments, represents the constructor names and can express con-
sumers, transformers, and p roducers. We cannot express g mapQ in
our approach, but our generic functions are still first-class: we can
call generic map with generic show as argument, for instance. Ad-
hoc definitions for constructors would be of the form:

instance Show Exp where
shows (Plus e1 e2) = shows e1◦ showString "+" ◦ shows e2

showsx = showsDefault (⊥ ::RepE0xp χ) x

However, in our current implementation, Rep0Exp is an internalt ype
synonym not exposed t o the user. Exposing it to the u ser would re-
quire a naming convention. If UHC supported type families (Schri-
jvers et al. 2008), R ep0 could b e a visible t ype family, which would
solve our problem for ad-hoc definitions of constructors. It would
also r emove the need for using asTypeOf in Section 2.3.

Regarding usability, our approach supports separate compila-
tion, is highly portable, has automatic generation of its two rep-
resentations, requires minimal work to instantiate and define a
generic function, is implemented in a compiler and is easy to use.
We have not yet benchmarked our library in UHC. In GHC, we
believe it will be as efficient as instant-generics and regular.

7. Future work

Our solution is applicable t o a wide r ange of datatypes and can
express many generic functions. However, some limitations still
remain, and many improvements are p ossible. In this section we
outline some possible directions for future r esearch.

7.1 Supported datatypes

Our examples in Section 2 show that we can r epresent many com-
mon forms of datatypes. We believe that we can represent all of the
Haskell 98 standard datatypes in R epresentable0, except for con-
strained datatypes. W e could easily support constrained datatypes
by propagating the constraints to the generic instances.

Regarding R epresentable1, we can r epresent many, but not all
datatypes. Consider a nested datatype for representing balanced
trees:

data Perfect ρ = N ode ρ | Perfect (ρ, ρ)

We cannot give a representation of kind ? → ? for Perfect, since
Wfore thc aen n Pneortfeg citv ceo anr setrpurcetosern wtaet ownou oldf knineedd ?so→ me? thf ionrg Pliekrefe ePcter,fs eicntc ◦e

Rfoerct 1h (e(P,)e rρfe).c tH coownsetvruecr, tohre w teywp eo uvladrian beleed ρ ims netoh ilnogngl iekre aP vaeirlfeacblte◦ ,
because we abstract from it. This limitation is caused by the fact
that we abstract over a single type p arameter. The approach taken
by Hesselink (2009) is more general and fits closely with our
approach, but it is not clear if it is feasible without advanced
language extensions.

Note that for t his p articular case we could use a datatype which
pairs elements of a single type:

data Pair ρ = P air ρ ρ

The representation for the Perfect constructor could then be Perfect ◦

RTehec1r ePparier.s

7.2 Type-indexed datatypes

Some generic functionality, like the zipper (Huet 1997) and generic
rewriting (Van Noort et al. 2008), require not only type-indexed
functions but also type-indexed datatypes: types that depend on the

structure of other types (Hinze et al. 2002). We p lan to i nvestigate
how type-indexed datatypes can b e integrated easily in our generic
deriving mechanism, while still avoiding advanced language exten-
sions.

7.3 Generic functions

The representation types we propose limit the kind of generic func-
tions we can define. We can express the Haskell 98 standard deriv-
able classes Eq, Ord, Enum, Bounded, Show, and Read, even lift-
ing some of the restrictions imposed on the Enum and Bounded
instances. All of these are expressible for R epresentable0 types.
Using R epresentable1, we can implement Functor, as the param-
eter of the Functor class is of k ind ? → ?. The same holds for
eFtoelrdao bflet h aenFd uTnrcatvoerrs calbasles. Fiso ro Tfyk piendabl ?e →we? c.aTn express T hyopledasb lfoe0r
and Typeable1 .

On the other hand, the D ata class has very complex generic
functions which cannot b e expressed with our representation. Func-
tion gfoldl, for instance, requires access to the original datatype
constructor, something we cannot do with the current representa-
tion. In the future we plan to explore if and how we can change our
representation to allow us to express more generic functions.

7.4 Efficiency

The instances derived in our approach are not specialized for a
datatype and may therefore incur an unacceptable performance
penalty. However, our recent research (Magalha ˜es et al. 2010) indi-
cates that simple inlining and symbolic evaluation, present in some
form in every optimizing compiler, suffice in most cases to opti-
mize away all overhead from generic representations. We plan to
investigate how these optimizations can be expressed and automat-
ically applied without any u ser intervention in UHC.

7.5 Implementation in GHC

Our approach is designed to be as portable as possible. Therefore,
we would like to implement it in other compilers, most impor-
tantly in GHC. As a first step, we believe we can easily implement
most of our generic deriving mechanism in GHC using Template
Haskell. The code for the generic functions is kept intact: only the
DERIVABLE pragma needs a different syntax. For the user code, a
code splice would trigger the generation of generic representations
and function instances.

8. Conclusion

We h ave shown how datatype-generic programming can be better
integrated in Haskell b y revisiting the deriving mechanism. All
Haskell 98 derivable type classes can be expressed as generic func-
tions in our library, with the advantage of becoming easily read-
able and p ortable. Additionally, many other type classes, such as
Functor and Typeable, can b e declared derivable. Our extension re-
quires little extra syntax, so it is easy to implement. Adding new
generic derivings can b e done by generic p rogrammers in regular
Haskell; previously, this would b e the compiler developer’s task,
and would b e done using code generation, which is more error-
prone and verbose.

We have implemented our solution in UHC and invite everyone
to derive instances for their favorite datatypes or even write their
own derivings. We h ope our work p aves the future for a r edefinition
of the behavior of derived instances for Haskell Prime (Wallace
et al. 2007).

Acknowledgments

This work has been p artially funded by the Portuguese Foundation
for Science and Technology (FCT) via the SFRH/BD/35999/2007
grant. W e thank T homas van Noort and the anonymous r eviewers
for their helpful feedback.

References
Artem Alimarine and Rinus P lasmeijer. A Generic Programming E xtension

for Clean. In IFL’01, p ages 168–185. Springer-Verlag, 2001.

Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert M eertens.
Generic p rogramming—an i ntroduction. In AFP’98, volume 1608 of
LNCS, pages 28–1 15. Springer, 1999.

Manuel M. T . Chakravarty, Gabriel C. Ditu, and Roman Leshchinskiy.
Instant generics: F ast and easy, 2009. Draft version.

Atze Dijkstra, J eroen Fokker, and S. Doaitse Swierstra. The architecture of
the Utrecht Haskell compiler. In Haskell’09, p ages 93–104. ACM, 2009.

Erik Hesselink. Generic programming with fixed p oints for p arametrized
datatypes. Master’s thesis, Utrecht University, 2009.

Ralf Hinze. P olytypic values possess polykinded types. SCP, 43(2-3):129–
159, 2002.

Ralf Hinze and Andres L o¨h. Generic programming in 3D. S CP, 74(8):
590–628, 2009.

Ralf Hinze and Simon Peyton Jones. D erivable type classes. Electronic
Notes in Theoretical Computer Science, 4 1(1):5–35, 2001.

Ralf Hinze, Johan Jeuring, and Andres L o¨h. T ype-indexed data types. In
MPC’02, volume 2386 of LNCS, pages 148–174. Springer, 2002.

Ralf Hinze, Johan Jeuring, and Andres L¨o h. Comparing approches to
generic programming i n Haskell. In Datatype-Generic P rogramming,
volume 4 719 of LNCS, p ages 72–149. Springer, 2007.

G ´erard Huet. The zipper. J FP, 7(5):549–554, 1997.

Patrik Jansson and Johan Jeuring. PolyP—a p olytypic programming lan-

guage extension. In POPL’97, p ages 470–482. ACM, 1997.

Mark J ones. Type classes with functional dependencies. In ESOP’00,
volume 1782 of LNCS, p ages 230–244. Springer, 2000.

Ralf L ¨ammel and Simon Peyton Jones. Scrap your b oilerplate: a p ractical
approach to generic programming. I n TLDI’03, p ages 26–37, 2003.

Ralf L ¨ammel and Simon Peyton J ones. Scrap more b oilerplate: r eflection,
zips, and generalised casts. In ICFP’04, p ages 244–255. ACM, 2004.

Andres L o¨h. E xploring Generic Haskell. PhD thesis, Utrecht University,
2004.

Jose ´ P edro Magalh˜a es, Stefan Holdermans, J ohan Jeuring, and A ndres L¨o h.
Optimizing generics is easy! In PEPM’10, pages 33–42. ACM, 2010.

Thomas van N oort, Alexey Rodriguez Yakushev, Stefan H oldermans, Johan
Jeuring, and Bastiaan Heeren. A lightweight approach t o datatype-
generic rewriting. In WGP’08, p ages 13–24. ACM, 2008.

Bruno C.d.S. Oliveira, RalfHinze, and Andres L o¨h. Extensible and modular
generics for the masses. In TFP’06, pages 199–216. Intellect, 2007.

Simon Peyton Jones et al. Haskell 98, Language andL ibraries. The Revised
Report. Cambridge University Press, 2003. A special issue of J FP.

Alexey Rodriguez Yakushev, J ohan Jeuring, P atrik Jansson, Alex Gerdes,
Oleg Kiselyov, and Bruno C.d.S. Oliveira. Comparing libraries for
generic programming in Haskell. In H askell’08, pages 111–122. ACM,
2008.

Tom Schrijvers, Simon Peyton J ones, Manuel M . T . Chakravarty, and Mar-
tin Sulzmann. T ype checking with open type functions. In ICFP’08,
pages 5 1–62. ACM, 2008.

Tim Sheard and Simon Peyton J ones. Template metaprogramming for
Haskell. In H askell’02, pages 1–16. ACM, 2002.

Malcom Wallace et al. Derived instances—Haskell Prime.
http ://hackage .haskell .org/trac/haskell-prime/wiki/
DerivedInstances, April 2007. [Online; accessed 07-June-2010].

Noel W instanley and J ohn Meacham. DrIFT user guide. http :

//repetae .net/computer/haskell/DrIFT/drift .html, Febru-
ary 2008. [Online; accessed 07-June-2010].

	Introduction
	Generic programming
	A run-time type representation
	Meta-information
	A generic view on data
	Example representations

	Generic functions
	Generic function definition
	Base types
	Default definition
	Generic map
	Generic empty
	Generic show

	Compiler support
	Type representation (kind green)
	redRepresentable0 instance
	Type representation (kind greengreen)
	redRepresentable1 instance
	Meta-information
	Default instances
	Generic functions on redRepresentable0
	Generic functions on redRepresentable1

	UHC specifics

	Alternatives
	Pre-processors
	Generic programming libraries

	Related work
	Future work
	Supported datatypes
	Type-indexed datatypes
	Generic functions
	Efficiency
	Implementation in GHC

	Conclusion

