
— DRAFT [May 11, 2009] —

Instant Generics: Fast and Easy

Manuel M. T. Chakravarty Gabriel C. Ditu Roman L eshchinskiy
University of New South Wales, Australia

{chak,gabd,rl}@cse.unsw.edu .a u

Abstract

This paper introduces a novel approach to datatype-generic pro-
gramming b ased on type classes and type families. The approach
favours simplicity as generic functions are b ased on Haskell’s stan-
dard construct for ad-hoc polymorphism, namely type classes —

hence, it integrates well with existing classes and facilitates overrid-
ing of generic b ehaviour with conventional class instances. More-
over, our approach is expressive, as we demonstrate b y an evalu-
ation along the criteria of a set of standard benchmark problems
for generic p rogramming in Haskell. Beyond these b enchmarks,
which only cover type-indexed functions, we fully support type-
indexed data types as well as a novel generic view, which we call
the structural view. Finally, our approach is designed to lead to
highly efficient code with no or little overhead compared to hand-
written datatype-specific code. Both, support for type-indexed data
types and h igh p erformance were crucial in our principal applica-
tion: a self-optimising, high-performance array library for data p ar-
allel programming in Haskell.

Keywords generic programming, type classes, type families,

type-indexed datatypes

1. Introduction

Datatype-generic p rogramming b oosts software reuse by enabling
generic f unctions that can b e used with many different datatypes.
Datatype-generic functions are guided by the structure of a datatype
—f or example, a generic map or fold function may operate on
both lists and trees b y traversing the container structure to reach all
list elements and tree leaves, respectively. Other datatype-generic
functions operate uniformly on entire heterogeneous structures,
such as testing for equality and serialisation.

However, there are many examples of datatype-generic func-
tions that require a non-uniform treatment, where we want to over-
ride the generic default b ehaviour at specific types or at specific
data constructors. For example, during serialisation, we might want
to optimise the treatment of some large embedded structures or,
given the abstract syntax tree of a compiler, we might want to com-
pute the free variables of specific language constructs. In the latter
example, b y default, we want to traverse tree nodes while joining
free-variable sets of subtrees. However, at variable usage and bind-
ing occurences, we need to b e able to define exceptional cases to
create singleton sets and to subtract from sets, respectively.

[Copyright notice will appear here once ’preprint’ option is removed.]

— D RAFT [May 11, 2 009] —
Finally, a whole category of applications of datatype-generic

functions are operating on datatype-generic d atatypes — also
called type-indexed types [Hinze et al. 2004]. An example of these
are collective operations on self-optimising type-indexed arrays
that adapt their concrete representation to their element type; in
fact, such arrays are at the heart ofData Parallel Haskell [Chakravarty
et al. 2007, Peyton Jones et al. 2008] and they have b een our origi-
nal motivation for developing a new approach to generic program-
ming in Haskell. No existing approach supported datatype-generic
datatypes while at the same time meeting our requirements regard-
ing extensibility and p erformance.

In this paper, we introduce a novel approach to datatype-generic
programming that gracefully deals with all of the previously de-
scribed forms of datatype-generic functions. It is b ased on type
classes [Wadler and Blott 1989] and type families [Chakravarty
et al. 2005b,a, Schrijvers et al. 2008]. We shall argue that our
approach is easy to use. Haskell p rogrammers are familiar with
type classes for ad-hoc p olymorphism. Existing classes can b e
reused, and overriding of generic behaviour is achieved with con-
ventional class instances. M oreover, we describe the use of Tem-
plate Haskell [Sheard and Jones 2002] to generate generic boiler-
plate code, such as structure r epresentation t ypes and conversion
functions; alternatively, this code could b e generated b y an exten-
sion to the deriving mechanism of the Glasgow Haskell Compiler
(GHC).

To evaluate the expressiveness of our approach, we adopt the
comparative b enchmark framework of Rodriguez et al. [2008]. In
summary, our approach scores very well and satisfies almost all
of the criteria for expressiveness. However, due to its use of type
families, it is currently r estricted to b e used with GHC, and we

are still in the process of producing a comprehensive distribution.
However, our framework is already in active use as part of the
library backend of Data Parallel Haskell (which has b een shipped
as a pre-release with GHC since version 6.10.1).

Beyond the functionality assessed by the benchmark framework
—which is r estricted to datatype-generic functions— our approach
also supports datatype-generic datatypes. T hese are datatypes
whose representation is dependent on a type p arameter. For ex-
ample, datatype-generic containers are container types whose rep-
resentation adapts to the structure of the type of the elements they
contain. An intriguing example, which we will use for illustrative
purposes, are Hinze’s [2000] generic generalised tries.

Previous work on generic p rogramming in Haskell i dentified a
range of generic views, each with their own strengths and weak-
nesses. They were summarised and integrated into Generic Haskell
by Holdermans et al. [2006]. The implementation of generic func-
tions on container types, such as generic map and fold functions,
requires a functorial representation of the traversed datatype, either
by thef unctorial (or lifted) sum-of-products view [Hinze 2002] or
by the f ixed-point view [Jeuring and Jansson 1997], each with its
own trade offs. We introduce a new view, which we call the struc-
tural view. It enables generic functions on container types — among

1 2009/5/11
other functionality— while b eing a proper extension of the non-
functorial sum-of-products view. Its advantage is extended func-
tionality without the need for multiple views, but it increases the
size of the generic boilerplate somewhat.

A distinct advantage of b asing generic p rogramming on type
classes is that existing Haskell compilers put considerable effort
into optimising the use of type classes. We pay special attention

ensuring that our generic type-class code optimises well and incurs
as little runtime overhead as possible. Together with the need to
support type-indexed datatypes, high-performance code was one of
the original r equirements for generic functions in the implementa-
tion of Data Parallel Haskell.

The specific contributions of this paper are the following:

• a novel approach to datatype-generic programming using type
classes and type families (Section 2),

• a u nique combination of expressiveness and extensibility (Sec-
tion 3),

• a method to define type-indexed datatypes and associated
generic functions (Section 4),

• high-performance generic code with minimal overhead over
handwritten datatype-specific code (Section 5), and

• an evaluation of our approach b ased on the framework of Ro-
driguez et al. [2008] (Section 6).

There is p lenty of related work on generic programming in Haskell.
We r efer to techniques that we build on throughout the text and
provide a comprehensive summary of related work as part of the
comparative evaluation in Section 6.

2. Simply generic

To convey an intuition of our approach, we shall start with the im-
plementation of a number of well-known generic functions, which
have repeatedly b een u sed as b enchmarks for generic program-
ming [Hinze et al. 2007, Rodriguez et al. 2008].

We implement datatype-generic functions as methods of type
classes, where the different instances of a class define the equations

of a function at different types. This is not unlike the proposals of
Hinze and Peyton J ones [2001] (derivable type classes), of Weirich
[2006] (RepLib), and of Oliveira et al. [2006a] (EMGM), but we
use type families [Chakravarty et al. 2005b,a, Schrijvers et al.
2008] to gain extra flexibility and expressiveness. As in many
other approaches to generic p rogramming in Haskell, the key to
a uniform, generic treatment of a wide range of data structures is
the use of a fixed set of structure representation types [Hinze 1999,
2002]. In the following, we use the sum-of-products view with

data Unit = U nit – singleton
data a :* : b = a :* : b – product
data a :+ : b = Inl a | Inr b – sum

from D ata .Generics. T o r epresent the structure of an algebraic
data type, we use the sum constructor (:+ :) to separate alterna-
tives and the product constructor (:* :) to combine multiple argu-
ments of a single data constructor; finally, we use U nit for nullary
constructors. In practice, it is convenient to also include constructor
descriptors and record labels [c.f., Hinze and P eyton Jones 2001,
Hinze et al. 2007], but we omit those i n this p aper to favour clarity
of presentation.

On the type level, we associate a datatype with its structure
representation by a synonym family Repr. For example, we have

type family Repr t
type instance Repr [a] = U nit : + : (a :* : [a])

On the value level, two functions

— D RAFT [May 11, 2 009] —
toRepr : : Representable a => a -> Repr a
fromRepr : : Representable a => Repr a -> a

convert between datatypes and their representation. As the p revi-
ous definition of Repr [a] indicates, we use a shallow conver-
sion that converts one layer of a r ecursive structure at a time. For
convenience, we combine the two conversion functions toRepr
and fromRepr together with the type family Repr in a type class
Representable.

2.1 Basic tree traversals

To illustrate the basic structure of our scheme for generic program-
ming with type classes, let us consider the infamous binary encoder
example [Hinze 1999, Hinze et al. 2007], which converts the value
of a datatype into a stream of b its — we r epresent this as a class:

class Enc a where
encode : : a -> [Bit]

To realise generic encoding, we first define the encoding of
primitive types and representation types:

instance Enc Int where
encode = encodeInt – b oring details omitted

instance Enc U nit where
encode = const []

instance (Enc a, Enc b) => Enc (a : * : b) w here
encode (x : * : y) = encode x ++ encode y

instance (Enc a, Enc b) => Enc (a : + : b) w here
encode (Inl x) = 0 : encode x
encode (Inr y) = 1 : encode y

On that basis, we can give a generic default implementation of
encode:

dft_encode : : (Representable a, Enc (Repr a))
=> a -> [Bit]

dft_encode = encode . toRepr

As long as a datatype is Representable, we can encode it.
However, for recursive types —such as lists— we still miss an

instance. Recall that our conversion to representation types is shal-
low; e.g., we had Repr [a] = U nit :+ : (a : * : [a]) . Hence,
the represented type (here [a]) may appear in the representation.
To cover that case, we need an appropriate instance:

instance Enc a => Enc [a] where
encode = dft_encode

Consequently, we can use encode directly and n eed dft_encode
only as a convenient shorthand to simplify instance declarations of
types t hat use the generic default b ehaviour.

2.2 Extending existing classes

An advantage of generic programming based on type classes is that
we can use them to extend existing classes, such as the standard
class Eq for equality testing. The first step is to add instances for
the representation types:

instance Eq Unit where
Unit == U nit = True

instance (Eq a, Eq b) => Eq (a : * : b) where
(x1 :* : y1) == (x2 :* : y2) = x1 == x2 && y1 == y2

instance (Eq a, Eq b) => Eq (a :+ : b) where
(Inl x) == (Inl y) = x == y

2 2009/5/11

(Inr x) == (Inr y) = x == y
_ == _ = False

Now, assume we want to define equality for a user-defined type

data Tree a = Leaf a
| Node (Tree a) (Tree a)

First, we need to define a r epresentation type (and the conversion
functions, which are entirely standard and hence omitted):

type instance Repr (Tree a) =
a :+ : (Tree a :* : Tree a)

Then, we can simply use the default implementation implied b y
that r epresentation:

instance Eq a => Eq (Tree a) w here
x == y = toRepr x == toRepr y

Another common example, where we might want to extend a
standard class is Haskell’s show function. T his is straight forward
to implement with our approach, but requires meta-data (such as
constructor labels, fixity, and p recedence) in representation types.
This meta-data can be included in the standard way [Hinze et al.
2007], which is why we omit the details h ere.

2.3 Overriding generic definitions with ad-hoc definitions

It’s a common requirement in generic programming that default
generic functionality can be overridden at specific types, either
because the generic repesentation does not apply (e.g., because the
type is abstract) or because optimised or alternative functionality
is required. In the case of the encode, we may like to optimise
the encoding of lists b y representing them by the length of the list

followed b y the elements and thereby omitting the tags introduced
by the sum constructor (:+ :). In our approach, much like other
approaches to generic programming b ased on type classes [Hinze
and P eyton Jones 2001, Weirich 2006, Oliveira et al. 2006a], we
can easily use custom instances of the generic class:

instance Enc a => Enc [a] where
encode l= encode (length l) ++ – encode list length

concatMap encode l –e ncode elements

Using the exact same mechanism, we can also implement
benchmark applications, such as the widely c ited “Paradise bench-
mark” [Lämmel and Peyton Jones 2003]. In conjunction with p at-
tern matching, we can also conveniently realise exceptions to the
generic default treatment of a datatype for j ust a single data con-
structor or any subset of the data constructors of a datatype. For
example, given a b inary tree with weights:

data Wtree a w = Wleaf a
| Wnode (Wtree a w) (Wtree a w)
| Weight (Wtree a w) w

We can special case the Weight constructor to r emove it using an
ad-hoc instance as follows:

instance (RmWeight a,, RmWeight w)
=> RmWeight (Wtree a w) w here
rmWeight (Weight t _) = rmWeight t – exception
rmWeight t = dft_rmWeight t – default
where

dft_rmWeight = fromRepr . rmWeight . toRepr

We omit the definition of the type r epresentation for Wtree as well
as the class definition for RmWeight and other instances as they

offer no new insights over our previous examples.

— D RAFT [May 11, 2009] —

3. Extensibility

It is desirable to b e able to extend frameworks for generic program-
ming as well as to b e able to extend generic functions i mplemented
in a p articular framework without the need to alter or even r ecom-
pile existing code — this is related to Wadler’s expression problem
as discussed b y Oliveira et al. [2006a]. Our approach to generic
programming is b ased on type classes and type families, b oth of
which are open language constructs that facilitate the addition of
new class and type instances without r ecompilation. This property
extends t o our framework for generic programming, making it ex-
tensible along four axes (two of them strongly related) as described
in the following.

3.1 Adding new views

So far, we h ave assumed the canonical sums-of-products view for
structure r epresentation t ypes. However, as we will see in Sec-
tion 4.1, and as discussed in detail by Holdermans et al. [2006],
other views can b e m ore suitable for some appliations.

The specific view — and hence, the set of structure representa-
tion types— is in fact entirely orthogonal to other aspects of our
approach to generic programming. It is simply a matter of defin-
ing the t ype family Repr and the conversion functions toRepr and
fromRepr appropriately. More generally, multiple views can b e
used side-by-side in a single application. They can even b e mixed
in the implementation of a single generic function on a datatype b y
datatype basis. In p articular, given existing code u sing a particu-

lar view, we can add a new view and code using that new view b y
defining a new representation family Repr2 and conversion func-
tions toRepr2 and fromRepr2 together with appropriate instance
declarations. This is possible without altering or recompiling exist-
ing code.

3.2 Extending an existing view

Not only can we add new views to existing code, but we can
also extend an existing view b y adding new r epresentation t ypes
to that view and using them in new instances of Repr, toRepr,
and fromRepr. In fact, this turns out to b e a very u seful feature in
practice, as p rimitive types, such as Char, Int, Float, and so on
belong to the representation types, too — the family Repr is the
identity on these and other r epresentation types.

It is not uncommon for the set of p rimitive types to grow. Be
it that a new architecture enables the use of a different bitwidth
for scalars (e.g., Int64 and Word64) or that in a binding of a C
library, we abstractly import new types. In fact, portable software
usually has to h andle different sets of primtive types depending on
the architecture and operating system in use. Hence, a fixed set of
representation t ypes is, at the very least, rather inconvenient.

The openness of t ype families [Schrijvers et al. 2008] allows
us t o be flexible, to spread the definitions of representation t ypes
over multiple modules and to add them subsequently to a code
base without altering the existing code. T his turned out t o be an
important feature in our use of generics in Data Parallel Haskell.
The generic array t ype of Data Parallel Haskell needs to b e usable
with any p rimitive type supported b y GHC. The set of p rimitives
types does not only vary between different versions and b uilds of
the compiler, but these types are also defined in separate modules
and occasionally in entirely separate libraries. Any closed, mono-

lithic approach to determining the r epresentation types would be
insufficient.

3.3 Subuniverses

As described in Section 2.1, a class associated with a generic func-
tion needs an, albeit simple instance for every datatype on which
the generic function is supposed to operate, even if the generic

3 2009/5/11
function should simply implement the generic default behaviour
on that datatype. For example, we had

instance Enc a => Enc [a] where
encode = dft_encode

This is somewhat tedious unless automated, but it has the advan-
tage t hat we can easily define a specific generic function on only a
subset of the entire universe of types that it may cover. The set of
instance declarations p recisely characterises the admissible types
— and the compiler will statically detect any attempt to apply a
generic function to a type outside of the subuniverse on which it is
defined.

The subuniverse on which a generic function is defined is again
not closed. It can b e extended at any p oint by supplying additional
instance declarations for types not covered previously.

3.4 Extending a generic function

Strongly related to the subuniverse covered by a given generic func-
tion, we can also extend a generic function t o newly introduced
types when this i s r equired. Again, this works simply by means of
an instance declaration at the new type. This instance declaration
may simply use the generic default method, or use datatype-specific

code to override the default generic behaviour. As an example, con-
sider the extension of equality with a user-defined Tree datatype in
Section 2.2. The code we gave to define the datatype and extend
the equality function could all be defined in a separate module —

no existing code needs to be altered or re-compiled.

4. Generic views

A generic view [Holdermans et al. 2006] in our framework is given
by a class

class Representable a where
type Repr a –representation type of a
toRepr : : a -> Repr a – shallow conversion. . .
fromRepr : : Repr a -> a – . . . functions

comprising an associated type family R epr that maps a source
datatype to its representation type under a particular generic view
together with two conversion functions toRepr and fromRepr.
The specific names of the class, the associated type, and the con-
version functions is not fixed and we can h ave multiple co-existing
representations. Generic code chooses a specific representation by
using the appropriate class and its components. So far, we have in-
troduced the class Representable as providing a sum-of-products
view. In the next two subsection, 4.1& 4.2, we will discuss two al-
ternative views.

In fact, we can go a step further and instead of using a generic
view merely as an ephemeral structure to define generic functions
in a uniform manner, we can use it to actually represent a specific
data structure in an optimised or more convenient manner. The re-
sult are datatype-generic datatypes as described in Subsection 4 .3.

Finally, we may like to generate specific r epresentation types
and conversion functions (i.e., instances ofthe class Representable)
automatically. In our use of generics for Data Parallel Haskell, we

use a special-purpose generator. However, for a more general use of
our approach, we discuss automatic generation of r epresentations
in Subsection 4.4.

4.1 Functors in the lifted sums-of-products view

The i mplementation of generic functions on container types, such
as generic map and fold functions, requires a functorial r epresenta-
tion of the traversed datatype. A standard option, already proposed
by Hinze [1999, 2002], is the lifted sums-of-products view, which
uses the f ollowing representation types:

— D RAFT [May 11, 2 009] —
data I r = Ir
data K a r = K a
data (f :** : g) r = f r :** : g r
data (f :++ : g) r = Inl1 (f r) | Inr1 (g r)

We provide it in the form of an alternative representation class:

class Representable1 f where
type Repr1 f : : * -> *
toRepr1 : : f a -> Repr1 f a
fromRepr1 : : Repr1 f a -> f a

ranging over functors of kind * -> *. In fact, much like for the
Typeable class of Lämmel and Peyton Jones [2003], we may p ro-
vide an entire family ofclasses Representable, Representable1,
Representable2, and so on, to represent nullary, unary, binary,
and so on type constructors.

We r epresent the constructor for lists with Representable1 as

instance Representable1 [] where
type Repr1 [] = K U nit : ++ : (I :** : [])

toRepr1 [] = Inl1 (K U nit)
toRepr1 (x :xs) = Inr1 (I x :** : xs)
fromRepr1 (Inl1 (K U nit)) = []
fromRepr1 (Inr1 (I x :** : xs)) = x :xs

and we r epresent binary trees (c.f., Section 2.2) as

instance Representable1 Tree w here
type Repr1 Tree = I:++ : (Tree :** : Tree)
toRepr1 (Leaf x) = Inl1 (I x)
toRepr1 (Node lr) = Inr1 (l :** : r)
fromRepr1 (Inl1 (I x)) = Leaf x
fromRepr1 (Inr1 (l : ** : r)) = Node lr

On the basis of the lifted sums-of-products, we can now extend
Haskell’s standard Functor class to cover new datatypes, such as
Tree, by using the generic default implementation:

instance Functor Tree where
fmap = fromRepr1 . fmap h . toRepr1

As before, we might want to factorise the body of that method out
into a toplevel function dft_fmap if we intend to use it in multiple
instance declarations.

The behaviour of the generic default implementation is given b y
the Functor instances of the representation types; thusly,

instance Functor Iwhere
fmap h (I x) = I (h x)

instance Functor (K a) where
fmap _ (K x) = K x

instance (Functor f , Functor g)
=> Functor (f : ** : g) where

fmap h (x : ** : y) = fmap h x :** : fmap h y

instance (Functor f , Functor g)
=> Functor (f : ++ : g) where
fmap h (Inl1 x) = Inl1 (fmap h x)
fmap h (Inr1 y) = Inr1 (fmap h y)

4.2 The structural view

A disadvantage of the approach described in the previous subsec-
tion is that we need to maintain a family of representations to deal
with type constructors of varying arity. An alternative is the s truc-
tural view, where we expose additional detail about the structure
of represented datatypes. In p articular, we encode the occurence
of variables and recursive uses of the datatypes explicitly in the

4 2009/5/11
generic representation. To this end, we add two more types to the
set of representation types:

data Var a = Var a
data Rec t = Rec t

This is another example, where we might want to extend the set of
representations (c.f., Section 3.2).

Furthermore, we enrich the R epresentable instance for lists
as follows:

instance Representable [a] where
type Repr [a] = U nit :+ : (Var a :* : Rec [a])

toRepr (x :xs) = Inr (Var x : * : Rec xs)
toRepr [] = Inl Unit

fromRepr (Inr (Var x :* : Rec xs)) = x : xs
fromRepr (Inl U nit) = []

The data types Var and Rec are used as markers for variable
subterms and recursive positions in the type term structure.

On the basis of this representation, we can implement — among
other functions— a generic map without u sing constructor classes.
More specifically, we parametrise over the element type of a con-
tainer separate from the compound container type:

class Mappable t a b where
type Rebind t a b
mapit : : (a -> b) -> t -> Rebind t a b

Here t is the manifest type of the container (of k ind *) b efore
mapping and a and b are the element type before and after the
mapping, respectively.

The instances for products and sums are structural, as usual, but
the instance for Var is interesting:

instance Mappable (Var a) a b where
type Rebind (Var a) a b = Var b
mapit f (Var a) = Var (f a)

Here we replace one type variable b y another, effectively tracking
the type mapping a -> b of the mapped function f.

To deal with recursive occurences ofthe container type, we need
to finally isolate the functor and apply it to the new type, while we
recurse into the substructure at the value level:

instance Functor f => Mappable (Rec (f a)) a b where
type Rebind (Rec (f a)) a b = Rec (f b)
mapit f (Rec t) = Rec (mapp f t)

Now, we can instantiate the standard Functor class as before in
Section 4.1.

This approach is related to the treatment of type constructors
for a Monad class in the proposal forp arametric type classes [Chen
et al. 1992] and to the use of traits classes in C++.

4.3 Datatype-generic datatypes

As mentioned earlier an important feature of our approach to
generic programming for its application in Data Parallel Haskell
is the ability to define type-indexed data types, or datatype-generic
datatypes [Hinze et al. 2004]. The highly-optimised sequential and
multicore-parallel arrays of Data Parallel Haskell contain far too
much detail too discuss here; however, the code is publicly avail-
able in the repository of package dph (c.f., Section 7).

Instead, we discuss an elegant data structure proposed by Hinze
[2000]. It is a generalisation of tries to finite maps, where the
map is specialised on the t ype of the keys indexing the map. We
can express this using associated data families [Chakravarty et al.
2005b]:

— D RAFT [May 11, 2 009] —
class R epresentable k => GMapKey k where

data GMap k : : * -> *

empty : : GMap k v
lookup : : k -> GMap k v -> Maybe v
insert : : k -> v -> GMap k v -> GMap k v

GMap is a datatype indexed b y the key type k. Different instances
of GMap may choose r epresentation t ypes for the finite maps in
dependence on the key type.

First, we need to instantiate the class GMapKey for the r epresen-
tation types. We start with the basic types and uses an existing finite
map library Map .Map for integer-keyed maps:

instance GMapKey Int where

data GMap Int v = GMapInt (Map .Map Int v)
empty = GMapInt Map . empty
lookup k (GMapInt m) = Map . lookup k m
insert k v (GMapInt m) = GMapInt (Map . insert k v m)

instance GMapKey U nit where
data GMap Unit v = GMapUnit (Maybe v)
empty = GMapUnit Nothing
lookup U nit (GMapUnit v) = v
insert U nit v (GMapUnit _) = GMapUnit $ Just v

Next, we coverproducts and sums, strictly following Hinze’s [2000]
proposal:

instance (GMapKey a , GMapKey b)
=> GMapKey (a : * : b) where
data GMap (a : * : b) v

= GMapPair (GMap a (GMap b v))
empty = GMapPair empty
lookup (a : * : b) (GMapPair gm)

= lookup a gm >>= lookup b
insert (a : * : b) v (GMapPair gm)

= GMapPair $ case lookup a gm of
Nothing -> insert a (insert b v empty) gm

Just gm2 -> insert a (insert b v gm2) gm

instance (GMapKey a , GMapKey b)
=> GMapKey (a :+ : b) where
data GMap (a :+ : b) v

= GMapEither (GMap a v) (GMap b v)
empty = GMapEither empty empty
lookup (Inl a) (GMapEither gm1 _gm2)

= lookup a gm1
lookup (Inr b) (GMapEither _gm1 gm2)

= lookup b gm2
insert (Inl a) v (GMapEither gm1 gm2)

= GMapEither (insert a v gm1) gm2
insert (Inr a) v (GMapEither gm1 gm2)

= GMapEither gm1 (insert a v gm2)

Given the generic definition of the datatype-generic type GMap and
the corresponding datatype-generic functions empty, lookup, and
insert, we can now simply use the generic default implementation
for list-indexed finite maps:

instance GMapKey a => GMapKey [a] where
newtype GMap [a] v = GMapList (GMap (Repr [a]) v)
empty = GMapList empty
lookup k (GMapList gm) = lookup (toRepr k) gm
insert k v (GMapList gm)

= GMapList $ insert (toRepr k) v gm

5 2009/5/11

4.4 Generating boilerplate

Although the purpose of a generic library is to eliminate boilerplate
code, our framework itself requires a fair amout of boilerplate from
the u ser who must provide the following components:

• instances of Representable for every user-defined data type
that needs to interoperate with the framework,

• default implementations of generic functions which correctly
convert to and from the representation types,

• instances which delegate to these default i mplementations for
each supported combination of data types and generic func-
tions.

Ultimately, our goal is to generate all of these automatically and
we are optimistic that this is possible in the vast majority of cases.
In the following, we briefly outline our approach and p oint out open
problems.

Representation types andconversions Representable instances
are trivially generated for arbitrary algebraic data types as they di-
rectly follow the structure of the type definition. Similar function-
ality is already implemented by several other libraries.

Default i mplementations In Section 2.1, we used dft_encode
as an example of a default implementation for a generic function.
Generally, such default implementations can b e provided for arbi-
trary functions by appropriately converting to and from the generic
representation. The question is: can default implementations such
as dft_encode b e generated automatically? Hinze and P eyton
Jones [2001] show that t his is indeed possible in m ost cases. They
introduce the concept of bidirectional mappingf unctions which in-
sert the necessary conversions exactly as required by our frame-
work. W e r efer the reader to this previous work for an in-depth
discussion of the technique. It should b e pointed out, however, that
some cases cannot be handled by this approach. Consider, for in-
stance, the following class:

class C a where
foo : : Functor f => f a -> f a

Here, the obvious default implementation relies on fmap to perform
the conversions:

dft_foo : : (Functor f , Representable a, C (Repr a))
=> f a -> f a

dft_foo = fmap fromRepr . foo . fmap toRepr

We cannot reasonably expect dft_foo to b e generated automati-
cally as this would require the compiler t o b e aware of the seman-
tics of fmap.

Boilerplate instances The final piece ofboilerplate we would like
to eliminate are instance declarations such as the Enc [a] instance
from Section 2.1. Assuming that default implementations are avail-
able for all methods, the only real challenge lies in computing the
context. In this particular example, it is r ather trivial (Enc a) so let
us consider a more complex one. Hinze and Peyton Jones [2001]
give the following definition of generalised r ose trees:

data GRose f a = GBranch a (f (GRose f a))

They argue that the obvious Encode instance:

instance (Enc a, Enc (f (GRose f a)))
=> Encode (GRose f a) where encode = dft_encode

is not feasible, mainly because it would cause the type checker to
diverge. Fortunately, while this was indeed true when that paper
was written, GHC now implements an extension to the type check-
ing algorithm which supports the construction of recursive dictio-
naries and admits instances such as the one above [Lämmel and

— D RAFT [May 11, 2009] —
Peyton Jones 2004]. T his allows instance generation to b e auto-
mated in the vast majority of cases as the required contexts can be
derived directly from the data type declaration. Some unusual data
types cannot be handled in this manner, however. An example are
generalised nested rose trees:

newtype Comp f g a = Comp (f (g a))
data NGRose f a = NGRose a (f (NGRose (Comp f f) a))

We might try to use the same strategy as above to define an Encode
instance for this type:

instance Enc (f (g a))
=> Enc (Comp f g a) where encode = dft_encode

instance (Enc a, Enc (f (NGRose (Comp f f) a)))
=> Enc (NGRose f a) where encode = dft_encode

Type checking diverges for these declarations, however. In fact,
even with all type system extensions implemented b y GHC, there
simply is no meaningful Enc (NGRose f a) instance at all! This
is a limitation of the Haskell type class system and is inherited
rather than introduced by our approach. In general, we expect
to be able to automatically generate an instance as long it can
be expressed in Haskell at all and default implementations are
available for all methods.

The strategies outlined in this section should handle most situa-
tions arising in r eal-world p rograms. In the short term, we intend to
implement them as a suite of Template Haskell functions [Sheard
and J ones 2002] which can b e invoked by users t o generate b oil-
erplate code required for our framework. Ultimately, we envision
a tighter integration with the Haskell syntax similar to the support
for derivable type classes provided by GHC. The exact details are
the subject of future research, however.

5. Performance

Ideally, a generic library should h ave little or no impact on perfor-
mance as compared t o hand-written code. Unfortunately, all too of-
ten the overhead is significant or even p rohibitive. Rodriguez et al.
[2008] identify slowdowns of between 2 and 80 for simple exam-
ples. This degree of inefficiency quickly becomes a show-stopper
when p erformance is a concern.

In contrast, we do not expect the framework described in this pa-
per t o suffer from such problems in typical applications. In fact, its
origins lie in the Data Parallel Haskell project where performance
is of utmost importance and so far, we have b een very satisfied with
its efficiency. The only overhead i ntroduced b y the framework are
conversions to and from the representation types. In the vast major-
ity of cases, they can be eliminated automatically b y a combination
of inlining and standard code transformations. In the following, we
describe this process in more detail b efore p resenting a few prelim-
inary b enchmarks.

5.1 Fast by design

Let u s r eturn to the example from Section 2.2 where we provide
a generic definition of equality on trees. If this i mplementation
is to be used in r eal-world p rograms, its p erformance must be
competitive with hand-written code. Fortunately, our approach does
not obscure the structure of the code which allows an optimiser
(in this case, GHC’s simplifier [Peyton J ones and Santos 1998])
to automatically eliminate most or even all of the overhead using
only standard transformations. In fact, in this particular example
GHC ultimately generates the same code as for the hand-coded
implementation of Tree equality.

To understand how the c ode is transformed, let us retrace the
individual optimisation steps, starting with our original definition:

t == u = toRepr t == toRepr u

6 2009/5/11
Since the r epresentation type for Tree is a sum, (==) on the right-
hand side of the definition refers to equality for (:+ :) . The latter
is inlined, giving (after desugaring):

t == u = case (toRepr t) of
Inl x -> case (toRepr u) of

Inl y -> x == y
Inr _ -> False

Inr x -> case (toRepr u) of
Inl _ -> False
Inr y -> x == y

Inlining toRepr t,we get:

t == u = case (case t of
Leaf x -> Inl x
Node p q -> Inr (p :* : q)) of

Inl x -> case (toRepr u) of
Inl y -> x == y
Inr _ -> False

Inr x -> case (toRepr u) of
Inl _ -> False
Inr y -> x == y

The nested case can b e simplified b y a standard transformation
(case-of-case), thus eliminating the overhead of converting a Tree
to its representation type and immediately deconstructing the latter.
Instead, the tree is inspected directly as it would be in h and-written
code.

t == u = case t of
Leaf x -> case (toRepr u) of

Inl y -> x == y
Inr _ -> False

Node p q -> case (toRepr u) of
Inl _ -> False
Inr y -> p :* : q == y

The two calls to toRepr u are resolved in the same way, b y
inlining toRepr and eliminating nested case.

t == u = case t of
Leaf x -> case u of

Leaf y -> x == y
Node _ _ -> False

Node p q -> case u of
Leaf _ -> False
Node r s

-> p :* : q == r :* : s

Finally, equality for (:* :) is inlined in the last b ranch and the
resulting expression simplified. The end r esult is a definition which
is exactly equivalent to what we would write b y hand (modulo
desugaring):

t == u = case t of
Leaf x -> case u of

Leaf y -> x == y
Node _ _ -> False

Node p q -> case u of
Leaf _ -> False
Node r s

-> p == r && q == s

To obtain t his result, we have r elied on a crucial property of
our code: the conversion functions toRepr and fromRepr and the
implementations of (==) for the r epresentation types (in particu-
lar, (: * :) and (:+ :)) are non-recursive. This is what allows the
case-of-case transformation to completely remove the intermedi-
ate generic representation after inlining. In general, the compiler

— D RAFT [May 11, 2 009] —

srgseemellqeWeccettIiIngntthAtscc1152I6413G73186hand2451-3070c3883oded19S473Y89–04B39246S269m48–96a775sh
Figure 1. Benchmarks (runtime in ms)

should b e able to eliminate all overhead introduced by our library
if the f ollowing two conditions are satisfied.

1. The conversion functions can be inlined and are non-recursive.

2. The implementation of the generic function for the representa-
tion types can be inlined and is non-recursive.

We can expect many r eal-world applications to have these prop-
erties. In p articular, the conversions only have t o transform the “top
layer” of a data structure and do not have to traverse it. Hence, as
in the case of Tree, they are not recursive even if the data type
they operate on is. Furthermore, most generic functions will have
very simple implementations for the representation types — typ-
ically, they will j ust descend into the components and collect the
results. T his leads us to believe that our approach will have almost
no overhead in most cases.

5.2 Benchmarks

Following Rodriguez et al. [2008], we have implemented three
small benchmarks to investigate the efficiency of our framework:

• geq compares two binary trees for equality,

• rmWeights removes all weights from a weighted tree as de-
scribed in Section 2.3,

• selectInt collects all integers from a weighted tree into a list.

The results are encouraging. Figure 1compares the running times
(in ms) of implementations using our library with hand-coded ver-
sions for sufficiently large data sizes. It also includes the results for
implementations based on SYB [Lämmel and Peyton Jones 2003,
2004, 2005], which is readily available and widely used but also
quite slow, and Smash [Kiselyov 2006], which has been identified
as the fastest generic library by Rodriguez et al. [2008].

As explained in the previous section, generic equality intro-
duces no overhead. The picture is different for rmWeights where
our i mplementation is about 30% slower than the hand-coded ver-
sion. This discrepancy is the r esult of the generic version doing
strictly more work than the hand-coded implementation: while the
latter simply removes all W eight nodes from the tree, the former
also attempts to r emove weights from the data elements stored in
leaves. This introduces one superfluous method call for each leaf in
the generic implementation. T his behaviour can b e simulated in the
hand-coded implementation by extending it to take a function as an
additional argument which is then applied to every integer stored
in the tree. If invoked with the identity function, this version has
exactly the same running time as the generic implementation.

Finally, for the selectInt the two implementations differ b y
a factor of 3. This large and quite surprising slowdown is due to
a very subtle difference in how lists are constructed in the two

versions. In this b enchmark, b oth the tree elements and the weights
are of type Int and are collected in a single list. The hand-coded
version is quite straight forward:

selectInt (Wleaf n) = [n]
selectInt (Wnode x y) = selectInt x ++ selectInt y
selectInt (Weight x n) = n : selectInt x

7 2009/5/11
Here, the last equation prepends the weight to the list yielded b y
the recursive call. In contrast to this, the generic version appends it
which is a much less efficient operation. This difference is the sole
reason for the large discrepancy in the p erformance.

However, neither of these two implementations will b e used if
efficiency is a concern. Rather, the algorithm would be optimised to
use an accumulating p arameter, thereby avoiding the need for list
concatenation. For this version, which we call selectIntAcc, no
perceptible overhead is introduced by using a generic implementa-
tion compared to the hand-coded one.

6. Related work and comparative evaluation

Increasing interest in generic programming has led to a steadily
growing number of tools, frameworks and libraries for Haskell.
These approaches can b e divided into two categories: those that in-
volve language extensions and/or p reprocessors and those that use
only supported language features (some language features may be
supported through compiler extensions). Among those in the first
category are Generic Haskell, Template Haskell, PolyP, Derivable
Type Classes and DrIFT [see Hinze et al. 2007]. Since such ap-
proaches could in theory support arbitrary sets of features we limit
the discussion in this section to the second category, to which our

approach belongs.
For these, Rodriguez et al. [2008] provide a comprehensive

overview as well as giving an extensive b enchmarking framework
for assessing a generic programming library in Haskell. W e use it
as an independent validation tool and thus avoid the potential temp-
tation of presenting examples or applications that work p articularly
well with our approach in favour of those that do not.

The benchmarking framework is b uilt around a suite of tests
designed to exercise various desirable qualities in the context of
generic programming. The tests are applied uniformly to generic
code implemented using the libraries being tested. We have not
modified the tests in any way, but merely supplied our implemen-
tation as a new library plugin.

Below is a brief description of the main generic p rogramming
libraries for Haskell that we are aware off (Section 6.1), followed
by an evaluation of our proposal together with a comparison with
other libraries where applicable (Section 6.2).

6.1 Related work

In the following overview, we use the same library (nick)names
as Rodriguez et al. [2008] to enable easy identification in the
comparative evaluation section 6.2.

LIGD (Lightweight Implementation of Generics and Dynam-
ics) [Cheney and Hinze 2002] encodes a product/sum representa-
tion of types on the value level. This allows generic functions to
easily operate on type representations, effectively p roviding a type-
case construct. A subsequent simplification of the r epresentation
type employs GADT’s [Hinze et al. 2007].

SYB (Scrap Your Boilerplate) [Lämmel and Peyton J ones 2003,
2004] supports generic functions through the use of combinators.
A type class encodes datatypes and provides primitive operations
to consume or build values of a particular type. Generic functions

operate on all instances of the type class and are constructed b y
combining the primitive operations. Type-safe casting is used to
support ad-hoc extensions.

SYB3 (SYB with class) [Lämmel and Peyton Jones 2005] r epre-
sents an evolution of SYB that encodes generic functions as classes.
The default behaviour can then be replaced by type-specific be-
haviour through class instances. These can be added in a modular
way and at any time, thus eliminating the need for run-time type
casts.

Spine (SYB with spine) [Hinze and Löh 2006] replaces the
combinator-based approach of previous SYB iterations with a r ep-

— D RAFT [May 11, 2 009] —
resentation type which is traversed by generic functions. The sup-
ported functionality is similar to that of SYB.

EMGM (Extensible and Modular Generics for the Masses) [Hinze
2006, Oliveira et al. 2006a] uses a type representation scheme aug-
mented b y a dispatch mechanism based on a type class which
defines a separate method for each r epresentation type. Generic
functions are defined as types that are instances of that class. Ex-
tensibility is achieved through subclassing. This library is further
extended in Oliveira et al. [2006b] with ad-hoc dispatchers for
proper support of modular extensions.

RepLib [Weirich 2006] uses GADTs to define explicit structure
representations, but combines those with type classes and, in partic-
ular, r ecursive dictionaries to free the programmer from explicitly
manipulating the representations.

Smash (Smash y our b oilerplate) [Kiselyov 2006] is b ased on
SYB and its various extensions. Generic functions in Smash are
ordinary functions which define a generic traversal strategy and a
list of special cases for p articular data types. The implementation

is based on a static typecase operation.
Uniplate (Uniform b oilerplate) [Mitchell and Runciman 2007]

supports generic functions based on traversal combinators. Traver-
sal functions are monomorphic and may b e single- or multi-type.
The latter are supported via multi-parameter type classes and allow
ad-hoc b ehaviour for p articular types.

PolyLib [Norell and Jansson 2004] is based on the earlier pre-
processor language extension PolyP [Jeuring and Jansson 1997].
PolyLib supports a r estricted type universe, single-parameter regu-
lar datatypes, and uses a pattern functor type class to encode type
representations. The library provides a suite of generic operations
over pattern functors.

Strafunski [Lämmel and Visser 2003] is aimed at language pro-
cessing and centres around generic traversals and external plugins.

Compos [Bringert and Ranta 2008] is based on traversal combi-
nators, in the spirit of Uniplate.

Finally, generic programming proposals exist t hat are b ased
on other functional p rogramming languages; Hinze et al. [2007]
mention Clean, Charity and ML.

6.2 Comparative evaluation

The benchmark framework proposed b y Rodriguez et al. [2008]
defines a set of evaluation criteria for generic libraries. We address
each of these below and provide comparisons to other approaches
where appropriate. Figure 2 provides a summary of the supported
features, in the format given in Rodriguez et al. [2008, p. 121].

Universe size: What types can b e u sed by the generic code?
Since our approach is b ased on type classes, generic code can use
all types as long as appropriate instances can be defined in Haskell.
This includes the v ast majority of types used in r eal-world p ro-
grams. Section 4.4 investigates this in more detail and also gives
an example of a deeply nested type (NGRose) that cannot be sup-

ported by our framework. Other libraries: Most other approaches
have trouble with NGRose and similar types, with only LIGD and
Spine p roviding full support for them

Subuniverses: Is it possible to restrict the use of generic func-
tions to a particular set ofdatatypes? Our generic functions can only
operate on datat ypes which have appropriate instance declarations.
Thus, their use is a lways restricted to a particular set of datatypes:
it is an opt-in model rather than opt-out. Other libraries: LIGD,
SYB, SYB3, Spine and Uniplate do not support this feature.

First-class generic f unctions: Are generic functions first-class
values? Our generic functions are polymorphic Haskell functions,
so they are first-class. Other libraries: Uniplate does not support
this criterion. EMGM and Smash require some special treatment.

Abstraction over type constructors: Can generic functions
abstract over constructors? This feature is supported as shown in

8 2009/5/11
Section 4. Other libraries: SYB, SYB3 and Uniplate do not support
this feature. PolyLib and Spine only support constructors of kind *
-> * .

Separate Compilation: Can a datatype, its type representation
and a generic function be defined in different modules and used
without modification or r ecompilation? This feature is naturally
supported through our use of Haskell classes, which are extensible
entities. Other libraries: The Spine library fails this criterion.

Ad-hoc definitions for datatypes: Can a generic function con-
tain specific behaviour for a datatype? This is easily achieved b y
implementing the specific behaviour in the appropriate instance
rather than use the generic implementation. Section 2.3 discusses
this in more detail. Other libraries: LIGD and Spine require exten-
sions to the representation type to support this feature.

Ad-hoc definitions for constructors: Can a generic function
contain specific behaviour for a p articular constructor? Yes; an ex-
ample is provided in Section 2.3 where rmWeight only imple-
ments specialised functionality for Weight while handling all other
constructors generically. Other libraries: The LIGD and Spine li-
braries require extensions to the r epresentation type to support this.
PolyLib supports this feature only for regular datatypes.

Extensibility: Can the p rogrammer non-generically extend
functionality in a different module? Yes, we extend functionality
by defining new instances which can be done in different modules.
Other libraries: This feature is not well supported b y LIGD, Spine,
SYB and Uniplate. PolyLib supports this feature only for regular
datatypes.

Multiple arguments: Can functions b e defined that have muti-
ple generic arguments? This feature i s supported, generic equality
is such an example. Other libraries: Uniplate does not support this
feature, while SYB and Smash require undue programming effort.

Constructor names: Can the r epresentation provide construc-
tor names? Such a feature i s needed to implement show-like func-
tionality. This can be supported b y extending the representation
type to store additional information about the structure of types.
We give here a simple extension to include constructor names, ex-
emplified b y the Representable instance for BinTree:

data Ctr a = Ctr a String

instance Representable (BinTree a) where
type Repr (BinTree a) = (Ctr a) :+ :

(Ctr (BinTree a :* : BinTree a))
toRepr (Leaf a) = Inl (Ctr a "Leaf ")
toRepr (Bin a b) = Inr (Ctr (a : * : b) "Bin")
fromRepr (Inl (Ctr a _)) = Leaf a

fromRepr (Inr (Ctr (a :* : b) _)) = Bin a b

We wrap constructors in Ctr and attach the constructor name in-
formation. This is not enough for implementig the full show func-
tionality correctly, but it serves as proof of concept and fulfills the
requirements of the b enchmark test. Other libraries: Uniplate does
not give access to constructor names.

Consumers, transformers and producers: Can functions be
written that consume, transform and produce generic types? We
support all three operation classes. We h ave given examples of con-
sumers and transformers; the gfulltree function in the bench-
mark produces test data generically based on the representation
type. Other libraries: SYB, SYB3, Spine and Smash require dif-
ferent type r epresentations for consumers and p roducers. Uniplate
does not support producers.

Performance: Our approach offers p erformance similar to
hand-written code, see Section 5 for discussion and performance
benchmarks. Rodriguez et al. [2008] do not give specific p efor-
mance results but note that EMGM, Smash and Uniplate were
fastest in t heir tests.

— D RAFT [May 11, 2 009] —

G# Partially supported criterion
##G Unsupported criterion

#

Figure 2. Evaluation of our generic p rogramming approach

Portability: What features are used that are not in the Haskell98
standard? We use associated type synonyms, a new feature that
is quickly gaining popularity. W e only r ely on other type system
extensions such as flexible contexts in certain more complex cases
(cf. Section 4.4). Other libraries: PolyLib, SYB, SYB3, Spine,
RepLib and Smash also score poorly on this criterion.

Overhead of library use: How much additional effort is re-
quired from the programmer to use the generic approach? Our
scheme is simple and reasonably concise. We give a ? for the num-
ber of structure representations in figure 2 because different rep-
resentations are used according to the functionality required, see
Section 3.1.

Practical aspects: I s there a current implementation and doc-
umentation? Also we h ave not yet released our framework, we in-
tend to do so shortly. W e hope that this paper provides a sufficient
overview of our approach.

Ease of learning and use: This criterion is self-explanatory.
We contend that our generic programming approach is very easy to
learn and use, significantly more so than most, if not all, generics
libraries we have seen. We use associated type synonyms in our
representation t ype but their use is straight forward.

7. Conclusion

We presented a novel approach to datatype-generic programming in
Haskell b ased on type classes and type families. Generic functions
are defined as class methods, which makes them familiar first-class
entities in Haskell, for which it is easy to define ad-hoc cases that

override the default generic functionality. As b oth type classes and
type families are open language constructs that permit the addition
of further instances in subsequent separately-compiled modules,

9 2009/5/11
new generic views can b e added or existing views and generic
functions can b e extended without altering or recompiling existing
code.

We demonstrated that our approach to generic p rogramming
leads to very efficient code with minimal overhead over h andwrit-
ten datatype-specific code with b etter performance than competing
approaches — at least in our admittedly limited b enchmarks. But
our approach is not only efficient, it is also highly expressive as we
showed b y using a r ecent comparative benchmark framework for
generic programming in Haskell.

Last but not least, we went b eyond the conceptual b oundaries
of previous library-based approaches to generic programming in
Haskell by supporting generic functions operating on datatype-
generic datatypes (or type-indexed datatypes), such as generic gen-
eralised tries and self-optimising high-performance arrays. In addi-
tion, we introduced a new generic view that makes the entire struc-
ture of a r epresented datatype explicit.

Instant Generics are currently being used in the implementa-
tion of the library backend of Data Parallel Haskell (and widely
distributed since GHC 6.10.1). They are u sed to implement a se-
quential and a multicore-parallel array library as p art of package
dph:

http : //darcs .haskell .org/packages/dph/

The resulting code is, within the limits of GHC’s code generator,
competitivewithhandwrittenCcodeforsimplenumericalkernels1.

Moreover, we make the examples presented i n this paper, and

several more, available at

http : //www . cse .unsw . edu .au/~chak/proj ect/generics/

To simplify the use of Instant Generics by other Haskell u sers, we
are planning to develop the example code into a comprehensive
library for generic programming in Haskell (independent of the
code base in package dph).

Acknowledgements. We t hank Gabriele Keller for lively discus-
sions and feedback on a draft.

References
Björn Bringert and Aarne Ranta. A pattern for almost compositional

functions. Journal of Functional P rogramming, 18:567–598, 2008. doi:
10.1017/S0956796808006898.

Manuel M . T . Chakravarty, Gabriele Keller, and Simon Peyton J ones. As-
sociated type synonyms. In I CFP ’05: P roceedings of the Tenth ACM
SIGPLAN I nternational Conference on F unctional P rogramming, pages
241–253. ACM Press, 2005a.

Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton J ones, and Si-
mon Marlow. Associated types with class. In POPL ’05: P roceedings of
the 32ndA CM SIGPLAN-SIGACT Sysposium on P rinciples of Program-
ming L anguages, p ages 1–13. ACM Press, 2005b.

Manuel M. T . Chakravarty, Roman Leshchinskiy, Simon Peyton J ones,
Gabriele Keller, and Simon Marlow. Data Parallel Haskell: a status
report. I n D AMP 2 007: Workshop on D eclarative Aspects of Multicore
Programming. ACM Press, 2007.

Kung Chen, Paul Hudak, and Martin Odersky. Parametric type classes. In
ACM Conference on L isp and Functional P rogramming. ACM Press,
1992.

James Cheney and Ralf Hinze. A lightweight implementation of generics
and dynamics. In Haskell ’02: P roceedings oft he 2002 ACM SIGPLAN
Workshop on Haskell, pages 90–104. ACM Press, 2002.

Ralf Hinze. A generic p rogramming extension for haskell. In Erik Meijer,
editor, P roceedings of the Third Haskell Workshop, number UU-CS-
1999-28 in T echnical Report. Universiteit Utrecht, 1999.

1http: //www. cse .unsw. edu. au/~chak/project/dph/

— D RAFT [May 11, 2009] —
Ralf H inze. Generics for the masses. Journal of Functional Programming,

16(4&5):451–483, 2006.

Ralf Hinze. Polytypic values possess p olykinded types. Science of Com-
puter P rogramming, 43(2–3): 129–159, 2002.

RalfH inze. Generalizing generalized tries. Journal of Functional Program-
ming, 10(4):327–351, 2000.

Ralf Hinze and A ndres L öh. “scrap y our b oilerplate” r evolutions. In
Mathematics ofProgram Construction, pages 180–208. Springer-Verlag,
2006.

Ralf H inze and Simon Peyton Jones. Derivable type classes. In Graham
Hutton, editor, P roceedings of the 2000 ACM SIGPLAN Haskell Work-
shop, volume 41.1of Electronic N otes in Theoretical Computer Science.
Elsevier Science, 2001 .

Ralf H inze, J ohan Jeuring, and Andres L öh. Type-indexed data t ypes.
Science of Computer Programming, 51:117–15 1, 2004.

Ralf H inze, J ohan Jeuring, and Andres Löh. Comparing approaches to
generic programming in haskell. In Roland Backhouse, Jeremy Gib-
bons, Ralf Hinze, and J ohan Jeuring, editors, Lecture N otes of the S pring
School on Datatype-Generic P rogramming 2006, number 47 19 in Lec-
ture Notes in Computer Science, pages 72–149. Springer-Verlag, 2007.

Stefan Holdermans, J ohan Jeuring, Andres Löh, and Alexey Rodriguez.
Generic views on data types. In M athematics of Program Construction,
number 4014 in Lecture N otes i n Computer Science, pages 209–234.
Springer-Verlag, 2006.

Johan Jeuring and Patrik Jansson. PolyP — a p olytypic p rogramming
language extension. In Conference Record of P OPL ’97: The 24th
ACM SIGPLAN-SIGACT S ymposium on P rinciples of P rogramming
Languages, p ages 470–482. ACM Press, 1997.

Oleg Kiselyov. Smash your b oilerplate without class and typeable.
http ://article .gmane .org/gmane . comp . lang .haskell .
general/14086, 2006.

Ralf Lämmel and Simon Peyton J ones. Scrap y our b oilerplate: a practical
approach to generic programming. InProceedings ofthe ACMSIGPLAN
Workshop on Types in Language D esign and I mplementation (TLDI
2003), pages 26–37, 2003.

Ralf Lämmel and Simon P eyton J ones. Scrap your b oilerplate with class:
extensible generic functions. InICFP ’05: Proceedings ofthe tenth ACM
SIGPLAN international conference o n F unctional p rogramming, p ages
204–215. ACM Press, 2005.

Ralf L ämmel and Simon Peyton J ones. Scrap more b oilerplate: reflection,
zips, and generalised casts. In I CFP ’04: P roceedings of the ninth ACM
SIGPLAN international conference o n F unctional p rogramming, p ages
244–255. ACM Press, 2004.

RalfL ämmel and Joost Visser. A Strafunski application letter. In P ADL ’03:
Proceedings of the 5th I nternational Symposium o n P ractical Aspects of
Declarative Languages, pages 357–375, London, UK, 2003. Springer-
Verlag. ISBN 3-540-00389-4.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list p rocessing.
In Haskell ’07: P roceedings of the A CMS IGPLAN Workshop on Haskell
workshop, p ages 4 9–60. ACM Press, 2007.

Ulf Norell and Patrik Jansson. Polytypic programming in Haskell. In
IFL’03: I mplementation of Functional L anguages, volume 3 145/2005,
pages 168–184. Springer, 2004. ISBN 978-3-540-23727-3.

Bruno C. D . S. Oliveira, Ralf Hinze, and Andres Löh. E xtensible and mod-
ular generics for the masses. In Henrik Nilsson, editor, Trends in Func-
tional P rogramming, volume 7 of Trends in Functional Programming,
pages 199–216. Intellect, 2006a.

Bruno C. D. S. Oliveira, Ralf Hinze, and A ndres L öh. Generics as a library.

In Proceedings of the Seventh S ymposium on Trends in Functional Pro-
gramming, 2006b.

Simon Peyton J ones and André L. M. Santos. A transformation-based
optimiser for Haskell. Sci. Comput. Program., 32(1-3):3–47, 1998. ISSN

0167-6423.

Simon Peyton J ones, Roman Leshchinskiy, Gabriele Keller, and Manuel
M. T. Chakravarty. Harnessing the multicores: Nested data parallelism

in Haskell. In Ramesh Hariharan, Madhavan Mukund, and V Vinay, edi-

10 2009/5/11

tors, I ARCS A nnual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2008), D agstuhl, Germany,
2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.
URL h ttp ://drops .dagstuhl .de/opus/volltexte/2008/1769.

Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kise-
lyov, and B runo C. d. S. Oliveira. Comparing libraries for generic pro-
gramming in Haskell. In Haskell ’08: Proceedings of the firstA CM SIG-
PLAN Symposium on Haskell, pages 111–122. ACM Press, 2008.

Tom Schrijvers, Simon Peyton-Jones, Manuel M. T. Chakravarty, and Mar-
tin Sulzmann. Type checking with open type functions. In Proceedings
of ICFP 2008 : The 13th ACM SIGPLAN I nternational Conference on
Functional Programming, pages 51–62. ACM Press, 2008.

Tim Sheard and Simon Peyton J ones. Template meta-programming for
Haskell. In Haskell ’02: Proceedings of the 2002 ACM SIGPLAN
Workshop on Haskell, pages 60–75. ACM Press, 2002.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In
Conference R ecord of the 16th A nnual ACM Symposium on Principles
of Programming Languages, pages 60–76. ACM Press, 1989.

Stephanie Weirich. RepLib: a library for derivable type classes. In Haskell
’06: P roceedings of the 2006 ACM SIGPLAN Workshop on Haskell,
pages 1–12. ACM Press, 2006.

— D RAFT [May 11, 2 009] — 11 2009/5/11

