
JFP: page 1 of 39. c© Cambridge University Press 2010

doi:10.1017/S0956796810000183

1

A lightweight approach to datatype-generic
rewriting

THOMAS VAN NOORT

Institute for Computing and Information Sciences, Radboud University Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

(e-mail: thomas@cs.ru.nl)

ALEXEY RODRIGUEZ YAKUSHEV

and STEFAN HOLDERMANS

Vector Fabrics, Paradijslaan 28, 5611 KN Eindhoven, The Netherlands

(e-mail: {alexey,stefan}@vectorfabrics.com)

JOHAN JEURING

Department of Information and Computing Sciences, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

and

School of Computer Science, Open University of the Netherlands,

P.O. Box 2960, 6401 DL Heerlen, The Netherlands

(e-mail: johanj@cs.uu.nl)

BASTIAAN HEEREN

School of Computer Science, Open University of the Netherlands,

P.O. Box 2960, 6401 DL Heerlen, The Netherlands

(e-mail: bastiaan.heeren@ou.nl)

JOSÉ PEDRO MAGALHÃES

Department of Information and Computing Sciences, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

(e-mail: jpm@cs.uu.nl)

Abstract

Term-rewriting systems can be expressed as generic programs parameterised over the shape

of the terms being rewritten. Previous implementations of generic rewriting libraries require

users to either adapt the datatypes that are used to describe these terms or to specify rewrite

rules as functions. These are fundamental limitations: the former implies a lot of work for

the user, while the latter makes it hard if not impossible to document, test, and analyze

rewrite rules. In this article, we demonstrate how to overcome these limitations by making

essential use of type-indexed datatypes. Our approach is lightweight in that it is entirely

expressible in Haskell with GADTs and type families and can be readily packaged for use

with contemporary Haskell distributions.

1 Introduction

Consider a Haskell datatype Prop for representing formulae of propositional logic,

data Prop = Var String | T | F | Not Prop | Prop :∧:Prop | Prop :∨:Prop,



2 T. van Noort et al.

and suppose we wish to simplify such formulae using the principle of contradiction:

p ∧ ¬p→ ⊥.

Ideally, our formulation of this rewrite rule as an executable program is neither

much longer nor much more complicated than this rule itself.

One approach is to encode the rule as a function and then to apply it to individual

formulae using some bottom-up traversal combinator transform:

simplify :: Prop→ Prop

simplify = transform contradiction

where

contradiction (p :∧:Not q) | p ≡ q = F

contradiction p = p.

Although this implementation is relatively straightforward, encoding rules by func-

tions has a number of drawbacks. To start with, rules cannot be concise one-line

definitions as we have to provide a catch-all case in order to avoid pattern-matching

failures at run time. Second, pattern guards (such as p ≡ q in our example) are

needed to deal with multiple occurrences of variables, cluttering the definition.

Lastly, rules cannot be analyzed easily since it is hard to inspect functions.

A way to overcome these drawbacks is to provide specialised rewriting function-

ality. That is, we can define a datatype for representing rewrite rules on formulae

and implement the machinery required for rewriting (e.g., functions for matching

formulae against rules and substituting formulae for metavariables) on top of this

datatype. While this does overcome the drawbacks mentioned above, this approach

comes with a serious disadvantage: it requires a large amount of datatype-specific

code. If our next task is to rewrite, say, arithmetic expressions, we have to define

a new datatype for representing rewrite rules and a new implementation of all the

rewriting machinery.

However, both the datatype for representing rules and the associated rewriting

machinery can be determined from the type that is used to describe the terms being

rewritten. Hence, there is an excellent opportunity for datatype-generic programming

here. In this article, we seize this opportunity and present a rewriting library that is

generic in the type of terms being rewritten. Using our library, the example above

can be written as

simplify :: Prop→ Prop

simplify = transform (rewriteWith contradiction)

where

contradiction p = p :∧:Not p �→ F.

The library provides rewriteWith and �→, which are generic and, in this case,

instantiated with the type of propositional formulae Prop. A noticeable aspect

of our approach is that metavariables in rewrite rules, such as p in our example, are

introduced through ordinary function abstraction in Haskell, allowing the user to

define her rules in terms of the term type Prop rather than some dedicated type for

representing rules over Prop. The body of the function contradiction is now a fairly



A lightweight approach to datatype-generic rewriting 3

direct transcript of the rule p ∧ ¬p → ⊥. As we will see, rewrite rules constructed

with our library neither suffer from the drawbacks of the approach that uses pattern

matching nor require large amounts of datatype-specific boilerplate code.

More specifically, the contributions of this article are the following:

• We present a library for term rewriting that is implemented using a simple de-

sign pattern (Section 4) for datatype-generic programming in Haskell extended

with type families (Chakravarty et al. 2005a, 2005b; Schrijvers et al. 2008). As

such, our library is “lightweight” and can be used readily with recent versions

of the Glasgow Haskell Compiler (GHC).1

• To represent rewrite rules our library needs to extend the type that is used

to describe the terms being rewritten internally with an extra constructor for

metavariables (Section 5.2). This extension is constructed generically using a

type-indexed datatype (Hinze et al. 2004). Distinct metavariables in a single

rewrite rule can, in our approach, range over rewritable terms of different type

(Section 5.1).

• Internally, the library implements rewriting in terms of generic functions for

pattern matching (Section 5.4) and substitution (Section 5.3) over generically

extended datatypes. These datatypes are, however, completely hidden from the

user, who writes her rewrite rules using the constructors of the types of terms

that are to be rewritten (Section 6).

• We compare the efficiency of our library to that of other approaches to term

rewriting in Haskell (Section 10).

This article is based on a paper presented at the 2008 Workshop on Generic

Programming (Van Noort et al. 2008). The present article includes several improve-

ments over this previous work. Most prominently, while the library described in the

WGP paper could only be used to generically rewrite values of regular datatypes,

we now support generic rewriting for a strictly larger class of datatypes, including

types from families of mutually recursive datatypes. Furthermore, we now detect

ill-formed rewrite rules (Section 7) and facilitate guarded rewrite rules (Section 8)

as well as heterogeneously typed metavariables (Section 5.1).

1.1 Road map

The remainder of this article is structured as follows. In Section 2, we discuss the

two fundamental approaches to representing rewrite rules in Haskell. In Section 3,

we present our proposal for a datatype-generic library for term rewriting from a

user’s perspective.

Sections 4 to 6 deal with the implementation of our library’s main functionality.

Section 4 showcases, through an example generic function, how datatype-generic

functions are implemented in our library. Section 5 discusses how generic rewriting

functionality is composed from more elementary generic functions for pattern

matching and substitution and shows how these functions are implemented. In

1 The library is dubbed guarded-rewriting and available on Hackage.



4 T. van Noort et al.

Section 6, we demonstrate how the not so programmer-friendly representation of

rewrite rules, used internally by the generic functions from Section 5, is hidden from

the users of our library.

Sections 7 and 8 discuss additions to the core functionality. In Section 7, it is

shown how nonsensical rewrite rules can be detected statically, i.e., without applying

them. In Section 8, the library is extended with support for rewrite rules that have

preconditions associated with them.

Section 9 discusses, as a case study, the use of our library in a realistic application.

Section 10 presents the results of two performance benchmarks. Section 11 discusses

related work; Section 12 concludes.

2 Representing rewrite rules

Before we present our approach to datatype-generic rewriting in Section 3, let us

first have a more in-depth look at the two fundamental approaches to representing

rewrite rules in Haskell that were already briefly discussed in the introduction: the

extensional approach (Section 2.1) and the intensional approach (Section 2.2).

2.1 Extensional representations

The extensional approach to representing rewrite rules encodes rules as Haskell

functions, using pattern matching to check whether the argument term matches the

left-hand side of the rule. If this is indeed the case, the right-hand side of the rule is

returned; otherwise, the argument term is returned unchanged. For example, the rule

¬(p ∧ q)→ ¬p ∨ ¬q
that is derived from one of De Morgan’s laws is extensionally encoded as

deMorgan :: Prop→ Prop

deMorgan (Not (p :∧: q)) = Not p :∨:Not q

deMorgan p = p.

Note that the last line ensures that prevents arguments that do not match the pattern

¬(p ∧ q) from causing run-time errors.

As Haskell lacks support for nonlinear patterns, rewrite rules containing metavari-

ables with multiple left-hand-side occurrences cannot be written as functions directly.

Instead, such variables are encoded by means of so-called pattern guards. For

instance, a rule for the principle of the excluded middle

p ∨ ¬p→ 	
in which the metavariable p occurs twice at the left-hand side is implemented by

excludedMiddle :: Prop→ Prop

excludedMiddle (p :∨:Not q) | p ≡ q = T

excludedMiddle p = p

where the second occurrence of p is replaced by an occurrence of a fresh variable

q and equality of p, and q is enforced through the guard p ≡ q . Note that this

encoding requires equality to be defined for values of type Prop.



A lightweight approach to datatype-generic rewriting 5

In some applications of rewriting, it is useful to know whether or not a rewrite rule

was applied successfully. This information can be made available, at the expense of

some additional notational overhead, by wrapping the rewriting result in a maybe

value.

excludedMiddleM :: Prop→ Maybe Prop

excludedMiddleM (p :∨:Not q) | p ≡ q = Just T

excludedMiddleM p = Nothing.

Encoding rewrite rules in terms of Haskell functions allows for function-

parameterised traversal combinators to be used directly in rewriting applications.

As an example, the Uniplate library (Mitchell & Runciman 2007) provides, among

others, the combinator transform

transform :: Uniplate α⇒ (α→ α)→ α→ α

which applies its argument function in a bottom-up fashion to all recursive positions

in a tree. Given a suitable Uniplate-instance for the type Prop, it is straightforward

to use this combinator to remove certain classes of tautological clauses from

propositional formulae:

removeTautologies :: Prop→ Prop

removeTautologies = transform excludedMiddle.

However, even though Haskell’s pattern-matching facilities enable a more or less

direct encoding of rewrite rules as functions and the interaction with traversal

libraries comes almost for free, the extensional approach to representing rewrite

rules raises some issues.

• Extensionally, represented rules cannot be easily observed as in Haskell it

is not possible to inspect functions. Still, there are several reasons why it is

desirable to have observable rewrite rules:

Documentation: If rules are observable, they can be pretty-printed in order to

generate documentation for a rewrite system.

Static checking: Observability of rules allows for checking whether a given set

of rewrite rules constitutes a confluent and terminating rewrite system.

Automated testing: In most applications, a rule is expected to preserve the

semantics of the term being rewritten. One way to test this property is

to randomly generate terms, to rewrite these, and then to check whether

the rewritten terms indeed have the same semantics as the original terms.

However, a rewrite rule with a nontrivial left-hand side will most likely not

match successfully against a randomly generated term. Hence, such rules

are in danger of not getting tested sufficiently. If left-hand sides of rules

are inspectable, term generation can be directed to produce matching terms

more often, effectively improving test coverage.

Associativity- and commutativity-aware rewriting: Many domains, such as that

of logical propositions, have associative and commutative operators. If the



6 T. van Noort et al.

rewriting infrastructure is aware of this fact, rewrite rules can be specified

more concisely and repetition can be avoided. With an intensional approach,

this can be implemented by making the matching algorithm return all

possible substitutions. In an extensional approach, the behavior of pattern

matching is fixed and cannot be made aware of these operators.

Inversion: If the left-hand side and right-hand side of a rewrite rule can be

accessed, these can be exchanged, resulting in the inverse of the rule.

Tracing: When a sequence of rewrite steps leads to an unexpected result, one

may want to learn which rules were applied in which order.

• It is tedious to have to specify a catch-all case when rules are encoded as

functions. All rule definitions require this extra case.

• The lack of nonlinear pattern matching in Haskell becomes a nuisance if

left-hand sides of rules contain many occurrences of the same variables.

• As Haskell lacks first-class pattern matching, the user cannot easily abstract

over commonly occurring structures in the left-hand sides of rewrite rules.

These issues can be overcome by switching to an intensional representation instead.

2.2 Intensional representations

In the intensional approach, rewrite rules are not encoded as functions, but as values

of a datatype, so that the left- and right-hand sides of rules become observable:

data Rule α = Rule { lhs :: α, rhs :: α}.

Values of type Rule α are used to encode rewrite rules with left- and right-hand

sides of type α. For example, rewrite rules for formulae of propositional logic can

be expressed as values of type Rule EProp, where EProp is an extended version of

the datatype Prop of propositional formulae with an extra constructor Metavar to

represent metavariable occurrences in rewrite rules:

data EProp = EVar String | ET | EF | ENot EProp | EProp :�:EProp

| EProp :�:EProp | Metavar String.

With values of type Rule EProp in place, we need to define rewrite functions that

interpret these values as functions over propositions represented by Prop:

rewritePropWith :: Rule EProp→ Prop→ Prop.

Here, we do not give an implementation of rewritePropWith , but note that its type

(and thus its implementation) is specific to propositional formulae. If we want to

implement rewrite functionality that works on different datatypes, then we have to

define new rewrite functions for these types.

With the proposition-specific rewrite function rewritePropWith , rules over propo-

sitional formulae can be written and used as in

removeTautologies :: Prop→ Prop

removeTautologies = transform (rewritePropWith excludedMiddle)

where

excludedMiddle = Rule { lhs = Metavar "p" :�:ENot (Metavar "p"), rhs = ET}.



A lightweight approach to datatype-generic rewriting 7

An apparent inconvenience of this style of defining rules is that we cannot reuse the

type Prop of terms being rewritten and its constructors Not and :∨: . Instead, to

provision for metavariables, we have to use the extended representation EProp and

its constructors ENot and :�: .

3 Datatype-generic rewriting

In this section, we present the interface to our library for datatype-generic rewriting.

In Sections 4 to 6, we zoom in at the concrete implementation of this interface.

The rewrite system that we present in this paper uses intensionally represented

rewrite rules. As observed in the previous section, straightforward implementations

of such rewrite systems suffer from two drawbacks: (1) they require a significant

amount of datatype-specific code and (2) rewrite rules need to be expressed in terms

of a new datatype obtained by extending the original datatype with a constructor

for metavariables. Our system, however, is carefully designed to circumvent these

drawbacks: (1) we provide a single implementation of rewriting that is generic in the

type of terms being rewritten and (2) we completely hide the internal representation

of rewrite rules from the user of our library.

More specifically, in our approach rewrite rules are specified in terms of templates:

closedWorldTemplate :: Template Prop

contradictionTemplate :: Prop→ Template Prop

deMorganTemplate :: Prop→ Prop→ Template Prop

closedWorldTemplate = Not T �→ F

contradictionTemplate p = p :∧:Not p �→ F

deMorganTemplate p q = Not (p :∧: q) �→ Not p :∨:Not q .

Templates are constructed by means of an operator �→,

( �→) :: α→ α→ Template α,

which takes a left-hand side and a right-hand side of a type α and produces a

template for rewrite rules on α. Note that both sides of a template are just values

of the type of terms being rewritten. In particular, templates are expressed without

need for an additional datatype providing for metavariables. Instead, metavariables

are encoded as ordinary Haskell function arguments. The template for the De

Morgan rule from the example above, for instance, uses two metavariables, which

are introduced through function arguments p and q .

To prepare templates for use in our rewrite system, the user needs to synthesise

rules from these. To this end, the library provides an overloaded function synthesise

(defined in Section 6.3) that takes templates or functions producing templates for

rewrite rules on some type α to values of type Rule α:

closedWorld , contradiction , deMorgan :: Rule Prop

closedWorld = synthesise closedWorldTemplate

contradiction = synthesise contradictionTemplate

deMorgan = synthesise deMorganTemplate.



8 T. van Noort et al.

Here, values of type Rule α (with an implementation that differs slightly from the

one given above; see Section 5) form the internal representation of rewrite rules on

α in our library.

The generic rewrite functionality is now exposed through a pair of rewrite

functions rewriteWith and rewriteWithM . The first

rewriteWith :: Rewritable α⇒ Rule α→ α→ α,

takes as arguments a rule over some rewritable type α (see Section subsec:making-

terms-rewritable) and a value of type α and attempts to apply the rule to the value.

For example, we have that

rewriteWith closedWorld (Not T) yields F.

If the second argument to rewriteWith does not match the left-hand side of its first

argument, the value to be rewritten is returned unmodified; for instance,

rewriteWith contradiction (Var "x" :∧:Not (Var "y"))

yields Var "x" :∧:Not (Var "y")

as the argument term does not match a contradictory formula. To make a failed

attempt at rewriting explicit in the value returned, the second generic rewrite

function,

rewriteWithM :: (Rewritable α,Monad μ)⇒ Rule α→ α→ μ α,

wraps its result in a monad μ. For example, instantiating μ with the Maybe-monad,

rewriteWithM deMorgan (T :∧:F) yields Nothing,

while

rewriteWithM deMorgan (Not (T :∧:F)) yields Just (Not T :∨:Not F).

As with other lightweight approaches to generic rewriting, such as Scrap Your

Boilerplate (Lämmel & Peyton Jones 2003) and Uniplate (Mitchell & Runciman

2007), a small effort is required from the users of our library in order to prepare

their datatypes for generic rewriting. In particular, they must describe the structure

of their datatypes (Section 3.1) and make these datatypes instances of the type class

Rewritable (Section 3.2).

3.1 Representing the structure of datatypes

In our library, the structure of datatypes is described through instances of a type

class Representable:

class Representable α where

type Rep α :: �

from :: α→ Rep α

to :: Rep α→ α.

Here, Rep is a so-called associated type synonym (Chakravarty et al. 2005a). A type

α is representable if it is isomorphic to its generic representation type Rep α; the



A lightweight approach to datatype-generic rewriting 9

isomorphism is witnessed by a pair of functions from and to that convert between

the type and its generic representation.

Base types, such as Int, Float, and Char form their own generic representations:

instance Representable Int where type Rep Int = Int ; from = id ; to = id

instance Representable Float where type Rep Float = Float ; from = id ; to = id

instance Representable Char where type Rep Char = Char ; from = id ; to = id .

Further generic representation types are composed from a fixed set of structure

constructors. These include the nullary type constructor Nil and the binary type

constructors :+: and ::: , defined as:

infixr 6 :+:

infixr 5 :::

data Nil = Nil

data α :+: β = Inl α | Inr β

data α ::: β = α ::: β.

A given datatype’s representation type follows immediately from its structure.

Choice among data constructors is encoded in terms of right-nested sums constructed

by :+: . A data constructor itself is represented as a type-level list of its argument

types, constructed by ::: and Nil. Note that, instead of the more common sums-

of-products representation of datatypes (Jansson & Jeuring 1997; Backhouse et al.

1999; Hinze 2000), we use a list-like representation (Holdermans et al. 2006) as

we want to make sure that constructor arguments are always encoded as the first

operand of the constructor ::: . For example, Haskell’s Maybe-type, given by

data Maybe α = Nothing | Just α

is represented by the type Nil :+: (α :::Nil) and we can write

instance Representable (Maybe α) where

type Rep (Maybe α) = Nil :+: (α :::Nil)

from Nothing = Inl Nil

from (Just x ) = Inr (x :::Nil)

to (Inl Nil) = Nothing

to (Inr (x :::Nil)) = Just x .

The type-class methods from and to form a so-called embedding-projection pair

and are supposed to witness the isomorphism between a type and its generic

representation “modulo undefinedness”, i.e., it should hold that to ◦ from = id and

from ◦ to � id (Hinze 2000).

The functional programmer’s all-time favorite datatype, i.e., the type of cons-lists,

data [α] = [ ] | α : [α]

is in our approach represented by Nil :+: (α ::: [α] :::Nil), yielding the declaration



10 T. van Noort et al.

instance Representable [α] where

type Rep [α] = Nil :+: (α ::: [α] :::Nil)

from [ ] = Inl Nil

from (x : xs) = Inr (x ::: xs :::Nil)

to (Inl Nil) = [ ]

to (Inr (x ::: xs :::Nil)) = x : xs .

Note that the generic representation types of recursive datatypes are themselves

nonrecursive: from only converts the top-level constructor of a value into its generic

representation and leaves all subtrees untouched.

For the type Prop of propositional formulae,

data Prop = Var String | T | F | Not Prop | Prop :∧:Prop | Prop :∨:Prop

we have

type Var = String :::Nil

type T = Nil

type F = Nil

type Not = Prop :::Nil

type And = Prop :::Prop :::Nil

type Or = Prop :::Prop :::Nil

as abbreviations for the generic representations of the alternatives and then

instance Representable Prop where

type Rep Prop = Var :+:T :+: F :+:Not :+:And :+:Or

from (Var x ) = Inl (x :::Nil)

from T = Inr (Inl Nil)

from F = Inr (Inr (Inl Nil))

from (Not p) = Inr (Inr (Inr (Inl (p :::Nil))))

from (p :∧: q) = Inr (Inr (Inr (Inr (Inl (p ::: q :::Nil)))))

from (p :∨: q) = Inr (Inr (Inr (Inr (Inr (p ::: q :::Nil)))))

to (Inl (x :::Nil)) = Var x

to (Inr (Inl Nil)) = T

to (Inr (Inr (Inl Nil))) = F

to (Inr (Inr (Inr (Inl (p :::Nil))))) = Not p

to (Inr (Inr (Inr (Inr (Inl (p ::: q :::Nil)))))) = p :∧: q

to (Inr (Inr (Inr (Inr (Inr (p ::: q :::Nil)))))) = p :∨: q .

Instance declarations of Representable can be quite verbose, as in the case for

Prop. However, these declarations are completely determined by the structure of

the represented datatypes and can easily be derived automatically, for example by

means of a Template Haskell program (Sheard & Peyton Jones 2002). Moreover, all

that needs to be done to use our library on a user-defined datatype, such as Prop, is

declaring it an instance of Representable, Typeable, and Rewritable – and, as we

will see next, instances of the latter two can be given almost effortlessly.



A lightweight approach to datatype-generic rewriting 11

3.2 Making terms rewritable

The class Rewritable of types with rewritable values is given by

class (Representable α,Typeable α,

Eq (Rep α),Extensible (Rep α),Matchable (Rep α),Substitutable (Rep α),

Sampleable (Rep α),Diffable (Rep α))⇒
Rewritable α.

As this class does not have any methods or associated types, it is only introduced

for its superclass constraints. These constraints encode the conditions that need to

be fulfilled by a term type in order for its values to be rewritable.

Not only do we need an instance of Representable, we also require term types to

be in the class Typeable that was originally introduced for use with the Scrap Your

Boilerplate-library (Lämmel & Peyton Jones 2003). Currently, Typeable is Haskell’s

de facto standard API for reifying types at the value level and as such it is included

in the base libraries that ship with the GHC. Recent versions of the GHC even

provide support for automatically deriving instances of Typeable for user-defined

datatypes.

The remaining superclass constraints on Rewritable place restrictions on the

generic representations of term types and make specific parts of the generic rewriting

machinery available for all instances of Rewritable. More specifically, each of these

constraints accounts for one generic function. As representation types are built from

a limited set of type constructors, these constraints imply no additional burden on

the user of our generic rewriting library. That is, all needed instances for the base

types Int, Float, and Char and the representation constructors Nil, :+: , and ::: are

already provided by the library. The details behind these instances are discussed in

the next sections: in Section 4, we give instances of the standard class Eq for our

generic representation types; in Section 5 we give the definitions and instances of

the custom classes Extensible, Matchable, and Substitutable, while Section 6 covers

Sampleable and Diffable.

For now, we observe that, with the appropriate instances of Representable and

Typeable in place, putting a term type in the class Rewritable reduces to a mere

one liner:

instance Rewritable Int

instance Rewritable Float

instance Rewritable Char

instance Rewritable α⇒ Rewritable (Maybe α)

instance Rewritable α⇒ Rewritable [α]

instance Rewritable Prop.

4 Generic equality

The previous section introduced the interface to our library for datatype-generic

rewriting. Let us now turn to the concrete implementation of this interface.



12 T. van Noort et al.

In this section, we present an implementation of a type-indexed equality function.

In the next section, this generic function is used in our implementation of generic

pattern matching, but here it also serves as a neat example of the design pattern for

lightweight type-indexed functions that we employ for all generic functions in our

library. The general pattern for implementing generic functions is that we overload

a given function f for all generic representation types and then derive a generic

version f ′ that “ties the knot” and works for all types in Rewritable.

In our implementation, we rely on the class Eq from Haskell’s Standard Prelude

to provide an interface for overloaded equality:

class Eq α where

(≡), ( �≡) :: α→ α→ Bool

x ≡ y = ¬ (x �≡ y)

x �≡ y = ¬ (x ≡ y).

As the class Rewritable requires the generic representation types of all its instances

to be in the class Eq, we can directly define an equality operator ≡′ that works for

all types of rewritable terms:

(≡′) :: Rewritable α⇒ α→ α→ Bool

x ≡′ y = from x ≡ from y .

To test two equally typed rewritable terms for equality, we convert them to their

generic representations and then test these for equality.

It remains to declare instances of Eq for the types that appear in generic

representations. The case for Nil is straightforward:

instance Eq Nil where

Nil ≡ Nil = True.

For sums, we require the summands to be instances of Eq and test whether both

generic representations have their origins in the same alternative. If so, both values

are compared recursively; otherwise, we produce False:

instance (Eq α,Eq β)⇒ Eq (α :+: β) where

Inl x ≡ Inl y = x ≡ y

Inr u ≡ Inr v = u ≡ v

≡ = False.

In the case for ::: we make use of that, in our encoding of a datatype’s structure,

the second type argument of ::: is always another type-level list, and so we can

assume that this type argument is itself in Eq as well. The first type argument,

however, can be any type and, hence, we cannot just assume it to be an instance of

Eq. Instead, we require this type argument to be in Rewritable, so that we can use

the operator ≡′ defined above to compare values of this type:

instance (Rewritable α,Eq β)⇒ Eq (α ::: β) where

(x ::: xs) ≡ (y ::: ys) = x ≡′ y ∧ xs ≡ ys .



A lightweight approach to datatype-generic rewriting 13

5 Matching and substituting

In the previous section, we demonstrated how generic functions are implemented in

our library. We continue our exploration of the internals of the library by discussing

the core functionality of our library: the implementation of the function rewriteWith

and its monadic companion rewriteWithM .

These are implemented in terms of two generic functions match ′ and substitute′,

match ′ :: (Rewritable α,Mappable Γ ,Monad μ)⇒
Pattern Γ α→ α→ μ (Substitution Γ )

substitute′ :: (Rewritable α,Monad μ)⇒
Substitution Γ → Pattern Γ α→ μ α.

The type Pattern Γ α (see Section 5.2) is used in our library for the intensional

representation of the left- and right-hand sides of rewrite rules over a term type α. Its

type argument Γ is a so-called metavariable environment: a type-level list that encodes

the types of the metavariables in a rewrite rule. Successfully matching a term against

a left-hand-side pattern results in a substitution (Section 5.3) for the metavariables

that occur in the pattern. As pattern matching may fail, the function match ′ returns

its result in a monad μ. This function requires the metavariable environment Γ

involved to be in the class Mappable (defined in Section 5.1), which simply means

that an empty substitution can be produced for Γ . Substitutions are partial maps

from metavariables drawn from a given environment to matched subterms. Given

such a substitution and a right-hand-side pattern, the generic function substitute′

attempts to construct a new term value. This construction fails if the substitution

is not defined for all metavariables that occur in the right-hand-side pattern, which

explains the monadic result type of substitute′.

As metavariable environments are only of interest to the internals of our library,

they are hidden from the user by wrapping the left- and right-hand-side patterns

that constitute a rewrite rule in an existential type:

data Rule :: �→ � where

Rule :: Mappable Γ ⇒ Pattern Γ α→ Pattern Γ α→ Rule α.

Here, the existential type Rule is defined using the syntax of a so-called generalised

algebraic datatypes or GADTs (Xi et al. 2003; Peyton Jones et al. 2006).

Given the existential Rule and suitable definitions of match ′ and substitute′, the

monadic rewrite function rewriteWithM can be written as

rewriteWithM :: (Rewritable α,Monad μ)⇒ Rule α→ α→ μ α

rewriteWithM (Rule lhs rhs) x = do

s ← match ′ lhs x

substitute′ s rhs .

That is, the term x is matched against the left-hand side lhs of a given rewrite rule.

If the match is successful, the resulting substitution s is applied to the right-hand

side rhs of the rewrite rule in order to produce the result term. An implementation

for the nonmonadic rewrite function rewriteWith is obtained by instantiating the



14 T. van Noort et al.

type of rewriteWithM with the Maybe-monad:

rewriteWith :: Rewritable α⇒ Rule α→ α→ α

rewriteWith rule x = case rewriteWithM rule x of

Nothing→ x

Just y → y .

In the remainder of this section, we discuss the implementation of metavariables

(Section 5.1), patterns (Section 5.2), substitutions (Section 5.3), and generic pattern

matching (Section 5.4).

5.1 Typed metavariables

In our intensional representation of rewrite rules, we encode metavariables by

De Bruijn indices (De Bruijn, 1972). Our implementation allows different metavari-

ables to range over differently typed subterms. To enforce a type-safe use of

metavariables, we adopt the approach of Pasǎlić & Linger (2004) and implement

metavariables as values of the GADT Ref of typed references:

data Ref :: �→ �→ � where

RZero :: Ref (α :::Γ ) α

RSucc :: Ref Γ α→ Ref (β :::Γ ) α.

Here, we use as metavariable environments Γ the heterogeneous lists constructed

from Nil and ::: that we also use in generic representations. A value of type

Ref Γ α then carries the Peano encoding of an index for an α-typed position in a

heterogeneous list of type Γ . Note that such a value can never refer to an empty

list, simply because the constructor types dictate that the lists contain at least one

value.

As an example of the use of Ref, consider the function deref for dereferencing a

typed reference to a value in a heterogeneously typed list:

deref :: Ref Γ α→ Γ → α

deref RZero (x ::: xs) = x

deref (RSucc r) (x ::: xs) = deref r xs .

In the implementation of match ′ and substitute′, typed references are used as

indices into heterogeneously typed partial maps:

data PMap :: �→ � where

PNil :: PMap Nil

PCons :: Rewritable α⇒ Maybe α→ PMap Γ → PMap (α :::Γ ).

Values of type PMap Γ are partial maps from Γ -typed references to rewritable

terms. Looking up a value in a partial map is implemented through the function

lookup,

lookup :: Monad μ⇒ Ref Γ α→ PMap Γ → μ α

lookup RZero (PCons Nothing s) = fail "unbound variable"

lookup RZero (PCons (Just x ) s) = return x

lookup (RSucc r) (PCons mb s) = lookup r s



A lightweight approach to datatype-generic rewriting 15

that returns its result in a monad μ to provide for the case in which looking up

fails. Since the types of the RZero and RSucc constructors ensure that the referenced

partial map is nonempty, the definition of lookup does not require a case for PNil.

For the construction of partial maps of type PMap Γ , we require that Γ is a

type-level list of rewritable-term types, so that PNil and PCons can be used to

produce an initial, empty map. To this end, we make the list constructors Nil and

::: instances of a class Mappable that provides an empty-map constructor:

class Mappable Γ where

empty :: PMap Γ

instance Mappable Nil where

empty = PNil

instance (Rewritable α,Mappable Γ )⇒ Mappable (α :::Γ ) where

empty = PCons Nothing empty .

Updating a rewritable term in a partial map involves destructing a typed reference

and traversing the map until the appropriate position has been reached:

update :: Ref Γ α→ α→ PMap Γ → PMap Γ

update RZero x (PCons mb s) = PCons (Just x ) s

update (RSucc r) x (PCons mb s) = PCons mb (update r x s).

Singleton mappings are then constructed by updating a single term in an empty

map:

singleton :: (Rewritable α,Mappable Γ )⇒ Ref Γ α→ α→ PMap Γ

singleton r x = update r x empty .

Finally, two maps for the same environment Γ can be merged if they agree on their

codomain:

(⊕) :: Monad μ⇒ PMap Γ → PMap Γ → μ (PMap Γ )

PNil ⊕ PNil = return PNil

PCons Nothing s ⊕ PCons Nothing s ′ = liftM (PCons Nothing) (s ⊕ s ′)

PCons Nothing s ⊕ PCons (Just y) s ′ = liftM (PCons (Just y)) (s ⊕ s ′)

PCons (Just x ) s ⊕ PCons Nothing s ′ = liftM (PCons (Just x )) (s ⊕ s ′)

PCons (Just x ) s ⊕ PCons (Just y) s ′

| x ≡′ y = liftM (PCons (Just x )) (s ⊕ s ′)

| otherwise = fail "merging failed".

Here, liftM ,

liftM :: Monad μ⇒ (α→ β)→ μ α→ μ β,

is the function from Haskell’s standard libraries that lifts a given unary function

into an arbitrary monad. If, for at least one reference, the arguments of the monadic

merge operator ⊕ produce different terms, merging fails. As all terms contained in

a partial map are of types in the class Rewritable, equality of terms can be tested

by means of the generic equality test ≡′.



16 T. van Noort et al.

5.2 Generic patterns

Recall from the definition of the GADT Rule that the left- and right-hand sides of

rewrite rules are represented by values of the type Pattern Γ α, where α is the type

of terms to be rewritten and Γ is a metavariable environment. The idea is to derive

the definition of Pattern Γ α from the definition of α, much like in Section 2.2 the

definition of EProp was derived from the definition of Prop, but without requiring

the user to explicitly declare the pattern type. As pattern types are supposed to

hold the same values as their corresponding term types, but additionally allow each

subterm to be replaced by a metavariable, Pattern can be elegantly defined in terms

of a so-called type-indexed datatype. A type-indexed datatype (Hinze et al. 2004) is a

datatype that is defined by induction over the structure of generically representable

types.

Here, we encode type-indexed datatypes as datatype families (Schrijvers et al.

2008). That is, we define a datatype family Extended,

data family Extended α :: �→ �

with index α. A type Extended α Γ is to be interpreted as the type that is obtained

from extending α with metavariables from Γ .

Instances of Extended are given for all representation constructors. These instances

recursively introduce metavariable alternatives in all subterm positions in the generic

representation of a type’s structure, while duplicating the remainder of the structure.

A pattern is then defined as either a duplicate of a type’s structure with metavariable

alternatives for all subterm positions or otherwise a metavariable of the appropriate

type:

type Pattern Γ α = Extended (Rep α) Γ :+:Ref Γ α.

As values of base types do not contain subterms, the extension of these types

amounts to mere duplication:

newtype instance Extended Int Γ = Int′ Int.

The cases for Float and Char are analogous; in the sequel, we provide instance

declarations for Int as representatives for all base types.

Note that in our library subterm positions in a type are encoded as elements of

type-level lists. Hence, sums and lists are extended recursively with metavariable

alternatives inserted for all list elements:

data instance Extended Nil Γ = Nil′

data instance Extended (α :+: β) Γ = Inl′ (Extended Γ α) | Inr′ (Extended Γ β)

data instance Extended (α ::: β) Γ = Pattern Γ α :::′ Extended β Γ .

Because extended types contain at least the values of the original representation

types (modulo renaming of constructors and redirections into sum types), converting

from terms to patterns is straightforward. First, we declare a class Extensible of

types that can be lifted into their extended counterparts,

class Extensible α where

extend :: α→ Extended α Nil



A lightweight approach to datatype-generic rewriting 17

and then we define a generic extension function extend ′ for constructing patterns

from terms:

extend ′ :: Rewritable α⇒ α→ Pattern α Nil

extend ′ x = Inl (extend (from x )).

Note that a value of a type Pattern α Nil, due to the empty metavariable environment,

is guaranteed to not contain any metavariables.

Lifting base types reduces to wrapping values in extension constructors:

instance Extensible Int where extend = Int′.

Extension of the empty list involves converting from Nil to Nil′

instance Extensible Nil where

extend Nil = Nil′

while sums are extended recursively:

instance (Extensible α,Extensible β)⇒ Extensible (α :+: β) where

extend (Inl x ) = Inl′ (extend x )

extend (Inr y) = Inr′ (extend y).

For ::: , we require the first type argument to be rewritable, so that subterms can

be lifted generically:

instance (Rewritable α,Extensible β)⇒ Extensible (α ::: β) where

extend (x ::: xs) = extend ′ x :::′ extend xs .

The conversion from terms to patterns is used in Section 6 for the synthesis of

rewrite rules from functions over term types.

5.3 Generic substitutions

Substitutions are just partial maps over a given metavariable environment:

type Substitution Γ = PMap Γ .

Applying a substitution then involves traversing a value of an extended type and

replacing all metavariable occurrences by subterms drawn from the partial map in

order to obtain a term representation:

class Substitutable α where

substitute :: Monad μ⇒ Substitution Γ → Extended α Γ → μ α.

As looking up metavariables in partial maps may fail, substitute returns its result

in a monad μ. To apply a substitution to a pattern, we distinguish between values

of extended types and metavariables. In the former case, we use substitute to yield

a representation and then convert this representation to a term by means of to. In

the latter case, the metavariable is looked up in the partial map that represents the

substitution:

substitute′ :: (Rewritable α,Monad μ)⇒ Substitution Γ → Pattern Γ α→ μ α

substitute′ s (Inl e) = liftM to (substitute s e)

substitute′ s (Inr r) = lookup r s



18 T. van Noort et al.

Substitutions over extended base types are performed by stripping off the extension

constructors:

instance Substitutable Int where substitute s (Int′ n) = return n .

Similarly, for the empty lists of constructor arguments, we have

instance Substitutable Nil where

substitute s Nil′ = return Nil.

Extended sum values are processed recursively, and the obtained values are reinjected

into the appropriate side of the original sum type:

instance (Substitutable α,Substitutable β)⇒ Substitutable (α :+: β) where

substitute s (Inl′ e) = liftM Inl (substitute s e)

substitute s (Inr′ e) = liftM Inr (substitute s e).

The instance for ::: once more requires all elements in a list to be in the class

Rewritable and invokes the generic function substitute′ to apply substitutions to

patterns:

instance (Rewritable α,Substitutable β)⇒ Substitutable (α ::: β) where

substitute s (pat :::′ es) = liftM2 ( ::: ) (substitute′ s pat) (substitute s es).

To lift the list constructor ::: into a monad, this instance uses the standard function

liftM2 ,

liftM2 :: Monad μ⇒ (α→ β → γ)→ μ α→ μ β → μ γ

for turning binary functions into monadic operations.

5.4 Generic pattern matching

Finally, let us consider how substitutions are constructed, namely, by generically

matching term values against patterns. The required machinery consists of a class

Matchable of representation types, which can be matched against their recursively

extended counterparts,

class Matchable α where

match :: (Mappable Γ ,Monad μ)⇒ Extended α Γ → α→ μ (Substitution Γ )

and a top-level generic function match ′ for matching terms against either an extended

representation or otherwise a top-level metavariable:

match ′ :: (Rewritable α,Mappable Γ ,Monad μ)⇒
Pattern Γ α→ α→ μ (Substitution Γ )

match ′ (Inl e) x = match e (from x )

match ′ (Inr r) x = return (singleton r x ).

If a term x is to be matched against an extended representation e, x is itself

converted to a generic representation from x and matched by means of match . If

x is matched against a metavariable r , a singleton substitution is constructed that

maps r to x . Pattern-match failures are dealt with monadically.



A lightweight approach to datatype-generic rewriting 19

Matching values of base type against extended base values requires an equality

test. If this test succeeds, an empty substitution is produced; otherwise, a mismatch

is reported:

instance Matchable Int where

match (Int′ n) n ′

| n ≡ n ′ = return empty

| otherwise = fail "pattern mismatch".

Provided that both the extended representation and the term representation are

completely defined (i.e., do not diverge), matching is always successful for empty

lists:

instance Matchable Nil where

match Nil′ Nil = return empty .

For values of sum types, we check whether the extended representation and the term

representation encode the same alternative. If so, we proceed recursively; otherwise,

matching fails:

instance (Matchable α,Matchable β)⇒ Matchable (α :+: β) where

match (Inl′ e) (Inl x ) = match e x

match (Inr′ e) (Inr y) = match e y

match = fail "pattern mismatch".

For nonempty lists, we attempt to match the head x against a pattern pat by means of

a call to the generic function match ′ and the tail xs against extended representations

es through a recursive call to match . If both x and xs are matched successfully, the

resulting substitutions are merged with the operator ⊕ from Section 5.1:

instance (Rewritable α,Matchable β)⇒ Matchable (α ::: β) where

match (pat :::′ es) (x ::: xs) = join (liftM2 (⊕) (match ′ pat x ) (match es xs)).

As both matching and merging may fail, this gives rise to a nested monadic structure,

which we flatten with a call to the function join ,

join :: Monad μ⇒ μ (μ α)⇒ μ α

from the standard libraries.

This completes our implementation of generic matching and substitution.

6 Synthesising rewrite rules

In the previous section, we have demonstrated how rewrite rules are intensionally

represented in terms of the type synonym Pattern and the type-indexed datatype

Extended. Implementing patterns through generic types frees the user of the library

from the burden of defining separate datatypes for representing the left- and right-

hand sides of rewrite rules for various term types, but still allows us to enjoy the

benefits of observable rules.



20 T. van Noort et al.

However, this use of generic types raises the question how the user is supposed to

define her rewrite rules. She could write the rewrite rule derived from the principle

of contradiction, for example, as

contradiction :: Rule Prop

contradiction = Rule lhs rhs

where

lhs = Inl (Inr′ (Inr′ (Inr′ (Inr′ (Inl′ (

(Inl (Inr′ (Inr′ (Inr′ (Inl′ (Inr RZero :::′Nil′)))))) :::′

Inr RZero :::′Nil′))))))

rhs = Inl (Inr′ (Inr′ (Inl′ Nil′)))

but clearly this style of definition is tedious and, moreover, error-prone. Of course,

the definition of so-called smart constructors, such as

(∧′) :: Extended Prop→ Extended Prop→ Extended Prop

p ∧′ q = Inl (Inr′ (Inr′ (Inr′ (Inr′ (Inl′ (p :::′ q :::′Nil′))))))

make take away some of the burden, but these smart constructors then need to be

defined for all types of rewriteable terms, defeating the very purpose of datatype-

generic programming. Instead, our library allows for rewrite rules to be defined in

terms of the real constructors of the type of terms that are to be rewritten. A library

function synthesise then takes care of translating the terms in rewrite rules into

generic representations. The rule above, for example, can conveniently and concisely

be written as

contradiction :: Rule Prop

contradiction = synthesise (λp → p :∧:Not p �→ F).

That is, rewrite rules are synthesised from functions that take placeholders for

metavariables as arguments and produce values of the type of rewritable terms – in

this case, Prop. This way, rewrite rules are specified in the same way for different

term types, while the internal representation of the rules remains hidden from the

user.

To synthesise rules from functions, we develop some more generic machinery. The

idea is to instantiate each function parameter twice – each time with distinct term

values – and compare the resulting values. This approach restricts us to function

parameters of types that have at least two values; but note that this restriction is by

no means essential as rules with metavariables that range over types that have only

one value are not meaningful.

For the function λp → p :∧:Not p �→ F that we used above, we could instantiate

the parameter p first with the value T and then with the value F. The first

instantiation then yields the left-hand side T :∧:Not T and the right-hand F; the

second instantiation yields F :∧:Not F and F. Next, we compare the obtained pairs

of left- and right-hand sides to determine where metavariables are to be inserted.

As, in our example, the produced left-hand sides differ in the left operand of :∧:
and in the argument of Not, an occurrence of some metavariable is inserted in these

locations. The two right-hand sides are identical, so no metavariable occurrence will

show up there.



A lightweight approach to datatype-generic rewriting 21

In this section, we implement this scheme of producing rewrite rules generically.

We first show how to generate pairs of distinct values for term types (Section 6.1).

Then, we present a generic diff function that localises the positions in which

metavariables are to be inserted (Section 6.2). Finally, a class of synthesiser types is

given (Section 6.3).

6.1 Generic sampling

To produce pairs of distinct values for types in Rewritable, we define a class

Sampleable,

class Sampleable α where

left :: α

right :: α.

Instances of Sampleable are supposed to have their methods left and right produce

values that differ in their top-level constructors. With instances of Sampleable

declared for all generic representation types, functions left ′ and right ′ can be defined

generically for all types of rewritable terms:

left ′, right ′ :: Rewritable α⇒ α

left ′ = to left

right ′ = to right .

As always, appropriate instances for base types are straightforward to produce:

instance Sampleable Int where left = 0; right = 1.

For Nil, it is not possible to produce distinct left and right values. Still, we have to

provide an instance declaration to allow for types that contain Nil-values to be in

Sampleable:

instance Sampleable Nil where

left = Nil

right = Nil.

As a result, no metavariables are ever introduced in rules over types with only a

single nonbottom value. (Note that this is by no means a fundamental limitation

as meaningful rewrite rules for such types cannot be given anyway.) Sum types are

easy: here we have the opportunity to actually produce values that are distinct in

their top-level constructor. For left , we choose Inl, while for right , Inr is selected:2

2 There is a minor caveat associated with the given Sampleable-declaration for sum types. Our library
requires the values for left and right to be finite as infinite values will lead to nontermination of the
generic diff function in Section 6.2. To guarantee termination, we require the leftmost constructor
of a datatype to be nonrecursive, such that left always produces a finite value for this constructor.
Note that this may require an implicit reordering of constructors when defining or generating generic
representations and precludes types that have no finite values. Then, we can use a single left-produced
value in the definitions of left and right for :+: as the top-level constructors Inl and Inr already
distinguish the values.



22 T. van Noort et al.

instance (Sampleable α,Sampleable β)⇒ Sampleable (α :+: β) where

left = Inl left

right = Inr left .

For :::, we have only one constructor at our disposal, so a distinction in top-level

constructors is to be made at a deeper level:

instance (Rewritable α,Sampleable β)⇒ Sampleable (α ::: β) where

left = left ′ ::: left

right = right ′ ::: right .

6.2 Generic diff

To determine at which positions in a pattern metavariables are to be introduced,

we require the ability to generically compute a “diff” between two patterns. If such

a position is found, it depends on the type of the metavariable to be introduced

whether or not a new pattern can be distilled from the differences between the

pattern values compared. To this end, we require term types to be in the class

Typeable, so that their types can be compared at run-time.

The class Typeable comes with an operation gcast ,

gcast :: (Typeable α,Typeable β)⇒ ϕ α→ Maybe (ϕ β)

that allows values of type ϕ α to be cast into values of type ϕ β if and only if α

and β are the same type. In our implementation of a generic diff, we attempt to cast

values of type Pattern Γ α into values of type Pattern Γ β with both α and β in

Typeable.

We define a class Diffable of representation types for which a diff can be computed:

class Diffable α where

diff :: Typeable β ⇒
Extended α Γ → Extended α Γ → Maybe (Extended α (β :::Γ )).

For each generic representation type α, the overloaded function diff takes two values

of type Extended α Γ for some environment Γ and attempts to introduce a new

β-typed metavariable at the deeper locations in which the two values differ. If the

two values differ at top-level or at an inappropriately typed location, diff fails and

produces Nothing. Note that values generated by left and right for α can only ever

differ at top level.

Diffs for rewritable terms can now be computed by means of a generic function

diff ′:

diff ′ :: (Rewritable α,Typeable β)⇒
Pattern Γ α→ Pattern Γ α→ Maybe (Pattern (β :::Γ ) α)

diff ′ (Inl e) (Inl e′) =

case diff e e′ of Nothing→ gcast (Inr RZero) ; Just e′′ → Just (Inl e′′)

diff ′ (Inr r) (Inr r ′) | r ≡ r ′ = Just (Inr (RSucc r))

diff ′ = Nothing.



A lightweight approach to datatype-generic rewriting 23

This generic function takes patterns over a type α as argument. If both patterns

consist of values e and e′ of an extended type, the overloaded diff function is

used to compare e and e′. If diff successfully computes a combined value e′′ of

extended type, this value is wrapped in a pattern Inl e′′ and returned. If diff fails, we

attempt to insert a metavariable RZero of type β at top-level. As insertion of such a

metavariable is only allowed if α and β are the same type, we use gcast to compare

α and β at run-time. If both patterns are metavariable alternatives Inr r and Inr r ′,

we require r and r ′ to be the same metavariable and construct a corresponding

metavariable Inr (RSucc r) in the extended environment β :::Γ . If r and r ′ are not

equal, or if the two patterns are constructed from different alternatives, we produce

Nothing.

It remains to give instances of Diffable for our generic representation constructors.

As values of base types contain no subterms and can thus only differ at top-level,

an implementation of diff for these types reduces to testing for equality:

instance Diffable Int where

diff (Int′ n) (Int′ n ′)

| n ≡ n ′ = Just (Int′ n)

| otherwise = Nothing.

The extension of Nil holds only a single value Nil′, so diff for empty lists cannot

fail:

instance Diffable Nil where

diff Nil′ Nil′ = Just Nil′.

For values of sum type, we compare the top-level constructors. If these are different,

we produce Nothing; otherwise, comparison proceeds recursively:

instance (Diffable α,Diffable β)⇒ Diffable (α :+: β) where

diff (Inl′ e) (Inl′ e′) = case diff e e′ of Nothing→ Nothing ; Just e′′ → Just (Inl′ e′′)

diff (Inr′ e) (Inr′ e′) = case diff e e′ of Nothing→ Nothing ; Just e′′ → Just (Inr′ e′′)

diff = Nothing.

Similarly, for ::: , the comparison of two values pat :::′ es and pat ′ :::′ es ′ continues

recursively underneath the constructor :::′ :

instance (Rewritable α,Diffable β)⇒ Diffable (α ::: β) where

diff (pat :::′ es) (pat ′ :::′ es ′) =

case (diff ′ pat pat ′, diff es es ′) of

(Just pat ′′, Just es ′′)→ Just (pat ′′ :::′ es ′′)

→ Nothing.

6.3 Generic synthesis

With generic sampling and generic diff defined, we can now implement the synthesis

of rewrite rules from functions over term types. These functions wrap the left- and

right-hand sides of rules in values of a type Template,

data Template α = Template α α



24 T. van Noort et al.

of which the values simply constitute pairs of terms. For the concise definition of

templates, we introduce an operator �→:

infix 1 �→
( �→) :: α→ α→ Template α

lhs �→ rhs = Template lhs rhs .

Next, we define a class Synthesiser of types of which the values can be used to

synthesise rewrite rules:

class Rewritable (Term α)⇒ Synthesiser α where

type Term α :: �

type Env α :: �

patterns :: α→ (Pattern (Env α) (Term α),Pattern (Env α) (Term α)).

Each instance α of Synthesiser has an associated type synonym Term α that gives

the type of terms that are rewritten by a synthesised rewrite rule. Similarly, the

associated type synonym Env α gives the term types over which the metavariables of

a synthesised rule range. For example, a rewrite rule synthesised from a function of

a type α → β → Template γ has two metavariables, ranging over values of types α

and β, and is used to rewrite terms of type γ. Operationally, a value x of a type from

Synthesiser can be used to produce a pair patterns x that contains the left- and

right-hand-side components of a rewrite rule. Synthesis then reduces to combining

these components in a Rule-value:

synthesise :: (Synthesiser α,Mappable (Env α))⇒ α→ Rule (Term α)

synthesise x = let (lhs , rhs) = patterns x in Rule lhs rhs .

Instances of the class Synthesiser are defined inductively over the structure of

function types. As a base case, we have an instance for Template α for any type α

of rewritable terms:

instance Rewritable α⇒ Synthesiser (Template α) where

type Term (Template α) = α

type Env (Template α) = Nil

patterns (Template lhs rhs) = (extend ′ lhs , extend ′ rhs).

Rewrite rules that are synthesised directly from templates over α operate on terms

of type α and contain no metavariables. Left- and right-hand sides for these rules

can be obtained simply by lifting template components into the type Pattern Nil α

of patterns over α without variables, for which we use the generic function extend ′

defined in Section 5.2.

In the inductive step, we require, in order for a function type α → β to be in

the class Synthesiser, α to be a type of rewritable terms and β to be a type of



A lightweight approach to datatype-generic rewriting 25

synthesisers:

instance (Rewritable α,Synthesiser β)⇒ Synthesiser (α→ β) where

type Term (α→ β) = Term β

type Env (α→ β) = α :::Env β

patterns f =

let (lhs , rhs) = patterns (f left ′)

(lhs ′, rhs ′) = patterns (f right ′)

in case (diff ′ lhs lhs ′, diff ′ rhs rhs ′) of

(Just lhs ′′, Just rhs ′′)→ (lhs ′′, rhs ′′)

→ error "synthesis failure".

Function abstraction over α adds an α-typed metavariable to the environment Env β,

but does not alter the type Term β of terms the synthesised rule operates on. Patterns

of the left- and right-hand sides of the rewrite rule are constructed by applying the

function twice (once to the value produced by left ′ and once to the value produced by

right ′) and then computing diffs from the obtained components, possibly introducing

occurrences of a new metavariable that ranges over terms of type α. If diffs cannot

be computed, synthesis fails with a run-time error – an issue to be discussed in more

detail in the next section.

7 Detecting ill-formed rewrite rules

In the previous sections, we have shown the implementation of our library’s core

functionality. In particular, we have shown how, although we use an intensional

representation of rewrite rules internally, we allow the user to define rules in

terms of functions over domain-specific types. Due to this sugarcoating, additional

verification of rewrite rules is required.

Consider, for example, the following rewrite rule over propositional formulae,

funny :: Rule Prop

funny = synthesise (λn → f n �→ T)

where f is some function taking Int-values to values of type Prop:

f :: Int→ Prop.

It is unclear what the semantics of such a rewrite rule should be. That is, in a

well-formed rewrite rule, we expect metavariables to exclusively occur as constructor

arguments, not as arguments to arbitrary functions. Using Haskell’s variables as

placeholders for our metavariables means, however, that we cannot preclude such

ill-formed rules and that we have to rely on the user not to construct nonsensical

rules as the one above.

Another class of meaningless rewrite rules can be excluded by equipping our

library with functionality for detecting their ill-formedness. Consider, for instance,

the rule

unbound :: Rule Prop

unbound = synthesise (λp → T �→ T :∨: p)



26 T. van Noort et al.

in which the metavariable p on the right-hand side is not bound on the left-hand

side of the rewrite rule, and,

superfluous :: Rule Prop

superfluous = synthesise (λp q → p :∨: p �→ p)

in which the metavariable q is superfluous since it is “declared” but not used at all

in the rewrite rule. In general, we consider a rewrite rule well-formed if and only if

all of its declared metavariables are bound in its left-hand side – and, interestingly,

this notion of well-formedness can be checked for statically, i.e., without applying

the rule.

To this end, we extend the library with a function validate that provides the user

with an opportunity to verify the use of declared metavariables in rewrite rules:

validate :: Rewritable α⇒ Rule α→ Bool.

This function is intended to be applied just after rule synthesis.

Validation is achieved by constructing a use record with a field for each metavari-

able, denoting its presence in the left-hand side of the rewrite rule:

data Record :: �→ � where

RNil :: Record Nil

RCons :: Bool→ Record Γ → Record (α :::Γ ).

An initial blank record is created by setting each presence to False:

class Recordable Γ where

blank :: Record Γ

instance Recordable Nil where

blank = RNil

instance Recordable Γ ⇒ Recordable (α :::Γ ) where

blank = RCons False blank .

We now require environments to be instances of the type class Recordable and,

hence, a constraint is added to the constructor Rule from Section 5:

data Rule :: �→ � where

Rule :: (· · · ,Recordable Γ )⇒ Pattern Γ α→ Pattern Γ α→ Rule α.

A use record is updated by traversing the left-hand side of a rewrite rule and

checking off each metavariable encountered:

class Validateable α where

record :: Extended α Γ → Record Γ → Record Γ .

Recall from Section 5 that a Pattern is either a value of a corresponding extended

type or else a metavariable. In the former case, we traverse the extended term

recursively, looking for metavariable occurrences; in the latter case we check off the



A lightweight approach to datatype-generic rewriting 27

metavariable in the use record:

record ′ :: Rewritable α⇒ Pattern Γ α→ Record Γ → Record Γ

record ′ (Inl e) rec = record e rec

record ′ (Inr RZero) (RCons b rec) = RCons True rec

record ′ (Inr (RSucc r)) (RCons b rec) = RCons b (record ′ (Inr r) rec).

Traversing base-type values results in no change to the use record as base values

cannot contain metavariables:

instance Validateable Int where record (Int′ n) = id .

Similarly, traversing Nil values results in the original record:

instance Validateable Nil where

record Nil′ = id .

Values of sum types are traversed by stripping their top-level constructor:

instance (Validateable α,Validateable β)⇒ Validateable (α :+: β) where

record (Inl′ e) = record e

record (Inr′ e) = record e.

For ::: , we update the record by traversing the subterms and the pattern in

sequence:

instance (Rewritable α,Validateable β)⇒ Validateable (α ::: β) where

record (pat :::′ es) = record ′ pat ◦ record es .

Note that since the record is only used to check off metavariable use, the order of

the calls to record ′ and record plays no rôle.

Next, we add a superclass constraint for Validateable to the declaration of the

class Rewritable from Section 3.2,

class (· · · ,Validateable (Rep α))⇒ Rewritable α,

and define a top-level function for validating rules:

validate :: Rewritable α⇒ Rule α→ Bool

validate (Rule lhs rhs) = check (record ′ lhs blank )

where

check RNil = True

check (RCons b rec) = b ∧ check rec.

Starting with a blank record, validate records all occurrences of metavariables on

the left-hand side of a rewrite rule and then verifies that all metavariables in the

environment of the rule are checked off in the updated record.

8 Guarded rewriting

In the previous section, we have added some infrastructure for statically validating

rewrite rules to the core functionality of our library. In this section, we further

extend the library and add support for rewrite rules guarded by preconditions.



28 T. van Noort et al.

As an example, consider the datatype Lam of lambda-expressions,

data Lam = Var String | Abs String Lam | App Lam Lam

and an accompanying function fv that produces the variables that appear free in a

given lambda-expression:

fv :: Lam→ [String].

Now, suppose that we want to define a rewrite rule that implements eta-reduction:

λx. e x→ e, if x not free in e.

That is, eta-reduction applies to expressions that match the pattern λx. e x, but only

if such an expression additionally fulfills the precondition that the variable x does

not appear free in the expression e. Using the extension presented in this section,

such rewrite rules can be written as in

etaReduction :: Rule Lam

etaReduction = synthesise (λx e → Abs x (App e (Var x )) �→ e ; x /∈ fv e).

Here, we synthesise a rule over lambda-expressions from a function that produces a

template constructed with the operators �→ and ; . The latter adds a guard to the

rewrite rule, i.e., a boolean expression that may refer to the metavariables abstracted

over by the synthesiser function.

In order to implement preconditions, we extend our type Rule of rewrite rules

with a component containing a guard:

data Rule :: �→ � where

Rule :: (Mappable Γ ,Recordable Γ ,Testable Γ )⇒
Pattern Γ α→ Pattern Γ α→ Guard Γ → Rule α.

In addition to the classes Mappable (cf. Section 5) and Recordable (cf. Section 7),

metavariable environments used within rules are restricted to be instances of the

class Testable, to be explained below. Guard types are defined inductively over the

structure of metavariable environments. That is, we have a type family Guard,

type family Guard Γ :: �,

with instances

type instance Guard Nil = Bool

type instance Guard (α :::Γ ) = α→ Guard Γ .

A guard for a rewrite rule without metavariables is just a boolean expression. For

rules that do have metavariables, a guard is a function that takes an argument of

appropriate type for each metavariable and produces a boolean.

Given a substitution for a metavariable environment Γ (cf. Section 5.3), values of

type Guard Γ can be tested in order to obtain a boolean that indicates whether the

corresponding precondition is fulfilled. To this end, we define the type class Testable

of environments for which guards are testable:

class Testable Γ where

test :: Guard Γ → Substitution Γ → Bool.



A lightweight approach to datatype-generic rewriting 29

For the empty-environment type Nil, the guard is itself already a value of type Bool,

so testing can just discard the supplied substitution (which can only be constructed

by PNil anyway):

instance Testable Nil where

test b PNil = b.

For an environment α :::Γ , the guard function is applied to the value that is to be

substituted for the metavariable corresponding to α and the resulting guard for Γ is

tested recursively:

instance Testable Γ ⇒ Testable (α :::Γ ) where

test f (PCons (Just x ) s) = test s (f x )

test f (PCons Nothing s) = error "test failure".

If no substitution value is available, the governing rewrite rule was ill-formed

(cf. Section 7) and testing fails with a run-time error.

As the GADT Rule now requires all metavariable environments to be testable,

enforcing preconditions is straightforward:

rewriteWithM :: (Rewritable α,Monad μ)⇒ Rule α→ α→ μ α

rewriteWithM (Rule lhs rhs grd ) x = do

s ← match ′ lhs x

if test grd s then substitute′ s rhs else fail "precondition failure".

If, for a given rule Rule lhs rhs grd and term x , x successfully matches against the

left-hand side lhs , the resulting substitution s is tested against the guard grd . If the

test succeeds, the substitution s and the right-hand side rhs are combined to produce

a new term; otherwise, the rule does not apply and rewriting fails.

What remains is to adapt the synthesis of rules from templates and functions

producing templates (cf. Section 6). First, we extend templates with a boolean

component:

data Template α = Template α α Bool.

Next, we redefine and introduce the smart constructors �→ and ; , respectively:

infix 1 �→
infix 0 ;

( �→) :: α→ α→ Template α

lhs �→ rhs = Template lhs rhs True

( ; ) :: Template α→ Bool→ Template α

Template lhs rhs ; b = Template lhs rhs b.

The class Synthesiser now gets an additional method guard that produces, for a

synthesised rule, a guard of appropriate type:

class · · · ⇒ Synthesiser α where
...

guard :: α→ Guard (Env α)



30 T. van Noort et al.

For rules synthesised directly from templates, this guard is just the boolean from

the template:

instance · · · ⇒ Synthesiser (Template α) where
...

guard (Template lhs rhs b) = b.

For rules synthesised from functions, the guard is itself a function too:

instance · · · ⇒ Synthesiser (α→ β) where
...

guard f = guard ◦ f .

The function synthesise, finally, that turns synthesizers into rewrite rules simply puts

guards in the right places in rules:

synthesise :: (Synthesiser α,Mappable (Env α),Testable (Env α))⇒ α→ Rule (Term α)

synthesise x = let (lhs , rhs) = patterns x in Rule lhs rhs (guard x ).

Note that the given implementation of guarded rewrite rules has one obvious

drawback: preconditions are encoded extensionally rather than intensionally and

are therefore not observable. This reintroduces some of the problems mentioned in

Section 2. Most prominently, when pretty-printing rewrite rules, the rendering of

preconditions will pose a problem. The other issues listed in Section 2 are, however,

of lesser importance. To what extent rewrite rules are still suitable for automated

testing, strongly depends on how often preconditions apply: only if preconditions

are rarely fulfilled, the generation of appropriate test data may be problematic. For

inversion and tracing, nonobservability of preconditions plays no limiting rôle.

9 A case study: solving arithmetic equations

The previous section completed our exploration of our generic library for term

rewriting. In this and the next section, we evaluate our approach. In this section,

we present (part of) a small case study of a more or less realistic use of our

library: solving arithmetic equations using term rewriting. In this case study, we use

some of the more advanced features of our library, such as heterogeneously typed

metavariables and guarded rewrite rules. In Section 10, we discuss some results

obtained from benchmarking.

Consider the problem of solving the equation

1 +
8

(x− 3)2
= 3.

To solve such an equation with a single variable, we use the so-called cover-up method,

which is based on covering up the part of the equation that contains the variable. We

can define cover-up rewrite rules for addition, subtraction, multiplication, division,

and exponentiation operations; with these rules we solve the example equation in



A lightweight approach to datatype-generic rewriting 31

the following sequence of steps:

1 +
8

(x− 3)2
= 3

⇔ 8

(x− 3)2
= 2

⇔ (x− 3)2 = 4

⇔ x− 3 = 2 ∨ x− 3 = −2

⇔ x = 5 ∨ x = 1.

The domain of interest is represented by a variation of the datatype Prop from

Section 1, that allows for formulae to be expressed over atoms of different types,

data Prop α = Var α | T | F | Not (Prop α)

| Prop α :∧:Prop α | Prop α :∨:Prop α,

a type of equations,

data Equation α = α :≡: α,

and a type Expr of various arithmetic expressions,

data Expr = Const Rational | Varia String | Expr :+:Expr | Expr :-:Expr

| Expr :*:Expr | Expr :/:Expr | Expr :̂ :Expr.

For each of these datatypes, we need instances of the class Representable (as

described in Section 3), the class Typeable (can be derived by the GHC), and

Rewritable (one line).

Using the datatypes, the equation 1 + 8
(x−3)2

= 3 is represented as

Var ((Const 1 :+: (Const 8 :/: ((Varia "x" :-:Const 3) :̂ :Const 2))) :≡:Const 3).

The solution to this equation, x = 5 ∨ x = −1, is represented as

Var (Varia "x" :≡:Const 5) :∨:Var (Varia "x" :≡:Const (−1)).

Our rewrite system consists of simple rules for simplifying propositions, such as

orTrueLeft :: Rewritable α⇒ Rule (Prop α)

orTrueLeft = synthesise (λp → T :∨: p �→ p)

and some rules for rewriting additions, which require preconditions,

coverPlusLeft :: Rule (Equation Expr)

coverPlusLeft = synthesise (λx y z →
x :+: y :≡: z �→ x :≡: z :-: y ; hasVaria x ∧ noVaria y).

In the rule coverPlusLeft , all metavariables range over expressions. We only want

to apply this rule if there are variables in the expression x and no variables in the

expression y , so as to guarantee the isolation of the variables on the left-hand side

of the equation. The helper functions hasVaria and noVaria test the presence (or

absence) of variables in an expression.



32 T. van Noort et al.

Dealing with exponentiation requires a more complex rule:

coverPowerEven :: Rule (Prop (Equation Expr))

coverPowerEven = synthesise (λx n y →
let z = y :̂ :Const (1 / n)

in Var (x :̂ :Const n :≡: y) �→ Var (x :≡: z ) :∨:Var (x :≡:Const 0 :-: z )

; hasVaria x ∧ n > 0 ∧ isEven n).

As this definition illustrates, complex rewrite rules can be become quite verbose,

but we can freely use local definitions to keep rules more or less readable. Since

our rewrite rules are observable, a pretty-printer would be able to format such rules

nicely. Note, however, that guards in rewrite rules are not observable since these are

just boolean values, as described earlier in Section 8.

10 Benchmarks

The biggest disadvantage of generic programming techniques is that they can be a

source of inefficiency. The introduction of representation types and corresponding

conversions to and from the original datatypes generally imposes a penalty on

execution time. We have measured the performance of our generic rewriting library

to assess how large this penalty is, compared to hand-written code for a specific

datatype. We have performed two separate tests of different complexities. The first

one deals with logical propositions and uses neither preconditions nor metavariables

of different types. The second one deals with arithmetic equations, and uses the full

power of our generic rewriting library. Both are bundled with the library for analysis

and repeatability.

10.1 Turning propositions into disjunctive normal form

Our first benchmark uses the datatype Prop of propositional formulae from the

Introduction, extended with constructors for implication and equivalence. We have

defined 16 rewrite rules and used these rules to bring the logical proposition to

disjunctive normal form (DNF). This rewrite system is a realistic application of our

rewriting library, and is very similar to the system that is used in an exercise assistant

for e-learning systems (Heeren et al. 2008). None of the rules has preconditions, and

all metavariables are of type Prop.

Conversion to DNF has been tested with four different strategies: such a strategy

controls which rewrite rule is tried, and where. The strategies range from näıve (i.e.,

apply some rule somewhere), to more involved strategy specifications that stage

the rewriting and use all kinds of traversal combinators. We implemented these

combinators in a type-specific fashion. They could also be implemented as generic

functions, and not necessarily with the library we present. However, this would add

another source of inefficiency to our tests, one that we do not wish to benchmark;

hence, our choice for implementing the strategies in a type-specific fashion.

We use QuickCheck (Claessen & Hughes 2000) to generate a sequence of random

propositions. The random-number generator is initiated with a fixed seed so that



A lightweight approach to datatype-generic rewriting 33

Table 1. The strategies benchmarked

Strategy Terms Rules applied Rules tried Ratio

dnf-1 10,000 217,076 113,511,244 0.19%

dnf-2 50,000 492,114 22,224,222 2.21%

dnf-3 50,000 487,490 22,467,730 2.17%

dnf-4 100,000 872,494 18,327,913 4.76%

the same sequence is used for all test runs. We carefully profiled our tests to assure

that the computation time was being spent mostly on the rewriting functionality,

and not on auxiliary infrastructure such as data generation.

Because the strategy highly influences how many rules are tried, we vary the

number of terms that has to be brought to disjunctive normal form depending on

the strategy that is used. Table 1 shows for each strategy the number of terms that

are normalised, how many rules are successfully applied, and the total number of

rules that have been fired. The final column shows the percentage of rules that

succeeded: the numbers reflect that the simpler strategies fire more rules.

We compare the execution times of three different implementations for the

collection of rewrite rules.

Pattern Matching (PM): The first implementation defines the 16 rewrite rules as

functions that use pattern matching. This implementation suffers from all the

drawbacks that were mentioned in Section 1, making this version less suitable for

an actual application. However, this implementation of the rules is worthwhile

to study because Haskell has excellent support for pattern matching, which will

likely result in efficient code.

Specialised Rewriting (SR): We have also written a specialised rewriting system that

operates on propositions, very much like that described in Section 2.2. The most

significant difference is that we have reused the Var constructor for representing

metavariables too, thus mixing object variables with metavariables and avoiding

the need to introduce an additional, extended datatype of propositions.

Generic Rewriting (GR): Here, we implemented the rules using the generic functions

for rewriting that are introduced in this paper. The instance of the Representable

type class is similar to the declaration in Section 3, except that it also includes the

constructors for equivalence and implication.

All test runs were executed on a machine running Windows XP Professional x64

Edition with SP2 on an Intel Core 2 Duo 3Ghz with 2GB of RAM. The programs

were compiled with the GHC (version 6.10.4) with standard optimization level

(using the -O1 compiler flag). We do not use optimization level -O2, because we

noticed that it sometimes reduced performance. Execution times were measured as

the difference of the value returned by the function System .CPUTime.getCPUTime

from the base libraries that ship with theGHC, after and before the execution of the

test, and averaged over 10 runs.

Table 2 shows the performance for each implementation of the strategies. The

absolute figures are given in seconds, and we also show the figures relative to the

pattern-matching approach.



34 T. van Noort et al.

Table 2. Benchmark results for the Prop datatype with -O1

Absolute (s) Relative

Strategy PM SR GR PM SR GR

dnf-1 3.11 10.89 37.21 1.00 3.49 11.94

dnf-2 2.52 4.82 15.03 1.00 1.92 5.98

dnf-3 2.49 4.87 15.45 1.00 1.95 6.19

dnf-4 3.94 7.28 19.45 1.00 1.84 4.93

Table 3. Benchmark results for the Prop datatype with increased inlining

Absolute (s) Relative

Strategy PM SR GR PM SR GR

dnf-1 3.02 10.78 22.57 0.97 3.46 7.24

dnf-2 2.12 4.00 7.36 0.84 1.59 2.93

dnf-3 2.12 4.07 7.63 0.85 1.63 3.06

dnf-4 2.51 4.49 7.70 0.64 1.14 1.95

The table shows that PM is significantly faster than the other approaches. The

specialised rewriting approach (SR) adds observability of the rewrite rules, at the

cost of approximately doubling execution time. The generic approach (GR), when

compared to the SR approach, suffers from a slowdown of a factor of about 3.

This is probably due to the conversions to and from the structure representation of

propositions. We also observe a correlation between strategy ratio of rule application

(Table 1) and performance (the higher the ratio, the better the performance). This

confirms that the overhead of both the SR and GR approaches is caused by the

rewriting infrastructure: the PM approach has little overhead from trying rules as it

uses Haskell’s native support for pattern matching.

Inspired by Magalhães et al. (2010), we repeated our benchmark setting

compilation flags -funfolding-creation-threshold to 450 and -funfolding-use-

threshold to 60. These flags control, respectively, the keenness of the compiler to

export function definitions into interface files and to inline them. This has been

shown to increase the performance of certain generic functions, since inlining “large”

functions such as to and from exposes opportunities for further optimizations. We

show the new results in Table 3. Note that the relative figures are still in relation

to PM compiled with -O1, as this is the “standard” approach at the “standard”

optimization level.

Increased inlining effectively improves the performance. All the approaches benefit

from it, but the most pronounced gains are seen in the GR approach, where

performance is improved to between 40% and 60% of the original levels. Strategy

dnf-4, in particular, shows the highest improvement, now taking only twice as much

as the original PM approach.

10.2 Solving arithmetic equations

Our second benchmark is performed on a family of datatypes representing arithmetic

equations, as introduced in Section 9. We use 25 rules, some with preconditions and



A lightweight approach to datatype-generic rewriting 35

Table 4. Benchmark results for solving arithmetic equations

Absolute (s) Relative

Optimization PM GR PM GR

Standard 0.57 2.44 1.00 4.29

Increased inlining 0.60 1.87 1.06 3.30

some using metavariables of different types, therefore testing the full potential of

our library in a realistic setting. These rules are applied to isolate variables on the

left-hand sides of equations.

Again, we have used QuickCheck for test data generation. We test a single

strategy, and use type-specific traversals for its application. We compare our library

against a pattern-matching approach (PM) only, and again include figures with

standard -O1 optimization and with increased inlining as described previously. The

results, as an average over 10 runs, are summarised in Table 4. We can conclude

that the introduction of preconditions and metavariables of different types does not

significantly influence performance. Promoting inlining continues to prove useful to

increase the performance of our library.

Our benchmarks confirm that observability of rules comes at the expense of loss

in runtime efficiency. Furthermore, generic definitions introduce some additional

overhead. The tradeoff between efficiency and genericity depends on the application

at hand. For instance, the library would be suitable for the online exercise assistant,

because runtime performance is less important in such a context.

We believe that improving the efficiency of generic library code is an interesting

area for future research. By inlining and specializing generic definitions, and by

applying partial-evaluation techniques, we expect to get code that is more competitive

to the hand-written definitions for a specific datatype.

11 Related work

Jansson & Jeuring (2000) implement a generic rewriting library in PolyP (Jansson &

Jeuring 1997), an extension of Haskell with a special construct for generic program-

ming. Our library differs in a number of aspects. First, we use no extensions of

Haskell specific to generic programming. This is a minor improvement, since we

expect that Jansson and Jeuring’s library can easily be translated to plain Haskell

as well. Second, we use a type-indexed datatype for specifying rules. This is a major

difference, since it allows us to generically extend a datatype with metavariables. In

Jansson and Jeuring’s library, a datatype either has to be extended by hand, forcing

users to introduce a new constructor, or one of the constructors of the original

datatype is to be reused for metavariables. Neither solution is very satisfying, since

either functions unrelated to rewriting must now handle the new metavariable

constructor, or we are forced to introduce a safety problem in the library since an

object variable may accidentally be considered a metavariable.

Libraries that provide generic traversal combinators, such as Strafunski (Lämmel &

Visser 2002), Scrap Your Boilerplate (Lämmel & Peyton Jones 2003), Uniplate



36 T. van Noort et al.

(Mitchell & Runciman 2007), Bringert’s “almost compositional” functions

(Bringert & Ranta 2006), and probably more, can be used to define extensionally

represented rewrite rules. These suffer from the disadvantages described in Section 2,

but typically perform better than intensionally represented rules (see Section 10).

Our generic pattern-matching function is a variation on the generic unification

functions of Jansson & Jeuring (1998) and Sheard (2001). A generalisation of our

library to full unification is possible, but probably hard to keep user-friendly as

unification results may contain metavariable occurrences that can then no longer

be hidden from the user. Adapting our library to use mutable variables to improve

performance, as in Sheard’s work, should be relatively straightforward.

Brown & Sampson (2008) implement generic rewriting using the Scrap Your

Boilerplate-library. Patterns are described in a special-purpose datatype that does

not depend on the type of values being rewritten. In contrast to our system, rules

are not typed and hence ill-typed rules are only detected at runtime.

There exist a number of programming languages built on top of the rewriting

paradigm, such as ELAN (Borovanský et al. 2001), OBJ (Goguen & Grant 1997),

ASF+SDF (Van Deursen et al. 1996), and Stratego (Bravenboer et al. 2008).

Instead of built-in support for rewriting, we focus on how to support rewriting in a

mainstream higher order functional programming language by providing a library.

12 Conclusions and further work

We have presented a library for datatype-generic term rewriting. Our library

overcomes problems in previous generic rewriting libraries: users do not have to

adapt or manually extend the datatypes that are used to represent terms; they do

not need knowledge of the internals of the library; and they can document, test,

and analyze their rewrite rules. The performance of our library is not as good as

that of hand-written, datatype-specific rewrite functions, but we think the loss of

performance is acceptable for many applications.

In contrast to rewrite rules that are defined using an extensional representation, our

library requires that rule synthesisers do not “cheat” by inspecting their metavariable

arguments. Concretely, we do not allow arbitrary function applications in the right-

hand side of a rule template, but unfortunately this restriction cannot be enforced

statically.

There is ongoing work on generating test data for rewrite rules generically. That is,

the left-hand side of a rewrite rule can be used as a template for test-data generation

to improve testing coverage. We plan to use this approach in a testing framework

that is to be shipped with our library.

Acknowledgments

This work was made possible by the support of the SURF Foundation, the

Higher Education and Research Partnership Organisation for Information and

Communications Technology (ICT). Please visit http://www.surf.nl/ for more

information about SURF.



A lightweight approach to datatype-generic rewriting 37

This work has been partially funded by the Technology Foundation STW

through its project on “Demand Driven Workflow Systems” (07729), by the Nether-

lands Organisation for Scientific Research (NWO) through its projects on “Real-

life Datatype-Generic Programming” (612.063.613) and “Scriptable Compilers”

(612.063.406), and by the Portuguese Foundation for Science and Technology (FCT)

via the SFRH/BD/35999/2007 grant; it was carried out while the second and third

author were employed at Utrecht University.

The authors would also like to thank Chris Eidhof and Sebastiaan Visser for

their work on testing rewrite rules using generic test-data generation and Andres

Löh for productive discussions on this work. Finally, the authors are indebted to

Doaitse Swierstra and the anonymous reviewers of the 2008 Workshop on Generic

Programming and the present volume for their useful suggestions.

References

Backhouse, R. C., Jansson, P., Jeuring, J. & Meertens, L. (1999) Generic programming:

an introduction. In Advanced Functional Programming, Third International School, Braga,

Portugal, September 12–19, 1998, Revised Lectures, Swierstra, S.D., Henriques, P.R. &

Oliveira, J.N. (eds), Lecture Notes in Computer Science, vol. 1608. Springer-Verlag,

pp. 28–115.

Borovanský, P., Kirchner, C., Kirchner, H. & Ringeissen, C. (2001) Rewriting with strategies

in ELAN: a functional semantics, Int. J. Found. Comput. Sci., 12 (1), 69–95.

Bravenboer, M., Kalleberg, K. T. & Visser, E. (2008) Stratego/XT 0.17: a language and toolset

for program transformation. Sci. Comput. Program., 72 (1–2), 52–70.

Bringert, B. & Ranta, A. (2006) A pattern for almost compositional functions. In Proceedings

of the 11th ACM SIGPLAN International Conference on Functional Programming, ICFP

2006, Portland, Oregon, USA, September 16–21, 2006, Reppy, J.H. & Lawall, J. L. (eds),

ACM Press, pp. 216–226.

Brown, N.C.C. & Sampson, A. T. (2008) Matching and modifying with generics. In Draft

Proceedings of the Ninth Symposium on Trends in Functional Programming (TFP), May

26–28, 2008, Center Parcs “Het Heijderbos”, The Netherlands, Achten, P., Koopman, P. &

Morazán, M. T. (eds), The draft proceedings of the symposium have been published as a

technical report (ICIS-R08007) at Radboud University Nijmegen, pp. 304–318.

Bruijn, N.G. de. (1972) Lambda calculus notation with nameless dummies: a tool

for automatic formula manipulation, with application to the Church-rosser theorem,

Indagaciones Mathematische, 34, 381–392.

Chakravarty, M.M.T., Keller, G. & Peyton Jones, S. (2005a) Associated type synonyms.

In Proceedings of the 10th ACM SIGPLAN International Conference on Functional

Programming, ICFP 2005, Tallinn, Estonia, September 26–28, 2005, In Danvy, O. & Pierce,

B. C. (eds), ACM Press, pp. 241–253.

Chakravarty, M.M.T., Keller, G., Peyton Jones, S. & Marlow, S. (2005b) Associated types

with class. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2005, Long Beach, California, USA, January 12–14, 2005,

Palsberg, J. & Abadi, M. (eds), ACM Press, pp. 1–13.

Claessen, K. & Hughes, J. (2000) QuickCheck: a lightweight tool for random testing of

Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference

on Functional Programming (ICFP ’00), Montreal, Canada, September 18–21, 2000. ACM

Press, pp. 268–279.

Deursen, A. van, Heering, J. & Klint, P. (eds). (1996) Language Prototyping. an Algebraic

Specification Approach. AMAST Series in Computing, vol. 5. Singapore: World Scientific.



38 T. van Noort et al.

Goguen, J. & Grant, M. (1997) Algebraic Semantics of Imperative Programs. Cambridge,

Massachusetts: The MIT Press.

Heeren, B., Jeuring, J., Leeuwen, A. van & Gerdes, A. (2008) Specifying strategies for

exercises. In Intelligent Computer Mathematics, 9th International Conference, AISC 2008,

15th Symposium, Calculemus 2008, 7th International Conference, MKM 2008, Birmingham,

UK, July 28–August 1, 2008, Proceedings, Autexier, S., Campbell, J., Rubio, J., Sorge, V.,

Suzuki, M. & Wiedijk, F. (eds), Lecture Notes in Computer Science, vol. 5144. Springer-

Verlag, pp. 430–445.

Hinze, R. (2000) Generic Programs and Proofs. Habilitationsschrift: University of Bonn.

Hinze, R., Jeuring, J. & Löh, A. (2004) Type-indexed data types, Sci. Comput. Program., 51

(2), 117–151.

Holdermans, S., Jeuring, J., Löh, A. & Rodriguez Yakushev, A. (2006) Generic views on

data types. In Mathemathics of Program Construction, 8th International Conference, MPC

2006, Kuressaare, Estonia, July 3–5, 2006, Proceedings, Uustalu, T. (ed), Lecture Notes in

Computer Science, vol. 4014. Springer-Verlag, pp. 209–234.

Jansson, P. & Jeuring, J. (1997) PolyP: a polytypic programming language. In Conference

Record of POPL’97: The 24 ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Papers Presented at the Symposium, Paris, France, 15–17 January

1997. ACM Press, pp. 68–114.

Jansson, P. & Jeuring, J. (1998) Polytypic unification, J. Funct. Program., 8 (5), 527–536.

Jansson, P. & Jeuring, J. (2000) A framework for polytypic programming on terms, with

an application to rewriting. In Proceedings Workshop on Generic Programming (WGP

2000), July 6, 2000, Ponte de Lima, Portugal, Jeuring, J. (ed), The proceedings of the

workshop have been published as a technical report (UU-CS-2000-19) at Utrecht University,

pp. 33–45.

Lämmel, R. & Peyton Jones, S. (2003) Scrap your boilerplate: a practical design pattern

for generic programming. In Proceedings of the ACM SIGPLAN Workshop on Types in

Language Design and Implementation (TLDI 2003), New Orleans, LA, USA, January 18,

2003. ACM Press, pp. 26–37.

Lämmel, R. & Visser, J. (2002) Typed combinators for generic traversal. In Practical Aspects

of Declarative Languages, 4th International Symposium, PADL 2002, Portland, OR, USA,

January 19–20, 2002, Krishnamurthi, S. & Ramakrishnan, C. R. (eds), Lecture Notes in

Computer Science, vol. 2257. Springer-Verlag, pp. 137–154.

Magalhães, J. P., Holdermans, S., Jeuring, J. & Löh, A. (2010) Optimizing generics is

easy! In Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation, PEPM 2010, Madrid, Spain, January 18–19, 2010, Gallagher, J. P. &

Voigtländer, J. (eds), ACM Press, pp. 33–42.

Mitchell, N. & Runciman, C. (2007) Uniform boilerplate and list processing. In Proceedings

of the ACM SIGPLAN Workshop on Haskell, Haskell 2007, Freiburg, Germany, September

30, 2007, Keller, G. (ed), ACM Press, pp. 49–60.

Noort, T. van, Rodriguez Yakushev, A., Holdermans, S., Jeuring, J. & Heeren, B. (2008) A

lightweight approach to datatype-generic rewriting. In Proceedings of the ACM SIGPLAN

Workshop on Generic Programming, WGP 2008, Victoria, BC, Canada, September 20, 2008,

Hinze, R. & Syme, D. (eds), ACM Press, pp. 13–24.

Pasǎlić, E. & Linger, N. (2004) Meta-programming with typed object-language representations.

In Generative Programming and Component Engineering: Third International Conference,

GPCE 2004, Vancouver, Canada, October 24–28, 2004, Proceedings, Karsai, G. & Visser, E.

(eds), Lecture Notes in Computer Science, vol. 3286. Springer-Verlag, pp. 136–167.

Peyton Jones, S., Vytiniotis, D., Weirich, S. & Washburn, G. (2006) Simple unification-

based type inference for GADTs. In Proceedings of the 11th ACM SIGPLAN International

Conference on Functional Programming, ICFP 2006, Portland, Oregon, USA, September 16–

21, 2006, Reppy, J.H. & Lawall, J. L. (eds), ACM Press, pp. 50–61.



A lightweight approach to datatype-generic rewriting 39

Schrijvers, T., Peyton Jones, S., Sulzmann, M. & Vytiniotis, D. (2008) Type checking with

open type functions. In Proceedings of the 13th ACM SIGPLAN International Conference on

Functional Programming, ICFP 2008, Victoria, BC, Canada, September 22–24, 2008, Hook,

J. & Thiemann, P. (eds), ACM Press, pp. 51–62.

Sheard, T. (2001). Generic unification via two-level types and parameterized modules.

In Proceedings of the Sixth ACM SIGPLAN International Conference on Functional

Programming (ICFP ’01), Florence, Italy, September 3–5, 2001. ACM Press, pp. 86–97.

Sheard, T. & Peyton Jones, S. (2002) Template meta-programming for Haskell. In Proceedings

of the ACM SIGPLAN Workshop on Haskell, Pittsburgh, Pennsylvania, 2002. ACM Press,

pp. 1–16.

Xi, H., Chen, C. & Chen, G. (2003) Guarded recursive datatype constructors. In

Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, New Orleans, Louisiana, January 15–17, 2003. ACM Press,

pp. 224–235.


