
A Lightweight Implementation of Generics and Dynamics

James Cheney∗
Cornell University
Ithaca, NY 14853

jcheney@cs.cornell.edu

Abstract
The recent years have seen a number of p roposals for extending
statically typed languages by dynamics or generics. Most propos-
als — if not all — require significant extensions to the underlying
language. I n this paper we show that this need not b e the case. W e
propose a p articularly lightweight extension that supports b oth dy-
namics and generics. Furthermore, the two features are smoothly
integrated: dynamic values, for instance, can be passed to generic
functions. Our proposal makes do with a standard H indley-Milner
type system augmented by existential types. Building upon these
ideas we h ave implemented a small library that is readily usable
both with Hugs and with the Glasgow Haskell compiler.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures

General Terms

Languages

Keywords

Generic programming, dynamic typing, type representations

1 Introduction

A desirable feature of programming languages is safety. Broadly

speaking, safe p rogramming languages prevent untrapped errors at

run time [25]. Safety can be achieved either b y static checking,

by dynamic checking, or by a combination of static and dynamic

checks. Each approach has its pros and cons.

∗ This work was supported in p art by the Air F orce Office of

Scientific Research under grant number F49620-01-1-0298

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made o r d istributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post o n servers or to redistribute
to lists, requires prior specific p ermission and/or a fee.
Haskell’ ’02, October 3, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-581 13-605-6/02/0010 ...$5.00

Ralf Hinze

Institut f u¨r Informatik III, Universita ¨t Bonn R o¨merstraße
164, 531 17 Bonn, Germany

ralf@informatik.uni-bonn.de

Dynamically typed languages, like Scheme and J ava, preserve type
information until run time, enabling concise definitions of util-
ity functions (such as show, ‘’ , compare) using dynamic casts,
generic functions, or multimethods. However, type p reservation in-
troduces space and run-time overhead that is left for the compiler
to optimize away. Also, with dynamic typing, many type errors that
could b e caught at compile time are not detected until run time.

Statically typed languages, like Haskell and ML, are at the other ex-
treme. T ypechecking occurs at compile t ime and t ype i nformation
is discarded after compilation, so it is impossible to write functions
whose b ehaviour depends on run-time type information. As a re-
sult, utility and communication functions cannot b e defined once
and for all. Instead, p rogrammers must provide new versions of
them for each new data type. Their definitions are essentially de-
termined b y type structure, but must be written out explicitly be-
cause this regular b ehaviour cannot be expressed using the Hindley-
Milner type system.

Previous approaches to supporting generic programming, type-
dependent optimizations, and dynamic casts within statically typed
languages include:

• explicit dynamic typing [21, 1], in which the language is aug-
mexepnlticedit dw yitnha am iD cy tnyapminigc t[y21pe, 1a]n,di na wtyhpiecchat shee eol ra cnagusta gcoen issta ruucgt;-

• polytypic programming [19, 5, 16], in which type-dependent

pfuonlcyttiyopnisc wproritgtreanm imn nag la [1n9g,u5 ag,1e e]x, tinenw siohnic hart ey ptera-ndeslpaetendd ntot
pure polymorphic functions;

• ad-hoc polymorphism [3 1, 11] (i.e. Haskell’s type classes),
aind whhocicp ho tlyympeso aphrei amsso [3c1i,at e1d1]w (iit.eh. cH laasssekse lth’satt ipnedi cclaatses eths)e,
presence of overloaded f unctions like ‘’ ;

• intensional polymorphism [14], in which type information is
ipnretesnesrivoenda tlhp rooluygmhoourpt hcisommp[1ila4t]i,oi nn, wsoh itchhatt yrpune-i tinmfoer mtyapteio ndii s-s
patch can b e performed.

However, none of the above techniques is both easy to implement
and powerful enough to support dynamics and generics. Explicit
dynamic typing is nontrivial to implement and to prove type-safe,
especially in the presence of p olymorphism. P olytypic program-
ming is typically i mplemented using source-to-source translation,
and does not address dynamic typing. Type classes have long
been present in Haskell, but are limited in expressiveness. The
original type-passing implementation of intensional p olymorphism
changes the language’s semantics and violates the parametricity
theorem, p recluding a simple type-erasing language implementa-
tion and c omplicating soundness proofs. Also, it is not clear how
or whether dynamic typing and generic p rogramming features can
be safely combined; to date, each has been studied in isolation.

90
Recent work has addressed some of these shortcomings: L eroy and
Mauny [21] and Abadi et al. [1] showed how to safely combine dy-
namics and polymorphism. Hinze and Peyton Jones [18] have intro-
duced derivable type classes, which permit polytypic definitions of
type classes. Crary, Weirich, and Morrisett [9] have reconciled in-
tensional p olymorphism with type erasure using explicit type repre-
sentations. However, implementations of dynamics, derivable type
classes, and type representations still seem to require substantial

compiler modifications and soundness proofs.

In this p aper, we show that this need not be the case. W e present an
encoding of type representations in Haskell 98 [23] augmented with
existential types, and show how to use type representations to de-
fine simple polytypic functions, type Dynamic, and finally generic
functions of the same flavour as those definable by derivable type
classes. This provides a simple and safe implementation for gener-
ics and dynamics in Haskell, with no additional compiler support
or proofs of type soundness r equired. It also sheds light on the re-
lationship between generics and dynamics and shows that they can
coexist and interact peacefully.

The r est of the p aper is structured as follows. Sec. 2 explains how
to define type representations in Haskell and illustrates their use
in programming functions that work for a family of types. Type
representations are also at the heart of dynamics in Sec. 3. Sec. 4
shows how to achieve true genericity, the ability to define functions
that work for all types. Finally, Sec. 5 reviews related work and
Sec. 6 concludes. For r eference, the complete implementation of
the Haskell library is included in App. A.

2 Programming with type representations
Let’s start modest. Assume that you have a possibly infinite family
of types and you want to define a function, say, equality, that works
for all types of this family (we call such a function polytypic). For
concreteness, let u s consider the family of types given by the fol-
lowing grammar.

τ ::= Int | 1 | τ +τ | τ ×τ

We assume that the unit type, the sum type and the p air type are
given b y the following declarations (Haskell already offers isomor-

phic types but we introduce new types for reasons to b ecome clear
later).

data 1 = Unit

data α + β = Inl α | Inr β

data α ×β = α :×: β

Now, in Haskell one would immediately fall back on the class sys-

teeqmuatl ioty im fupnlecmtioennti ss auscshig anet dypt eh-eint ydpeex1edf amilyo ff unctions. The
() :: ∀α . (Eq α) ⇒ α → α → B ool.

The so-called class context ‘(Eq α) ⇒’ makes explicit that the
eTqhueals itoy- cfualnlcetdio cnl adsosecs noontte ewxtor‘ k(Efoqr αal)l t ⇒yp’esm mbaukt eosnl eyx fpolirc ctihtost hea attyp thees
that are instances of the type class Eq.

The purpose of this section is to show that one can also do without
type classes. The b asic idea is to pass ‘’ an additional argument
that represents the type at which the equality function is called. As
a first try we could assign ‘’ the type ∀α .Rep → α → α → B ool,

1We will always write u niversal quantifiers explicitly.

91
where Rep is the type of type representations. A moment’s reflec-
tion, however, reveals that this won’t work. The p arametricity theo-
rem [29] implies that a function of this type must necessarily ignore
its second and its third argument. The trick i s to use a parametric
type for type representations:

() :: ∀α .Rep α → α → α → B ool.

Here Rep τ is the type representation of τ. The one-million-dollar
question is, of course, how can we define such a type? There are at
least two p ossibilities, both of which require extensions to Haskell’s
data construct.

2.1 Alternative 1: p olymorphic data signatures

We inhabit Rep τ b y defining for each type constructor a corre-
sponding value constructor that represents the type. For the above
family of types we introduce

RInt :: Rep Int
R1 :: Rep 1
R+ :: ∀α .Rep α → (∀β .Rep β → Rep (α + β))
R× :: ∀∀αα ..RReepp αα →→ ((∀∀ββ .RReepp ββ →→ RR eepp ((αα ×+ ββ)))) .

For instance, the type 1+ (Int ×Int) is represented by the value
RFo+r rRi 1n (tRan×c Re,In tht eRIt nty)p oef1 1ty+pe(I Rnte×p (I1n t+) (i Isnrt e×p rInest)en).

Of course, the declarations above are not valid Haskell since data
constructors can only b e introduced via data declarations. But, let’s
accept this for the moment.

Given these prerequisites we can easily define a p olytypic equality
function that works for all r epresentable types. W e simply pattern
match on the ‘type’ argument.

rEqual :: ∀τ .Rep τ → τ → τ → B ool
rEqual (RInt) t1 t2 = ∀t1τ .R te2p
rEqual (R1) t1 t2 = case (t1,t2) of

(Unit, Unit) → True
rEqual (R+ rα rβ) t1 t2

= case (t1,t2) of
(Inl a1,Inl a2) → rEqual rα a1 a2

(Inr b1,Inr b2)) →→ rEEqquuaallr rβ b1 b2
→ F alse

rEqual (R× rα rβ) t1 t2
= case (t1,t2) of

(a1 :×:b1,a2 :×:b2) →

rE:×q:ub al rα a1 a2 ∧) r→Equal rβ b1 b2

Note that each equation defines a function whose type is a true in-
stance of the declared type: rEqual (RInt), for instance, has type
Int → Int → B ool.

A polytypic function can also be defined in terms of other p olytypic
functions. The function rElem, for instance, implements p olytypic
list membership.

rElem :: ∀τ .Rep τ → τ → [τ] → B ool
rElem rτ t x = ∀orτ [.rREepquτ al → rτ τt →a →| [aτ]←→ →x B]

REMARK 1. The function rElem hints at one essential d ifference
to Haskell’s class system. Consider the class-based variant of
rElem:

elem :: ∀α . (Eq α) ⇒ α → [α] → B ool

The class context records p recisely on which overloadedf unction
elem depends. For instance, if elem a dditionally called show at type
α, then Show α would be added to the class context. B y contrast,
the signature of the type-passing implementation would not change
if it called a type-passing rShow.

We have already noted that in Haskell data constructors can only b e
introduced by data declarations. Unfortunately, we cannot define

Rep α via a data declaration since none of the data constructors has
result type Rep α. We require a slight extension that allows us to
instantiate the declared type to some specific instance.

data Rep τ = RInt with τ = Int
| R1 with τ = 1
|| ∀α β .R+ (Rep α) (Rep β) with τ = α + β
|| ∀∀αα ββ .RR× (Rep α) (Rep β) with τ = α ×β

The idea is to assign R Int the type Rep τ with the additional con-
straint that τ = I nt, recorded by the with clause. As an aside, note
that a u niversal quantifier in front of a c onstructor name acts as an
existential q uantifier. So R + rα rβ has type Rep τ for some types α
and β with τ = α+ β. Existential types are supported both b y Hugs
and b y the Glasgow Haskell compiler.

REMARK 2. Equational type constraints have been studied in the
context of module systemsf or M L [20, 13] and typed closure con-
version in the presence of intensional p olymorphism [22]. I n those
contexts, the problem is that important relationships between types
are hidden by modular abstraction or existential quantification; it
is solved using translucent sum types, singleton kinds, or restricted
type equations in order to m ake enough type sharing information
evident in the module or closure type.

Unfortunately, this p rior work is not directly a pplicable, s ince it
addresses type sharing between elements of a module or existential
package, not type equations that depend on data type cases. For
example, s ingleton kinds would not help because each case of Rep
would require τ to have a different singleton kind. Perhaps this
could be addressed using k ind p olymorphism, but this complicates
the type system evenf urther.

Fortunately, we don’t have to wait for yet another extension to
Haskell’s already quite impressive type system since with clauses

can be simulated in Haskell 98 using embedding-projection pairs or
equvalence types.

2.2 Alternative 2: equivalence types

In a type system corresponding to a consistent logical system,
we could (motivated b y the Curry-Howard isomorphism) think of
with α = β clauses as p ropositions asserting that α and β are equiv-
alent in some sense. This notion of equivalence could range from
strict t ype equality to logical equivalence (that is, equivalence of
type inhabitation). Propositional equivalence is typically defined as
“if and only if”: A ≡ B means (A ⇒ B) ∧ (B ⇒ A). Recall that con-
j“uinfca tnidono sn clyoi rrf”e:spA on≡ d Btom mpreaodnusc (tA ty⇒ pe Bs)a∧nd(Bim⇒ pli Ac)a.tiR onecsa ltol tfhuantcc tioonn-
types. Thus, we could define an equivalence t ype τ ↔ τ 0 corre-
sponding to the p roposition that the types τ and τ 0 areτ τeq ↔uiv τalent as
(τ → τ0) ×(τ0 → τ). The function components can be thought of as
c(aτs →ts τf r)om× (ττ to→ →τ0 τa)n.dT b haec kfu. nIcnt iH onasc koemll pwone denetcslca raen

data α ↔ β = EP{from :: α → β, to ::β → α}.

eAqnuie vlaelmenetn.t2 epo ft ypeτ ↔ τ 0is a“ proof”t hatt het wot ypesa re

2Haskell is not strongly normalizing and does not correspond
to a consistent logic, so our appeal t o the Curry-Howard isomor-

92
Turning to the definition of Rep we replace each type constraint
with τ = τ0 by the corresponding equivalence type τ ↔ τ0.

data Rep τ = RInt (τ ↔ I nt)
| R1 ((ττ ↔↔ I1n)
|| ∀α β .R+ (Rep α) (Rep β) ((ττ ↔↔ 1(α) + β))

|| ∀∀αα ββ ..RR× ((RReepp αα)) ((RReepp ββ)) ((ττ ↔↔ ((αα ×+ ββ))))

Additionally, we introduce so-called smart c onstructors corre-
sponding to the R τ constructors of the previous section that incorpo-
rate the reflexive equivalence value self as a p roof of equivalence.

self :: ∀α. α ↔ α

self = ∀EαP.{αfr↔o m =α id, to = id}

rInt :: Rep Int
rInt = RInt self
r1 :: Rep 1
r1 = R1 self
r+ :: ∀α .Rep α → (∀β .Rep β → Rep (α + β))

rr+rαrβ =:: ∀R+α.rRαerpβα se→ lf(∀β.Repβ →R ep(α×β))
r× rα rβ = ∀R×α rα rβ αse→ lf

It remains to adapt the polytypic equality function to the new defini-
tion of Rep. The changes are straightforward: whenever we analyze
a value e of type τ equivalent to τ0, we replace e by from ep e where
ep ::τ ↔ τ 0 is the corresponding p roof of equivalence.

rEqual :: ∀τ .Rep τ → τ → τ → B ool
rEqual (RInt ep) t1 t2 = ∀froτ.mR ep tτ1 →f τr→ om ep →t2B
rEqual (R1 ep) t1 t2 = case (from ep t1,from ep t2) of

(Unit, Unit) → True
rEqual (R+ rα rβ ep) t1 t2

= case (from ep t1,from ep t2) of
(Inl a 1,Inl a2) → rEqual rα a1 a2

(Inr b1,Inr b2)) →→ rEEqquuaallr rβ b1 b2
→ False

rEqual (R× rα rβ ep) t1 t2
β

= case (from ep t1,from ep t2) of
(a1 :×: b1,a2 :×:b2) →

rE:×q:ub al rα a1 a2 ∧) r→Equal rβ b1 b2

It is important to note that rEqual is polymorphically r ecursive:
the recursive calls are at the existentially quantified t ypes α and
β. This means that the type signature is mandatory, otherwise the
code would not typecheck.

The equality function takes values of the ‘generic’ type τ apart.
When we construct a value of type τ = τ0, then we must wrap to ep
around the constructed value. The polytypic function rMinBound,
which constructs the least value of a type, serves as an example.

rMinBound :: ∀τ .Rep τ → τ
rMinBound (RInt ep) = ∀toτ ep (emp iτn→ Bou τnd)
rMinBound (R1 ep) = to ep (Unit)
rMinBound (R+ rα rβ ep) = to ep (Inl (rMinBound rα))
rMinBound (R× rα rβ ep) = to ep (rMinBound rα

:×: rMinBound rβ)

phism and use of the terms “proposition” and “proof” for equiv-
alence types and values is not formally j ustified. In Haskell, an
equivalence p air only guarantees that α can b e cast to β and vice
versa, with nontermination a p ossibility for either case. This turns
out to b e enough for our p urposes, since it still lets us encode repre-
sentations safely. In practice, all casts witnessing equivalences are
expected to terminate; usually, they are the identity.
The polytypic function rMemo, which memoizes a given function,
is an intriguing example of a function that both analyzes and syn-
thesizes values of the generic type.

rMemo :: ∀τ ν .Rep τ → (τ → ν) → (τ → ν)
rMemo (RInt ep)f = ∀λtτ → ν. fR te →-- nτo→ →me νm)o→ iz a(τti→o n

rMemo (R1 ep)f = λλtt →→ cfat sef rom ep t of
U frnoimt →e pf Ut o nfit

wheref Unit = f (to ep (UUninti)t)→
rMemo (R+ rα rβ ep)f = λt → casef rom ep t of

eIf nrol a →e pf It no lf a
IInnrl ab →→ ff IInnlr a ab

wheref Inl = rMemo rα (nλra b → →f f (Intor ep (Inl a)))
fInr = rMemo rβ ((λλba →→ ff ((ttoo ep ((IInnrl ba))))))

rMemo (R× rα rβ ep)f = λt → casef(rλobm→ ep ft(toof
a r:o×m: mbe →pt o fPfair a b

wheref Pair = rMemo rα a(: λ×a: → b →

rMemo rβ (aλ→ b →

f (to ep ((aλ b:×→ : b))))

To see how rMemo works note that the helper definitionsf Unit,f Inl,
fInr, and f Pair do not depend on the actual argument of f. Thus,
oncef is given, they can be readily computed. Memoization relies
critically on the fact that they are computed only on demand and
then at most once. T his is guaranteed if the implementation is fully

ilanfzoyr.mT ahteio inn.te3restedr eaderi s referredt oH inze[15]f orb ackground

New types

So far equivalence t ypes τ ↔ τ 0 have actually consisted of proofs of
tSyop efa reqe uqauliivtya,l snicnecet thpeeys τh ↔aveτ b een instantiated only with identity
functions. But we could also interpret an element of τ ↔ τ 0 as a
pfurnoocfti othnsat. t Bheu ttww oe et ycpoeusld daa rel ioso imnteorrpphreitc arnat heelerm mthenant oeqfu τa↔l . Cτ oinci-
dentally, Haskell offers a linguistic construct for introducing a new
type that is isomorphic to an existing type. Consider as an example
the type of triples.

newtype Tri α β γ = ToTri{fromTri :: α ×(β ×γ) }

The declaration defines Tri α β γ to b e isomorphic to α ×(β ×γ)

wThiteh dthecel afuranticotniond se TioneTsri Tarnidα α fβr omγ T troi bweiti nseomssionrgp htihce oiso αm×or(pβh×ismγ).
Since Tri α β γ is isomorphic to an existing t ype, we can represent
it as follows.

rTri :: ∀α .Rep α → (∀β .Rep β → (∀γ. Rep γ →
αR.Repe (pTα ri→ →α β(∀ γ)β).)R

rTri rα rβ rγ = R× rα (r× rβ rγ) (EPf romTri ToTri)

Now, if we pass a triple to a p olytypic f unction, then the isomor-
phisms fromTri and ToTri are automatically called at the appropriate
places. Furthermore, since Tri α β γ is implemented by the type on
the right-hand side, both casts amount to the identity function at
run time. This also means that a new type and its implementation
type are treated alike, which may or may not be what you want. In-
deed, equivalence types need not contain actual isomorphism pairs;

3In [15] memoization is defined as the composition of a func-
tion that constructs a memo table and a function that queries the
table. If we fuse the two functions thereby eliminating the memo
data structure, we obtain the rMemo function above. Thanks are
due to Koen Claessen for bringing this to our attention. Despite
appearance, the memo data structures did not vanish i nto t hin air.
Rather, they are now built into the closures. For instance, the memo
table for a disjoint union is a pair of memo tables. The closure for
rMemo (R+ rα rβ ep)f consequently contains a pair of memoized
functions, namely fInl andf Inr.

93
for example we can assert the equivalence of Int and [Float] with
λx → [] and λl → 0. Ensuring that equivalence cast pairs are the
λidxen→ tity[] o arn fdo λrml→ →an0 .isoE mnsourprhinisgmt h aist neqotu eivxaplernescseibc leas itnp aHirasska erlel, hsoe

these are external p roof obligations.

Genuine type equality

We have seen in the previous section that the equivalence t ype τ ↔

τW0 edh oeavs ens ote egnu ainrat nhteepe rthevatio τu ass ndec τti0o anret h haacttt uhaellye q euqivuaalle n(acnedt wypee hτ a v↔e
used this to good effect). An intriguing question is whether we can
devise an equivalence type that only admits equal types. Perhaps
surprisingly, this is i ndeed possible and even more surprisingly, the
underlying idea goes b ack to L eibniz—see W adler [30] for a related
application of Leibniz’s idea. According to Leibniz, two terms are
equal ifone may be substituted for the other. Adapting this principle
to types, we define,

newtype α ↔ β = EP{ unEP ::∀φ .φ α → φ β }.

Note t hat the u niversally quantified type variable φ ranges over type
constructors of kind ? → ?. Thus, an element of α ↔ β is a function
tchoants ctoruncvtoerrtss oafn k ielnedm? e→nt ?of. tTyhpues ,φa αn ienletom eann te olefmα e↔nt oβfi sφa aβf ufnorc any
type constructor φ. We introduce a constant self expressing the
reflexivity r ule:

self :: ∀α .α ↔ α
self = ∀EPα .idα

In a strongly normalizing type system like Fω, the only inhabitant of
α ↔ α is the identity Λf.λx.x. Ifα and β are not equal, then the type
αα ↔↔ βα iiss tehmepidtyen. Itint yHΛasfk.eλlxl,. t.hI efreα aarned aβddairteionnoatle iqnuhaalb,t ithaenntst haeritsyinpge
fαro↔ m βno ins etemrmpitnya.tI ino nH. aHskoewlle,vt heer, eatat erema ptdidnigti oton uals ein shuacbhit e alnetmsa ernistsi ntog
cast between α and β will r esult in divergence.

To provide the same functionality as b efore we have to define func-

tions that given a proof of type equality cast one type into the other.
Thef rom function is easy: we substitute the identity type for φ.

newtype I d a = Id{ unId ::α}

from :: ∀α β .(α ↔ β) → (α → β)
from ep = u∀nαI dβ ·. (uαnE ↔P ep →· →I d(

The to function is more subtle: we first substitute the t ype con-
structor ψ x = x → α for φ. This gives us a function of type
(sαtru →ct oαr) ψ→x x(=β →x →α), αwf hiocrh φw.e then apply to the identity function.

newtype α ← β = Inv{ unInv :: β → α}

to :: ∀α β . (α ↔ β) → (β → α)
to ep = u∀nαI nβv. ((αun ↔EPβ ep →(In(vβ i→ d)) α

Interestingly, b oth definitions of α ↔ β have p recursors in the liter-
aItntureer:e stthiengy uyn,d beortlhyd, feofirn iintsiotnansc oef, αW e↔iriβ chh ’asv iemp prleecmuersnotarstioi nnt hofe tl yipteer--
safe cast [32]. Though the above definition of α ↔ β is attractive,
wsafe ew cilasl ts[ti3ck2] t.oT thheo ufigrhstt vhear iaabnotv aes wefei nr ietliyo noon fthα e ↔broβ adi esr a itntrtaecrtpirvee,-
tation of type equivalence as types being isomorphic.

A type classf or type representations

When we call a polytypic function, we have to supply a t ype repre-
sentation as an argument. Of course, if we are working in Haskell,
we can use the class system for t his purpose.

We define type class R epresentable as follows:

class R epresentable τ where
rep :: Rep τ

instance R epresentable Int where
rep = rInt

instance R epresentable 1where
rep = r1

instance (Representable α,Representable β) ⇒
pRreespernetsaebnlteab αle,R (eαp r+e βse)n wtahbelreeβ

rep = r+ rep rep
instance (Representable α,Representable β) ⇒

pRreespernetsaebnlteab αle,R (eαp r×e βse)n wtahbelreeβ
rep = rR×e rep rep

Building upon the type class we can define a variant of polytypic
equality that automatically constructs the type representation.

cEqual :: ∀τ . (Representable τ) ⇒ τ → τ → Bool
cEqual t1 t2 = r∀Eτ.qu(Rale rep et1n tt2a

It is important to note, however, that t his use of the class system is
just a convenience, not a necessity for programming with represen-
tations.

3 Dynamics

3.1 The type Dynamic

A dynamic value is a pair consisting of the value itself and a rep-
resentation of its type. As noted by [14, 9], we can readily define
Dynamic using the type of type representations Rep as

data Dynamic = ∀α .Dyn (Rep α) α

dynamic :: ∀α . (Representable α) ⇒ α → Dynamic
dynamic a = D∀αyn. rep pa r.e

The existential quantifier (which is written as a universal quantifier)
effectively hides the type of the dynamic value. It goes without

saying that dynamic values thus defined are first-class citizens: we
can, for instance, construct a list of dynamic values.

[dy:n:[aDmynica(m47ic1]1::Int),dynamic’F’,dynamic(λn→ n +1::Int)]

Now, what can we do with a value Dyn rα a of type Dynamic?
Not that much so far. If we have a p olytypic function f of type
∀τ .Rep τ → τ → ν where τ does not appear in ν , then we can call
f∀ rα ae. T τh →e p τol→ ytyν p wic feurnectτ id ono easna nloytz aeps ptheaer ty inpνe ,r ethpernes wenetac taionnc rα

and takes the appropriate action (the existentially quantified type
variable cannot escape, since τ does not appear in ν). However, we
cannot take the equality of two dynamic values or cast a dynamic
value into a static value of a given type. For both applications we
have to check two type representations for equality, which is what
we tackle next.

The function unify takes two type representations and possibly re-
turns a p roof of their equivalence.

unify :: ∀τ1 τ2 .Rep τ 1 → Rep τ2 → M aybe (τ1 ↔ τ2)

The run-time unification essentially combines p roofs of equiva-
lence. Assume, for instance, that unify is called with R Int ep1 ::
Rep τ1 and R Int ep2 ::Rep τ2. The proofs ep1 :: τ1 ↔ Int and
ep2 ::τ2 ↔ Int can b e combined into a p roof of τ1 ↔ τ2 b↔y aI pnptlya inngd
the laws ↔of sInytmc amneb trey caonmd btirnaendsii tinvtiotya . pTrhoeosfe olafw τs ↔corτrespond to the

94

functions inv and ‘ƒ’, r espectively.

inv :: ∀α β . (α ↔ β) → (β ↔ α)
invf = E∀αP{ βfr.o(mα ↔= βt o) f→ , →to(=β↔ f roα m)f }

(ƒ) :: ∀α β γ . (β ↔ γ) → (α ↔ β) → (α ↔ γ)
f(ƒƒ)g = E∀Pα{ βfrγ o.m(β β= ↔f roγ m) → f ·(αf ro↔ m g ,)t→o →=(tαo g ↔· γto)f }

The unification p rocedure is slightly more complicated for para-
metric types. Assume, for instance, that unify is passed the rep-
resentations R + rα1 rβ1 ep1 ::Rep τ1 and R + rα2 rβ2 ep2 ::Rep τ2.
The arguments provide proofs ep1 ::τ1 ↔ (α1 + β1) and ep2 ::τ2 ↔

(α2 + β2). Through recursive invocatio↔ns oαf unify we possibly o↔b-
tain p roofs of α1 ↔ α2 and β1 ↔ β2. Using the law of congruence
we can then cons↔truαc t a proof o↔f β(α1 + β1) ↔ (α2 + β2). Finally,
the subproofs are combined into a proof o)f↔ ↔τ1 ↔α τ2 by applying
symmetry and transitivity. The law of congruence τcorresponds to
the function ‘(?)’ defined b elow.

t(h+e)f :’: ∀inαe dβ b. (elαo w→. β) → (∀γδ . (γ → δ) →

(d(βαb .+(eαlo oγ →w) →β)(→β →+(δ∀)γ))δ

(f +g) (Inl a) = Inl(((fα a+)
(f +g) (Inr b) = Inr (g b)

(?) :: ∀α β . (α ↔ β) → (∀γ δ . (γ ↔ δ) →

((βα.+(α γ ↔) ↔β)(→β →+(δ∀)γ))δ

(f? ??) g = EP({(αfro+mγ)= ↔f ro(mβ+f +δ)f)r)om g , to = to f + to g}

fT?h e gfunction ‘(?)’ representing the pair congruence law is defined
sfTi h?meigfl aurnlcyt.

REMARK 3. A s an asidef or the more theoretically minded reader,
types and equivalence typesf orm the objects and arrows of a cate-
gory. The identity arrow is self and ‘ƒ’ implements the composition
gofo rayr.roT whes.i Fe nutrittyhe armrroorwei, sts heel fsua mnd ty ‘ƒpe’ ims ale mbifeunntsct tohre cino mthpiso scitaioten-
gory; its action on arrows is g iven by ‘? ’. I nf act, since each arrow
gepo rhy;asi asna cintivoenrs oen i anrvr oepw, e isveg riyvp enarb aym‘ e?tr’.icI ndf aatca t,ys pine ienc elaucdhin agr othwe
garorroyw; ttysp aec tcioann oben t aurrrnoewds in istgo av ecnobv yar‘ ia?n’t. fuI nnf catoctr,. nce

Given these p rerequisites unify can b e defined as follows.

unify0 ::∀τ1 τ2 .Rep τ1 → Rep τ2 → [τ1 ↔ τ2]

unify0(RIntep=1)(R[iInnvte epp22)ƒep1]
unify0(R1ep1=)(R[1inevp2e)p2ƒep1]

uuuunnnniiiiffffyyyy000((RR×+rrαα1==1:=:rrββ11[e∀e[[ee]iipnτpnppv111vαα))eτ e ← 2((←ppRR.22×R+u ƒƒu ennrr((pααeieiffy22 pτpy1α0α0rrββrr→??22αα11eeeeR ppprrp2eααββ2)p22))),,τ ƒeeƒ2eppe→pββp11←←|| Mu u annyiibffyye00(rrτββ111↔rrββ22τ]]2)
unify r1r2 = c∀aτse unify0 r1r2→ oRf

x : → J ustx
[] →→ →N oJ tuhsint gx

Using run-time unification we can easily cast a dynamic value into
a static value of a given representable type.

rCast :: ∀τ .Rep τ → Dynamic → τ

rCast rτ (Dyn rα a) = c∀aτs.eR eupni fτy→ rτ rα nofa
Just ep → to ep a
JNuostthe inpg→ →→t

etrhrionrg "→ →cast : type mismatch"

cast :: (Representable τ) ⇒ Dynamic → τ
cast d = (rCReapstr rep tda

Another useful function is dynamic function application, the appli-
cation of a dynamic function to a dynamic value. We introduce a
new case R → similar to R + and R × to R ep.

apply :: Dynamic → Dynamic → Dynamic
apply (Dyn (R→ rα rβ mepic)f →) (D Dyynna rα0 cx→)

= case unify rα rα0 of
Just ep0 → Dyn rβ ((from ep f) (to ep0 x))
Nothing →→ error " apply : type m i smat ch"

apply = errNoro "h ainpgp→l y →:e nrootr a funct ion "

EXAMPLE 1. Using dynamic values we can, for instance, imple-
ment a heterogeneous symbol table—a f inite map f rom strings to
values of any type.

type Table = [(String,Dynamic)]

rLookup :: ∀τ .Rep τ → String → Table → M aybe τ
rLookup rτ s t = f∀mτ.apR e(rpC τa→ st rSτt)r (nlogo→ kupT a asb lt)e

For alternative s olutions the reader is referred to Weirich [32].

EXAMPLE 2. Dynamic values alsop rovide a simple way of imple-
menting C’s p rintf function in a type-safe manner; see also [27].
The p rintf function allows the p rogrammer to show an arbitrary
number of arguments of different types. B oth the number of ar-
guments and their types are specified by a so-calledf ormat string
which is passed as af irst argument to printf. Since thef ormat string
may be unknown a t compile time (because it may be readf rom an
external source), p rintf cannot be statically type-checked.

printf :: String → [Dynamic] → ShowS
printf " " = sShtoriwngSt →ring[D "y "n
printf (’ %’ : ’ d’ : cs) (d :ds) = shows (cast d ::Int)

· p rintf cs ds
printf (’ % ’ : ’ s ’ : cs) (d :ds) = sho·wp Sritnrtinfgc s(d casst d ::String)

· p rintf cs d s
printf (’ % ’ : ’ % ’ : cs) ds = sh·owp Crinhtafrc ’s s%d d’s · p rintf cs ds
printf (’ % ’ : c :cs) [] = error "print f :· pmriinstsfi cnsgd "

"argument "

printf (c :cs) ds = showChar c · p rintf cs ds

Note that the code assumes that the String type is repre-
sentable.

3.2 Closing the circle

We add Dynamic to the family of representable types, so that we
can also p ass a dynamic value to a polytypic function

data Rep τ = . . .
| RDynamic (τ ↔ Dynamic)

Note that Rep τ and Dynamic are now defined by mutual recursion.

Of course, we h ave to extend the polytypic function definitions to
take the new case into account. Here is how we take equality of two
dynamic values.

rEqual (RDynamic ep) d1 d2
= case (from ep d1,from ep d2) of

(Dyn rα1 a1,Dyn rα2 a2) →

case unify rα1 rα2 of
Just ep0 → rEqual rα1 a1 (to ep0 a2)
Nothing →→ rFEaqlsuea

We first determine whether the types of the dynamic values are
equal. If this is the case, rEqual is called r ecursively to check
whether the values are equal, as well.

95

4 Generics

4.1 Generic representation types

What have we achieved so far? Using type r epresentations we can
program a function that works uniformly for all representable types.
Let’s become more ambitious now. We aim at b roadening the scope
of the polytypic f unctions so that they work for all types including
types that the p rogrammer is yet to define. We won’t achieve this
goal in its full glory—this requires an external tool or some support
from the compiler—but we will get p retty close. The p rogrammer
only has to do a bit of extra work for each newly introduced type.

The principal idea is to make every type r epresentable. Consider as
a first simple example the data type of Booleans.

data B ool = False | True

Now, the type B ool is isomorphic to the sum type 1+ 1, which is
already r epresentable.4 Here are functions that convert to and fro.

fromBool :: Bool → 1+ 1
fromBool False = IBnolo oUln→ it
fromBool True = Inr Unit

toBool :: 1+ 1→ B ool
toBool (Inl Unit) = 1F+als1e
toBool (Inr Unit) = True

Using these isomorphisms we can represent the type B ool as fol-
lows.

rBool :: Rep Bool
rBool = R+ r1 r1 (EPf romBool toBool)

The type 1+ 1is the so-called generic r epresentation t ype of B ool,
see [18].

Since Haskell’s data construct introduces a sum of products and
both sums and products are representable, it looks as if we are done.
But not quite, data types may be recursively defined and they may
be parametric (possibly abstracting over higher-order kinded type
constructors). W e will address each p oint in turn.

Haskell’s list data type serves as a nice example for a data type that
is b oth r ecursive and parametric.

data [α] = [] | α : [α]

Its generic representation type is 1+ (α ×[α]) with the isomor-
Iptshisg mens egriivcenr e bprye

fffrrrooommm[[[]]][(]a:as) ==:: II∀nnαlr.U ([aαni: t]× →:a 1s)+(α×[α])
tttooo[[[]]]((IInnrlU (an: it×):a s)) =:=: ∀a[]α:a.s1.+(α×[α])→ [α]

Thus, the following representation of [α] suggests itself.

r[] :: ∀α .Rep α → Rep [α]
r[] rα = R+ r1 (pr×α rα (r[] pr[αα)]) (EPf rom[] to[])

Two points are worth noting. First, the type representation of
the list type constructor is a function taking a r epresentation of

4Strictly speaking, the types B ool and 1+ 1 are not isomorphic
in Haskell since 1 contains an additional b ottom element. W e sim-
ply ignore this complication h ere.
τ to a r epresentation of [τ] . Second, the representation of [τ]

is given by an infinite term as type recursion is mapped onto
value recursion. Since Haskell is a lazy language, this is not a
problem as far as the polytypic functions are concerned: the call
rEqual (r[] rInt) [0 . . 8] [0 . .9], for instance, happily evaluates to
False. However, the presence of infinite terms renders the uni-
fication of r epresentations impossible: quite annoyingly the call
cast (dynamic [0 . . 9 ::Int]) :: [Int] does not terminate.

There are at least two solutions to this problem. W e could represent
type r ecursion explicitly by introducing a fixed p oint operator—this
is the approach taken in PolyP [19]. However, this is technically
rather awkward and never completely general as type recursion may
span over several types (mutual r ecursion) and as it may involve
type constructors rather than types (so-called nested d ata t ypes, see
[6]). Thus, we would need an infinite family of fixed point oper-
ators. Furthermore, checking equality of higher-order kinded type
constructors is undecidable. Haskell avoids the latter problem by
using name e quivalence rather than structural e quivalence, which
motivates the second solution.

We continue to represent r ecursive types b y infinite terms but addi-
tionally label the r epresentation b y its Haskell name. The following
data type is sufficient for capturing closed Haskell type terms (in-
cluding higher-order kinded types).

data Term = App String [Term]
deriving (Eq)

For instance, [Int] is r epresented by App " [] " [App " Int " []] . We
augment Rep τ b y one additional constructor.

data Rep τ = RInt (τ ↔ I nt)

|| RRD1ynamic ((ττ ↔↔D 1)ynamic)
|| ∀α β .R+ (Rep α) (Rep β) ((ττ ↔↔ 1(α) + β))

|| ∀∀αα ββ ..RR× ((RReepp αα)) ((RReepp ββ)) ((ττ ↔↔ ((αα ×+ ββ))))
|| ∀∀αα ..RRTyp(eR Teepr mα))((RReepp pαβ)) ((ττ ↔↔ (αα)

On the face of it, we now have two types for type representations:
Rep τ captures the structural information and Term captures the
naming information. The function term? extracts the latter infor-
mation from the former.

term? :: ∀τ .Rep τ → Term

ttteeerrrmmm???(((RRRD1Inytenepamp))icep) === AAApppppp"""1ID"nytn[a"]m[i]c"[]
ttteeerrrmmm???(((RRR×T+yprreααtrrr ββαeeeppp))) === tAApppp""((*+))""[[tteerrmm??rrαα,,tteerrmm??rrββ]]

We change the definition of r[] to incorporate the list type name.

rr[[]]rα :=: ∀RαTyp.eR(e(Apr+pα pr1→ "([]R r×"epr[αt [eα(rr]m[]?rrαα))]))(EPf rom[]to[])
It remains to extend the definition of unify0. To unify two labelled

rt1eparnedset 2ntfaotiroe nqsuR alTyitpye.t1rα1ep1andR Typet2rα2ep2,w es implyt est

uni=fy0(R[iTnyvpee tp12rƒαh1eeapd1()u(nRiTfyyp0ertα21rrαα22e)pƒ2e)p1|t 1t2]
TIfht e1c aanldlh t 2eaadre(uenqiufya0l,rw αe1rk αn2o)wi mt mhaetdr iaαt1elaynd rer tuαr2nmsut hsetb p erou onfi.fiN aboltee.

96

that the following definition of unify0 does not work, as it is too

eager.

uni=fy0(R[iTnyvpee pt12rƒαe1peαpƒ1)ep(1RT|yp t1et2rt2α,2epeαp2←)u nif-y-0W rαR1OrαN2G]
Turning to the treatment of higher-order kinded data types let us
first take a look at one popular example. The following definition
introduces so-called generalized r ose t rees.

data Tree φ α = Node α (φ (Tree φ α))

Since the first argument of Tree r anges over type constructors of
kind ? → ?, Tree has k ind (? → ?) → ? → ?. We have already
skeinend t?ha →t a? ,tyT pree ecoh nasstrk ucintdor φ? o→f k?)in→d →? ? →→ →?? i.s Wreepr ehasvenetea dlr be ayd ay
fsuenecntit ohna toaf tt yyppee ∀c αon . sRtrepuc αto r→φ φ Ro efp k(iφn αd)? . →Sin? cei sTrr eeep arebssetrnatcedts obvye ar

tfyunpec cioonnso tfru tcytpoers∀ oαf. .thReisp kα in →d →iRt heaps tφyα pe)

rTree :: ∀φ . (∀α .Rep α → Rep (φ α)) →
(∀R αep.R(eφpα α)))→→ Rep (Tree φ α)).

Note that rTree possesses a so-called rank-2 type. In general, a type
constructor τ of kind κ is represented by an element of R epκ τ with

Rep? τ = Rep τ
Repκ1→κ2 τ = ∀α.Repκ1 α → R epκ2 (τ α).

As the latest version of the Glasgow Haskell compiler (GHC 5.03)
supports r ank-n types, we can, in fact, represent types of arbitrary
kinds.

So far so good. One small problem remains though. To define the
representation of Tree φ α, we h ave to construct type terms from
the representations of φ and α. Since the r epresentation of φ of type
Rep?→? φ is a function this sounds like a hard nut to crack. For-

tuna?t→el?y, Haskell’s type language is a multi-sorted term algebra as
Haskell does not offer general type abstraction. E ach type term is
of the form App s [t1, .. .,tn] ; type application is p urely syntactic:
applying App s [t1,. . . ,tn] to t yields App s [t1,. . . ,tn, t]. Conse-
quently, from the r esult of an application we can reconstruct both
the original function and its argument.

term?→? :: ∀φ . (∀α .Rep α → Rep (φ α)) → Term
term?→? rφ = c∀aφs.e(t∀eαrm.R? e(prφ α r1→) R ofeA pp(φp tα t)s))→→ A Tpepr mt (init ts)

Given these p rerequisites we define

rTreerφrα = RType(App"[tTerreme?"→?rφ,term?rα])
(r× rα (rφ (?r→Tr?ee rφ rα)))
(E×Pf romTree toTree)

fromTree :: ∀φ α . Tree φ α → α ×(φ (Tree φ α))
fromTree (Node a ts) = ∀(aφ : α×:. tTsr)e

toTree :: ∀φ α .α ×(φ (Tree φ α)) → Tree φ α
toTree (a :×: ts) = N∀oφd αe. aα t×s

4.2 Constructor names

To be able to write p olytypic functions t hat show or r ead elements
of some data type, we add one more constructor to the Rep data
type.

data Rep τ = ...
| RCon String (Rep τ)

The R Con constructor is intended to r ecord the string representa-
tion of a data constructor. Of course, in practice one would replace

String by a more elaborate data type that contains further informa-
tion such as fixity, see [18]. The updated definition of rBool illus-
trates the use of R Con.

rBool :: Rep B ool

rBool = RType((rA+pp(R"BCoonol""Fa[l]s)e"r1)(RCon"True"r1))
(EPf romBool toBool)

Here is a simplified version of Haskell’s show function, which con-
verts an element of any data type to its string r epresentation. To
understand the definition keep in mind that the sum type is used to
represent the cases of a d ata declaration while the product type is
used to represent the arguments of a single constructor. The unit
type 1 signals that a constructor has no arguments.

rShows :: ∀τ .Rep τ → τ → S howS
rShows (RInt ep) t = s∀hτo.wRse p(fτ ro→ m ep →t)
rShows (RDynamic ep) t = casef rom ep t of

Dyn rα x →

showxC→ har ’ (’
· showString "dynamic "
·· rshShoowwSstr rα gx
·· srhShowowCsha rr ’) ’

rShows (R1 ep) t = showStr·isn gho "w w"C
rShows (R+ rα rβ ep) t = casef rom ep t of

Inl a → rShows rα a

rShows (R×rαrβep)t = casI(enarf :r×b o:→ mb)e pr → S htoo wfs rβb
: r×Sh:b ow)s→ rα a

· showString " "

rrSShhoowwss ((RRTCyopnese(rRα1eepp))t) t == srhShowowStsr·r irαn Sg(hfs orwomsr e βpbt)
-- nullary constructor

rShows (RCon s rα) t = showChar ’ (’ · showString s
· showChar ’· ’h o· rwSShtoriwngs rα t
·· sshhoowwCChhaarr ’) ’

Since type representations are ordinary values, we can separate spe-
cial cases simply by pattern matching. The second but last equation
of rShows, for instance, handles nullary constructors while the last
equation takes care of the r emaining cases.

5 Related work
The p olymorphic Horn clause language of Hanus [12] generalizes
the untyped Horn clause r esolution semantics of Prolog t o typed
and polymorphically typed terms. Our initial definition of Rep in
Section 2.1 is legal in this language, which appears to be strictly
more powerful t han Haskell. Interestingly, the semantics requires
the presence of types at run time. Optimizations are possible for
so-called type p reserving functions where the type variables of the
argument types also occur in the r esult type (note t hat the Rep con-
structors are type-preserving).

Jansson and Jeuring [19] developed PolyP, a variant of Haskell that
includes a polytypic function c onstruct p ermitting definitions b y
primitive recursion on the structure of regular data types, but did
not support higher-order kinded type arguments. H inze [17] pro-
posed an approach based on indexing values b y types and types
by kinds. This made it possible to write definitions of functions
like map that work for arbitrary p olymorphic data structures. T his

97

approach has been implemented in Generic Haskell [7], a succes-
sor to PolyP. Hinze and Peyton Jones [18] introduced derivable type
classes, which can define type-indexed values within classes but are
limited to kind ? . Clean’s generics system [3] generalizes derivable
type classes to allow generic type classes defined at arbitrary k inds
rather than j ust ?.

Abadi et al. [2] first considered rigorously the problem of adding
a Dynamic type and type pattern matching typecase to a monomor-
phic ML-like language. Leroy and Mauny [21] studied the inter-
action of Dynamic with implicit p olymorphism and implemented
a restricted form of p olymorphic type pattern matching with both
∀ and ∃ quantifiers. Abadi et al. [1] considered dynamics with
e∀xp alnicdit∃ anq uda nimtipfileicrsi.t pA oblyamdio reptha isl.m[, 1a]n dco snhsiowdeerded dhd owyn atom gicesnew raitlh-
ize typecase to arbitrary polymorphic patterns. We believe our
Dynamic also can support making values of closed polymorphic
types dynamic, although we have yet to experiment with unifying
and pattern-matching p olymorphic type representations.

GHC’s Dynamic library contains TypeRep and Dynamic types and a
Typeable class that are weaker, ‘untyped’ versions of our Dynamic,
Rep, and R epresentable. Type r epresentations are abstract, and it
is impossible to, for example, unpack component TypeReps from a
product TypeRep. On the other hand, our typed versions constitute
a safe implementation of these constructs.

Clean also includes support in development for a r icher type
Dynamic [26] that includes typecase with pattern matching on (pos-
sibly polymorphic) types, in the style of Leroy and Mauny, and
also supports type-dependent functions. Clean’s dynamics employ
a type class TC α that says that it is possible to make α dynamic, so,
unlike earlier approaches, values with p artially abstract types con-

taining free type variables can be cast t o Dynamic as long as all the
type variables are of class TC. Our Dynamic supports exactly this
behaviour, whence Clean’s TC is analogous to our R epresentable
class.

Shields, Sheard, and Peyton J ones [27] present an alternative imple-
mentation of dynamics based on staged type inference. In staged
computation [10, 28], compilation of p arts of a program may b e
delayed, so functions may b e specialized to arguments available at
compile time. Staged type inference delays type inference and type
checking until run time as well. T his makes it possible to avoid
many of the difficulties of explicit p olymorphic type pattern match-
ing encountered in previous approaches, since unification occurs
at run time when concrete type information is available. Our ap-
proach also employs run-time unification, if only for monomorphic
types, but our unify is a user-level program r ather than compiler-
generated code. It would b e interesting to see whether our ap-
proach generalizes to p olymorphic unifcation. Staged computation
may also b e useful in optimizing r epresentation-passing b y spe-
cializing generic functions to p articular representations. We h ave
also experimented with using GHC’s rewrite rules [24] to automati-
cally rewrite representation-based functions when type information
is k nown at compile time. W e f ound that functions can be fully
specialized to non-recursive types, but not to r ecursive types like []
because recursive types are represented by recursively defined r ep-
resentations. As a result, rewrite rules in t heir present form are of
limited use for optimizing r epresentation-based programs.

Weirich [32] showed how to implement type-safe cast and a form
of Dynamic in Haskell using type classes. The two Haskell imple-
mentations of cast employ mutually r ecursive type classes CastTo α

and CastFrom β; the first implementation of these classes interprets

cast as coercion (α → β), whereas the second interprets cast as un-
restricted substitution (φ α → φ β). These interpretations of cast
rcoesrtrreicspteodnds uebxsatcittluyti oton o (uφr αin →terpφ reβ ta)t.ioT nsh eosef eti ynptee r epqruetiavtailoenncseo .

Implicit, compiler-generated type information has b een studied in
many languages and proposals for implementing statically-typed
dynamics and implementing intensional polymorphism. Explicit
type r epresentations are not new either: they were introduced b y
Crary, Weirich, and M orrisett [9]; the authors also observed that
representations could be used to implement an explicit Dynamic
type. Crary and Weirich [8] and Weirich [33] h ave also consid-
ered encodings of type r epresentations in the more powerful type
systems LX, which includes function, sum, product, and recursive
kinds, and L U−, which includes impredicative kind p olymorphism.

Baars and Swierstra [4] have independently discovered the type rep-
resentation encoding presented in Section 2. However, instead of
starting with r epresentation-passing generic functions and attempt-
ing to implement representations, they start with dynamic types and
postulate a type family TypeRep α that contains enough information
for dynamic t ypechecking, and then derive an implementation for
it. Baars and Swierstra address dynamic typing issues b eyond those
considered here, such as dynamic typing and compilation of expres-
sions. In contrast, we have considered b oth generics and dynamics,
and interrelated them. We h ave also shown how to r epresent a more
general class of types, including polymorphic and recursive types.

6 Conclusions

Previous approaches t o implementing generic programming and
dynamic typing in high-level statically typed languages have in-
volved substantial language modifications and substantial proofs of
type safety for the modified language. Dynamics and generics have
been studied separately, leaving unresolved the question of whether

dynamic values can be used with generic functions and vice versa.
We have shown that generic programming and dynamic typing fea-
tures can be derived simultaneously and compatibly from type rep-
resentations. Moreover, type representations can be encoded in
Haskell using existentials and equivalence types, so they can be im-
plemented and given a semantics b y translation. As far as we know
this is the first approach to make this connection between statically
typed generics and dynamics explicit.

Unlike prior approaches to implementing type representations, we
encode representations as ordinary data types and typecases as or-
dinary cases. As a result, all of the existing pattern matching con-
structs and optimizations carry over to representation patterns with
no effort. Mutually recursive functions and multiple type arguments
also pose no p roblems. Representation-passing functions can be
compiled separately from their calling contexts; in contrast, other
approaches to statically typed generic programming cannot compile
generic function uses and definitions separately. Dynamic types and
run-time type checking can be defined i n terms of representations,
but since type representations are explicitly typed program data, this
implementation of Dynamic is more flexible than implementations
in which type information is compiler-generated and abstract.

There are several directions for improving our approach. For exam-
ple, it is not possible t o override the behaviour of a polytypic func-
tion at some specific instance (without changing the definition of
Rep). In contrast, overriding is easy using type classes. E xtensible
data types might alleviate this problem. Our encoding also incurs
unnecessary run-time type dispatch overhead when types are avail-
able at compile time. Furthermore, our encoding translates arbitrary
tuples and data types to a universal data type consisting of binary
products, sums, and constructors, which may incur additional over-

98
head. These drawbacks could be addressed through specialization,
run-time code generation, or deforestation optimizations. Our en-
coding requires a fair amount of programmer effort, and we p lan
to address this by implementing extensions such as with clauses in
Haskell via translation. Finally, while it is possible t o define poly-
typic functions such as map that analyze type constructors of kind
other than ? (using a different Rep type), constructing functions that
work for all types of all kinds seems out of reach w ithin Haskell’s
type system. These are all important directions for future work.

References
[1] Mart ı´n Abadi, Luca Cardelli, Benjamin Pierce, and Didier

R e´my. Dynamic typing in p olymorphic languages. Journal
of Functional P rogramming, 5(1): 111–130, January 1995.

[2] Mart ı´n Abadi, Luca Cardelli, Benjamin Pierce, and Gor-
don Plotkin. Dynamic typing in a statically t yped language.
ACM Transactions on P rogramming L anguages and Systems,
13(2):237–268, April 1991.

[3] Artem Alimarine and Rinus Plasmeijer. A generic program-
ming extension for Clean. In Th. Arts and M. Mohnen, ed-
itors, Proceedings of the 13th I nternational workshop on the
Implementation ofFunctional Languages, IFL’01, pages 257–
278, A¨lvsj¨o , Sweden, September 2001.

[4] Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic
typing. In Simon Peyton J ones, editor, Proceedings of the
2002 I nternational Conference on Functional P rogramming,
Pittsburgh, PA, USA, October 4 -6, 2002. ACM Press, October

2002. To appear.

[5] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lam-
bert M eertens. Generic P rogramming — A n Introduction.
In S. Doaitse Swierstra, Pedro R. Henriques, and Jose N .
Oliveira, editors, 3rd I nternational Summer School on Ad-
vanced F unctional P rogramming, B raga, P ortugal, volume
1608 of Lecture N otes in Computer Science, p ages 28–1 15.
Springer-Verlag, Berlin, 1999.

[6] Richard Bird and Lambert M eertens. Nested datatypes. In
J. Jeuring, editor, F ourth I nternational Conference on M athe-
matics of Program Construction, MPC’98, M arstrand, Swe-
den, volume 1422 of Lecture N otes in Computer Science,
pages 52–67. Springer-Verlag, June 1998.

[7] DævClarke, Ralf Hinze, J ohan Jeuring, Andres L o¨h, and Jan
de W it. The Generic Haskell u ser’s guide. Technical R eport
UU-CS-2001-26, Universiteit Utrecht, November 2001.

[8] Karl Crary and Stephanie Weirich. Flexible type analysis. In
Proceedings of the ACM SIGPLAN I nternational Conference
on Functional Programming (ICFP ’99), Paris, France, vol-
ume (34)9 of ACM SIGPLAN Notices, pages 233-248. ACM
Press, September 1999.

[9] Karl Crary, Stephanie Weirich, and Greg Morrisett. In-
tensional polymorphism in type-erasure semantics. In Pro-
ceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98), B altimore, MD, volume
(34)1 of ACMSIGPLANNotices, pages 301–312. ACM Press,
January 1999.

[10] Rowan Davies and Frank P fenning. A modal analysis of
staged computation. Journal of the A CM, 4 8(3):555–604,

May 2001.

[11] Cordelia V . Hall, Kevin Hammond, Simon L. Peyton J ones,
and Philip L . Wadler. T ype classes in Haskell. ACM Trans-

actions on Programming L anguages and Systems, 18(2): 109–
138, March 1996.

[12] Michael Hanus. Horn clause programs with polymorphic
types: semantics and resolution. Theoretical Computer Sci-
ence, 89(1):63–106, October 1991.

[13] Robert Harper and Mark L illibridge. A type-theoretic ap-
proach to h igher-order modules with sharing. I n Conference
Record of the 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming L anguages (POPL ’94), P ortland,
Oregon, pages 123–137, New York, NY, January 1994. ACM.

[14] Robert Harper and Greg Morrisett. Compiling polymorphism
using intensional type analysis. In Conference record of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’95), San Francisco, Cali-
fornia, p ages 130–141 . ACM Press, 1995.

[15] Ralf Hinze. Memo functions, polytypically! In J ohan Jeur-
ing, editor, P roceedings of the 2nd Workshop on Generic Pro-
gramming, Ponte de L ima, P ortugal, pages 17–32, J uly 2000.
The proceedings appeared as a technical r eport of Universiteit
Utrecht, UU-CS-2000-19.

[16] Ralf Hinze. A new approach to generic functional pro-
gramming. In T homas W . Reps, editor, P roceedings of the
27th A nnual ACM S IGPLAN-SIGACT Symposium on Princi-
ples of Programming L anguages (POPL’ 00), Boston, M as-
sachusetts, January 19-21, pages 119–132, January 2000.

[17] Ralf Hinze. Polytypic values possess p olykinded t ypes. Sci-
ence of Computer P rogrammming, 2002. T o appear.

[18] Ralf Hinze and Simon P eyton J ones. Derivable type classes.
In Graham Hutton, editor, P roceedings of the 2000A CM SIG-
PLAN Haskell Workshop, volume 41. 1 of Electronic N otes
in Theoretical Computer Science. Elsevier Science, A ugust
2001. The preliminary p roceedings appeared as a University
of Nottingham technical report.

[19] Patrik Jansson and Johan Jeuring. PolyP—a p olytypic pro-
gramming language extension. In Conference R ecord of the
24th ACM SIGPLAN-SIGACT Symposium on P rinciples of
Programming L anguages (POPL’97), P aris, France, pages
470–482. ACM Press, January 1997.

[20] Xavier Leroy. Manifest types, modules, and separate com-
pilation. In Conference R ecord of the 2 1st ACM SIGPLAN-
SIGACT Symposium on P rinciples o f P rogramming L an-
guages (POPL ’94), Portland, Oregon, p ages 109–122, New
York, NY, January 1994. ACM.

[21] Xavier Leroy and Michel Mauny. Dynamics in ML. Journal
of Functional P rogramming, 3(4):43 1–463, 1993.

[22] Yasuhiko Minamide, Greg Morrisett, and Robert Harper.
Typed closure conversion. In Conference R ecord of the 23rd
ACM SIGPLAN-SIGACT S ymposium on P rinciples of Pro-
gramming L anguages (POPL ’96), pages 271–283, St. Peters-
burg Beach, Florida, January 1996.

[23] Simon Peyton J ones and John Hughes, editors. Haskell 98
—A N on-strict, P urely Functional L anguage, February 1999.
Available from http : / /www .haskell .org/definition/ .

[24] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare.
Playing by the rules: Rewriting as an optimization technique
in GHC. In Ralf Hinze, editor, P roceedings of the 2001
ACM SIGPLAN Haskell Workshop (HW’2001), 2nd Septem-
ber 2001, Firenze, I taly, E lectronic Notes in Theoretical Com-

puter Science, Vol. 59, p ages 203–233, September 2001. The

99

preliminary proceedings appeared as a Universiteit Utrecht
technical report, UU-CS-2001-62.

[25] Benjamin C. Pierce. Types andp rogramming languages. MIT
Press, Cambridge, Mass., 2002.

[26] Marco Pil. Dynamic types and type dependent functions. In
Kevin Hammond, Antony J . T. Davie, and Chris Clack, edi-
tors, I mplementation of Functional L anguages, 10th Interna-
tional Workshop, IFL’98, London, UK, September 9-11, Se-
lected Papers, volume 1595 of Lecture N otes in Computer
Science, pages 169–185. Springer, 1999.

[27] Mark Shields, Tim Sheard, and Simon Peyton J ones. Dy-
namic typing as staged type inference. In The 25th ACM
SIGPLAN-SIGACT Symposium on P rinciples of Program-
ming L anguages (POPL ’98), pages 289–302, New York, J an-
uary 1998. ACM.

[28] Walid Taha and Tim Sheard. Multi-stage programming with
explicit annotations. In P roceedings of the ACM SIGPLAN
Symposium on Partial E valuation and Semantics-Based P ro-
gram M anipulation (PEPM ’97), volume (32)12 of ACM SIG-
PLAN Notices, pages 203–217, New York, J une 1997. ACM
Press.

[29] Philip Wadler. Theorems for free! In The Fourth I nter-
national Conference on F unctional Programming L anguages
and Computer A rchitecture (FPCA’89), London, UK, pages
347–359. Addison-Wesley Publishing Company, September
1989.

[30] Philip Wadler. The Girard-Reynolds isomorphism. In
N. Kobayashi and B. C. Pierce, editors, Proc. of 4th I nt. Symp.
on Theoretical Aspects of Computer Science, TACS 2 001,
Sendai, J apan, 29–31 Oct. 2 001, volume 2215 of Lecture
Notes in Computer Science, pages 468–491 . Springer-Verlag,
Berlin, 2001.

[31] Philip Wadler and Stephen Blott. How to make ad-hoc poly-
morphism less a d hoc. In P roceedings of the 16th A nnual
ACM SIGPLAN-SIGACT Symposium on P rinciples of P ro-
gramming L anguages (POPL ’89), pages 60–76, Austin, TX,
USA, January 1989. ACM Press.

[32] Stephanie Weirich. Type-safe cast: functional pearl. In P ro-
ceedings of the ACM SIGPLAN I nternational Conference on
Functional P rogramming (ICFP ’00), volume (35)9 of ACM
SIGPLANN otices, pages 58–67, N.Y., September 2000. ACM
Press.

[33] Stephanie Weirich. Encoding intensional t ype analysis. In
David Sands, editor, P roceedings of the 10th European Sym-
posium on P rogramming, ESOP 2 001, volume 2028 of L ec-
ture N otes in Computer Science, p ages 92–106, 2001 .

A Listing

A.1 Generic representation types

data 1 = Unit

data α+ β = Inl α | Inr β

data α ×β = α :×:β

Standard mapping functions on the above types (and on the function type).

(+) :: ∀α β . (α → β) → (∀γ δ . (γ → δ) → ((α +γ) → (β +δ)))
(f +g) (Inl a) = ∀Inαl β(f. (a)α

(f +g) (Inr b) = Inr (g b)
(×) :: ∀α β . (α → β) → (∀γδ . (γ → δ) → ((α ×γ) → (β ×δ)))
((f× ×)g) (a :×:b) = f∀ aα β:×.: g αb→

((f→ →)g)h

A.2 Type equivalence

Reflexivity, symmetry and transitivity.

:: ∀α β .(α → β) → (∀γδ . (γ → δ) → ((β → γ) → (α → δ)))

= g α· hβ ·.f (α

data α ↔ β = EP{from ::α → β, to :: β → α}

self :: ∀α. α ↔ α

self = ∀EαP.{αfr↔o m =α id, to = id}

inv :: ∀α β . (α ↔ β) → (β ↔ α)
invf = E∀αP{ βfr.o(mα ↔= βt o) f→ , →to(=β↔ f roα m)f }

infixr 9 ƒ

(iƒnf)i :ƒ: ∀α β γ . (β ↔ γ) → (α ↔ β) → (α ↔ γ)
f(ƒƒ)g = E∀Pα{ βfrγ o.m(β β= ↔f roγ m) → f ·(αf ro↔ m g ,)t→o →=(tαo g ↔· γto)f }

Mapping functions for generic r epresentation types (and for the function type) implementing the laws of congruence.

(?) :: ∀α β . (α ↔ β) → (∀γ δ . (γ ↔ δ) → ((α +γ) ↔ (β +δ)))
(f? ??) g = E∀αP{ βfr.o(mα ↔=fβ ro)m→ f ((+∀γfrδ om.(g , ↔toδ =) →to(f (+α t+o γg)}

((f???)) :: ∀α β . (α ↔ β) → (∀γ δ . (γ ↔ δ) → ((α ×γ) ↔ (β ×δ)))
(ff? ???) gg = E∀αP{ βfr.o(mα ↔=fβ ro)m→ f (×∀γfr δom.(g , ↔toδ =) →to(f (×α t×og)}

((f???)) :: ∀α β . (α ↔ β) → (∀γ δ . (γ ↔ δ) → ((α → γ) ↔ (β → δ)))
(ff? ???) gg = E∀αP{ βfr.o(mα ↔= tβo) f→ →→ (f ∀rγoδ m. g ,t↔o = δ)f ro→ m(f(α→→ →toγ)g ↔}

A.3 Type representations

data Rep τ =

RInt (τ ↔ Int)
RChar ((ττ ↔↔ ICnhta)r)
RDynamic ((ττ ↔↔ CDyhanar)mic)

∀α β .R→ (Rep α) (Rep β) ((ττ ↔↔ D(αy n→a mβi)c))
RR1→ ((ττ ↔↔ (1α)

∀α β .R+ (Rep α) (Rep β) ((ττ ↔↔ 1(α) + β))
∀∀αα ββ ..RR× ((RReepp αα)) ((RReepp ββ)) ((ττ ↔↔ ((αα ×+ ββ))))
∀∀αα ..RRTyp(eR Teepr mα))((RReepp pαβ)) ((ττ ↔↔ (αα)

RCon STterrinmg((RReeppα α τ))

100

Smart constructors.

rInt ::
rInt =

rChar ::
rChar =
rDynamic ::
rDynamic =
r→ ::
r→ rα rβ =
r1 ::
r1 =
r+ ::
r+ rα rβ =
r× ::
r× rα rβ =

A class for r epresentable types.

Rep Int

RInt self
Rep Char
RChar self
Rep Dynamic

RDynamic self

∀α .Rep α → (∀β .Rep β → Rep (α → β))
R∀α→. rα rβ αs→e lf

Rep 1

R1 self

∀α .Rep α → (∀β .Rep β → Rep (α + β))
∀R+α rα rβ αse→ lf

∀α .Rep α → (∀β .Rep β → Rep (α ×β))
∀R×α rα rβ αse→ lf

class R epresentable τ where
rep :: Rep τ

instance R epresentable Int where
rep = rInt

instance R epresentable Char where
rep = rChar

instance R epresentable Dynamic where
rep = rDynamic

instance (Representable a ,Representable b) ⇒ R epresentable (a → b) where
rep = (R prr→e rep rep

instance (Rep→resentable α,Representable β) ⇒ R epresentable (α +β) where
rep = (R r+ rep rep

instance (Representable α,Representable β) ⇒ R epresentable (α ×β) where
rep = (R prr×e rep rep

A.4 Dynamics

data Dynamic = ∀α .Dyn (Rep α) α

dynamic : : ∀α . (Representable α) ⇒ α → Dynamic
dynamic x = D∀αyn. rep p xr

101

Run-time unification of types.

unify0 ::∀τ1 τ2 .Rep τ 1 → Rep τ2 → [τ1 ↔ τ2]
unify0 :(:R∀Iτnt ep1) (RInt e→p2R)

= [inv ep2 ƒep1]
unify0 (RChar ep1) (RChar eƒp2e)p

= [inv ep2 ƒep1]

unify0(RDynam=icep[1i)nv (Re pD2ynƒamepic1e]p2)

uunniiffyy00((RR1→eprα11=)r(βR11[eienpvp1)2e)(p R2→ƒ(reαp2αr?β2eeppβ2))ƒep1|e pα← unify0rα1rα2,epβ←u nify0rβ1rβ2]
= [inv ep2 ƒep1]

uuuunnnniiiiffffyyyy0000((((RRRRTC+×yoprnreααs1=1=t==11rrβrrβαα1111eu[[[)eneiiippnnnp (vi11Rvvf))1y)Ce ee0 ((oppp RrR(n222αR×+1ƒsƒƒT2yrrr(h(pαααeeere22α2ppaααt2rrd2)ββ??(r22uαeeeen2ppppie2ββf2yp))))02ƒƒr)eeαpp111rα||2e e)ppƒααe←←p1 u |unt n1iiffyy00rtr2αα1]1rrαα22,,eeppββ←←u u nniiffyy00rrββ11rrββ22]]
unify0 = []

unify :: ∀τ1 τ2 .Rep τ1 → Rep τ 2 → M aybe (τ1 ↔ τ2)
unify r1r2 = c∀aτse unify0 r1r2→ oRf

x : → J ust x
[] →→ →N oJ tuhsint gx

Type-safe cast and dynamic function application.

rCast :: ∀τ .Rep τ → Dynamic → τ
rCast rτ (Dyn rα a) = c∀aτs.eR eupni fτy→ rτ rα nofa

aaccaapppspsttllydy (Dyn(R→
apply

A.5 Type terms

data Term

term?
Just ep → to ep a
JNuostthe inpg→ →→t oee rrpoar "cast : type mismatch"

:: (Representable τ) ⇒ Dynamic → τ

= (rCReapstr rep t da

:: Dynamic → Dynamic → Dynamic

rα rβ ep) fD) (yDnaymn rα0 →x)D

= case unify rα rα0 of
Just ep0 → Dyn rβ ((from ep f) (to ep0 x))

Nothing →→ error "apply : type mismatch"
= errNoro "hainpgp→l y →:e nrootr a function"

= App String [Term]
deriving (Show,Eq)

:: ∀τ .Rep τ → Term
term? (RInt ep) = A∀pτ.pR R"e Ipnτt "→ →[→T]
term? (RChar ep) = App "Char" []

ttteeerrrmmm???(((RRR1→Deynrpaαm)ricβeepp)) === AAApppppp"""D-1y">n"[a][tmeircm"?[r]α,term?rβ]

ttteeerrrmmm???(((RRR×T+yprreααtrrr ββαeeeppp))) === tAApppp""((*+))""[[tteerrmm??rrαα,,tteerrmm??rrββ]]
term?→? :: ∀φ . (∀α.Rep α → Rep (φ α)) → Term
term?→? rφ = c∀aφs.e(t∀eαrm.R? (prφα r1→) R ofeA pp(φp tα t)s))→→ A Tpepr mt (init ts)

102

A.6 Generics

Examples of type representations.

rBool ::
rBool =

fromBool ::
fromBool False =
fromBool True =

toBool ::
toBool (Inl Unit) =
toBool (Inr Unit) =

r[] ::
r[] rα =

Rep B ool

RType((rA+pp(R"BCoonol""Fa[l]s)e"r1)(RCon"True"r1))
(EPf romBool toBool)

Bool → 1+ 1
IBnolo oUln→ it

Inr Unit

1+ 1→ B ool
1F+als1e
True
∀α .Rep α → Rep [α]
RType (eApp αp →" [] "e p[t[eαr]m? rα])

((rE+P(f RroCmo[n]"t[o][]")r1)(RCon"(:)" (r×rα(r[]rα))))

fffrrrooommm[[[]]][(]a:as) ==:: II∀nnαlr.U ([aαni: t]× →:a 1s)+(α×[α])
tttooo[[[]]]((IInnrlU (an: it×):a s)) ==:: a∀[]:αa.s1+(α×[α])→ [α]

instance R epresentable B ool where
rep = rBool

instance (Representable α) ⇒ R epresentable [α] where
rep = (R r[] rep

Generic functions: generic equality.

rEqual ::
rEqual (RInt ep) t1 t2 =
rEqual (RChar ep) t1 t2 =
rEqual (RDynamic ep) d 1 d2 =

rrEEqquuaall((RR→1erpα)r tβ1te2p)t 1t2 ==
rEqual (R+ rα rβ ep) t1 t2 =

rEqual (R× rα rβ ep) t1 t2 =

rEqual (RType e rα ep) t1 t2 =
rEqual (RCon s rα) t1 t2 =

Generic minimum.
rMinBound

∀τ .Rep τ → τ → τ → B ool

∀froτ.mR ep tτ1 →f τr→ om ep →t2B
from ep t1 from ep t2

case (from ep d1,from ep d2) of

(Dyn rα1 v1,Dyn rα2 v2)

→ caseJuu stne ifyp0r α→1 rrαE2qoufalr α1v1(toe p0v2)
Nothing →→ rFEaqlsuea

error " rEquNaolt :h negq →ualF Fiatlyse of funct ions "

case (from ep t1,from ep t2) of

(Unit, Unit) → True
ca(seU (nfirto,mU ep)t→1 →,frT ormu ep t2) of

(Inl a 1 ,Inl a2) → rEqual rα a1 a2

(Inr b1,Inr b2)) →→ rEEqquuaallr rβ b1 b2

→ False
case →(frF omal ep t1,from ep t2) of

(a1 :×:b1,a2 :×:b2) →
rE:×q:ub al rα a1 a2 ∧) r→Equal rβ b1 b2

rEqual rα (from ep t1)∧ (rfEroqmu ep t2)
rEqual rα t1 t2

:: ∀τ .Rep τ → τ
rMinBound (RInt ep) = ∀toτ ep (emp iτn→ Bou τnd)
rMinBound (RChar ep) = to ep (minBound)

rrrMMMiiinnnBBBooouuunnnddd (((RRR1D→yenpraα)mricβeepp)) === tteoorr e eoppr (("UλranMii→ t)nBr oMuinndB:oud nydnr aβm)ic"
rrMMiinnBBoouunndd ((RR+×rrααrrββeepp)) == ttooe e pp((IrnMli(nrBMoiunnBdor uαnd:×r :αr)M)inBoundr β)
rMinBound (RType t rα ep) = to ep (rMinBound rα): β
rMinBound (RCon s rα) = rMinBound rα

103

Generic unparsing.

rShows ::
rShows (RInt ep) t =
rShows (RChar ep) t =
rShows (RDynamic ep) t =

rrSShhoowwss ((RR1→eprα)rt βep)t ==
rShows (R+ rα rβ ep) t =

rShows (R× rα rβ ep) t =

rrSShhoowwss ((RRTCyopnese(rRα1eepp))t) t ==
rShows (RCon s rα) t =

Generic memoization.

rMemo ::
rMemo (RInt ep) f =
rMemo (RChar ep) f =

rrrMMMeeemmmooo (((RRR→1Dyenrpaαm)if rcβeepp))f f ===
wheref Unit =

rMemo (R+ rα rβ ep)f =

wheref Inl =
fInr =

rMemo (R× rα rβ ep)f =

wheref Pair =

rrMMeemmoo ((RRCTyopneser r αα)e fp)f ==
∀τ .Rep τ → τ → ShowS
s∀hτo.wRse p(fτ ro→ m ep →t)
shows (from ep t)
casef rom ep t of

Dyn rα x → showChar ’ (’ · showString "dynamic "
s·h roSwhCowhsa rα x · s·h showowCShtrairn ’g) ’

showString " <fu·r nSchtoiwons>r "
showString " "
casef rom ep t of

Inl a → rShows rα a
IInnrl ab →→ rrSShhoowwss rβ b

caIsenr frb o→ m ep th oofw

rS(hoaw :×s:r bα)(→ from rShe pow ts)r αa· s howString" "· rShowsr βb
showString s
showChar ’ (’ · showString s · showChar ’ ’
· rShows rα t · s·h sohwoCwShatrri ’n)g ’s

∀τ ν .Rep τ → (τ → ν) → (τ → ν)

∀λtτ → ν. fR te →-- nτo→ →me νm)o→ iz a(τti→o n
λλtt →→f f tt -- no memoization
λλtt →→f f tt -- no memoization
λλtt →→f f tt -- no memoization
λλtt →→ cfat sef rom ep t of

U frnoimt →e pf Ut o nfit
f (to ep (UUninti)t)→
λt → casef rom ep t of

eIf nrol am →e pf It no lf a
IInnrl ab →→ ff IInnlr a ab

rMemo rα (nλra b → →f f (Intor ep (Inl a)))
rMemo rβ ((λλba →→ ff ((ttoo ep ((IInnrl ba))))))
λt → casef(rλobm→ ep ft(toof

eaf :o×m: mbe →pt o fPfair a b
rMemo rα a(: λ×a: → b → →rM fePmairo rβ (λb →f (to ep (a :×:b))))
λt → rMem(oλ rα (λ raM →emof (r to ep ba →)) f (f r(otom e ep ta)
rλMt →emor M Mrαemfo

Note that we do not memoize p rimitive types such as I nts or Chars (this would require building a look-up table).

104

