
Generic programming with fixed points for
mutually recursive datatypes

Alexey Rodriguez1 Stefan Holdermans1 Andres L o¨h1 Johan Jeuring1,2
1Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

2School of Computer Science, Open University of the Netherlands, P.O. Box 2960, 6401 DL Heerlen, The Netherlands

{alexey,stefan,andres,johanj}@cs.uu.nl

Abstract

Many datatype-generic functions need access to the recursive posi-
tions in the structure of the datatype, and therefore adopt a fixed
point view on datatypes. Examples include variants of fold that

tbdtbirruoaatatvniaerc se.r sd sg tHaueruolta tacwthryteued prvaede etasarm t t,thayH paaft kieonesel ld.in olM twaeyd baiil-fnneMfgyiscr itn ulehnlaaetevl t-roil-gr iiefne aectxsiuppe orixrnrseaeisvdma selpf ot isy lexntpegrsuedcs ut p hts uycoershietnr ,ea temssco a f ursobrrst w shit viraetanehcz ytp ia tps holgyipnsenegi--r-
tax trees are in fact systems of mutually recursive datatypes and
therefore excluded. Using Haskell’s GADTs and type families, we
describe a technique that allows a fixed-point view for systems of
mutually recursive datatypes. We demonstrate that our approach is
widely applicable by giving several examples of generic functions
for this view, most prominently the Zipper.

1. Introduction

One of the most ubiquitous activities in software development is
structuring d ata. Indeed, many programming methods and devel-
opment tools center around the creation of datatypes (or XML
schemas, UML models, classes, g rammars, et cetera). Once the
structure of the d ata has b een decided on, a p rogrammer addsf unc-

tionality to the d atatypes. H ere, t here i s a lways some functional-
ity t hat i s specific t o a datatype – and p art o f the r eason t hat the
datatype has b een designed i n the f irst p lace. O ther f unctionality is,

Cihtolyw,aos serivdceerer,xing amegn,epp lraierscsioa nnfgds,uas cinmhdgiple anrreeo trtriyce p fvuriennncttit inhogen.as laimtyearo entem satinnygd foartaetyqpueasl-.
Implementing generic f unctionality can b e tiresome a nd, t here-

fore, e rror-prone: i t involves adapting and applying the s ame h igh-
level p rogramming patterns t o d ifferent d atatypes, t ime and t ime
again. D atatype-genericp rogramming a lleviates t his b urden b y en-
abling p rogrammers t o w rite g enericf unctions, i .e., f unctions t hat

asurepOdp ovefreitrn feot dhre odn y caeteaa,trsb y,upt ea -tgh vaaesntc tearb inco dbp yerou o gsfreaw dmoo nmrk minh agansyt oe d mmi fefaregirneesdnttredo aanmtaa tdyf dupinencsg-.
tional programming languages, most notably Haskell (Peyton Jones
2003). W hile e arly p roposals e ncompassed e xtending the u nder-

[Copyright tn otice w ill a ppear h ere o nce ’ preprint ’o ption i s r emoved.]

Submitted t o I CFP 2 009
lying language with dedicated new constructs for generic pro-
gramming (Jansson and Jeuring 1997; Hinze 2000a,b), recent ap-
proaches favour the definition of generic functions in Haskell itself
using Haskell’s advanced type-class system (Cheney and Hinze

2002; Hinze 2004; L ¨ammel and Peyton Jones 2003).
The various approaches to generic programming generally dif-

fer in the expressivity of the generic functions that can be defined
and the classes of datatypes that are supported. The most promi-
nent example is that quite a number of generic functions operate
on the recursive structure of datatypes, but most approaches do
not provide access to the recursive positions in a datatype’s def-
inition. The approaches that do provide access to these recursive
positions are limited in the sense that they only apply to a re-
stricted set of datatypes. In particular, the full recursive structure
of families of mutually recursive datatypes is beyond the reach of
these approaches. Still, many real-life applications of functional
programming do involve mutually recursive datatypes, arguably
the most striking example being the representation of abstract syn-
tax trees in compilers. Moreover, the generic functions that arise
in such applications typically require access to the full recursive
structure of these types; examples include navigation (Huet 1997;
Hinze et al. 2004; McBride 2008), u nification (Jansson and Jeuring
1998), r ewriting (Jansson and Jeuring 2000; Van Noort et al. 2008),
and pattern matching (Jeuring 1995) and, m ore g enerally, r ecursion
schemes such a s f old and the l ike (Meijer e t al. 1991) and d own-
wards a ccumulations (Gibbons 2 000).

In t his p aper, w e present a n i n Haskell embedded approach t o
datatype-generic p rogramming t hat d oes e nable the d efinition o f
generic f unctions o ver the f ull r ecursive s tructure o f mutually re-
cursive d atatypes. S pecifically, our c ontributions are the f ollowing:

• We s how how t o g eneralise the encoding o f regular d atatypes
as f ixed p oints o f functors (reviewed i n Section 2) t o a rbitrary

hfaigmhielire-osro dfe mrf uixteudalp lyor inectuo rpseivraeto try(pSeesc.tW ioenm 3)a.keu seo fa s ingle
• The functors for families o fm utually r ecursive d atatypes can b e

constructed f rom a s mall set o f c ombinators, thereby enabling
datatype-generic p rogramming (Section 4).

• We present several a pplications o f generic p rogramming i n t his

sSeettcitniogn, m5o asntdn goetnaebrliyc thr eew Zriiptipnegr inf oS rem ctuitounal6 l.yr ecursivet ypesi n
Related w ork i s p resented i n Section 7 , and f uture w ork and c on-
clusions i n Section 8 .

A strength ofo ur approach i s t hat i t can b e readily i mplemented
in Haskell, m aking use o f language e xtensions s uch a s t ype f ami-
lies (Schrijvers e t al. 2 008) and G ADTs (Peyton J ones e t al. 2 006).

Tbehe obm tauinlteidrefc ra onmdH z aipckpeargel iDbrBa.riest hata reb asedo nt hisp aper can
1 2009/3/2

2. Fixed points for representing regular datatypes

Let us first r eview generic p rogramming using fixed points for
regular datatypes. While this is well-known, it serves not only as
an introduction to the terminology we are using, but also as a
template for our introduction of the more general case for families
of mutually recursive types in Section 4.

A functor is a datatype of k ind ∗ → ∗ for which we can define
a map ufunncctotiro nis. a Fdi xaetda y popeinto sf a krien dre∗ pr→ ese∗ ntf eodr w byh aicnh inw setac nacne odeff tinhee
Fix datatype:

data Fix f = I n {out:: (f (Fix f)) }

Haskell’s r ecord notation is used to introduce the selector function
out :: Fix f → f (Fix f).

2.1 Defining a pattern functor directly

Using Fix, we can represent the following datatype for simple
arithmetic expressions

data Expr = Const Int | Add Expr Expr | Mul Expr Expr

by its patternf unctor:

data PFExpr r = ConstF Int | A ddF r r | M ulF r r

type Expr0 = Fix PFExpr

The types Expr and Expr0 are isomorphic, and in Haskell we can
witness the isomorphisms b y instantiating a class

class Regular a where
deepFrom ::a → Fix (PF a)
ddeeeeppTForo :::: Fai→ x (PF iFx (aP) F→a a)

where

type family PF a ::∗ → ∗

The type family PF i s an open type-level function mapping an
index a of kind ∗ to a functor PF a of kind ∗ → ∗. We can instantiate
iitn db yex xsaa yo infg ki

type instance PF Expr = PFExpr

The functions deepFrom and deepTo are straight-forward to define.
In practice, converting between a datatype and its fixed-point repre-
sentation occurs often when programming generically, and travers-
ing the whole value as required b y deepFrom and deepTo is often
more work than is actually r equired.

We therefore present an alternative correspondence, making use
of the isomorphism

a =∼ Fix (PF a) =∼ (PF a) (Fix (PF a)) =∼ (PF a) a

This means that we r elate a to its one-layer u nfolding PF a a (a
shallow conversion). We redefine class Regular to use the following
conversion functionsf rom and to:

class Regular a where
from ::a → PF a a
tfroo :::: aP→F →a PaF F→a aa

As before, in the instance for expressions,

instance Regular Expr where
from =f romExpr
to = toExpr

tdheefi sneh.allowc onversionf unctionsf romExprandt oExpraret rivial to
In order to establish that PFExpr really is a functor, we make it

an instance of class Functor:

Submitted to I CFP 2009
instance Functor PFExpr where

fmapf (ConstF i) =C onstF i
fmapf (AddF e e’) =A ddF (f e) (f e’)
fmapf (MulF e e’) = M ulF (f e) (f e’)

Givenf map, many recursion schemes can be defined, for example:

fold :: (Regular a, Functor (PF a)) ⇒
((PReFg au lra r→a ,r)F u→n c(tao r→(Pr)F

fold f(= P fF◦af mr a→ p (rf)ol→ df)(a◦→ fror m)

unfold :: (Regular a, Functor (PF a)) ⇒

((rR e→g uPlaFr aa ,r)F u→n c(tro →r(Pa)F

unfoldf = (r t→o ◦ PfmFaa pr)(u→ nfo(lrd →f) ◦a)f

Note how the conversions in the class Regular allow u s to work
with the original datatype Expr rather than its fixed point represen-
tation Expr0. While using shallow conversion functions affects the
definitions of functions using the conversion functions such as fold
and unfold slightly, it i s generally at least as expressive as using a
deep conversion:

deepFrom :: (Regular a, Functor (PF a)) ⇒ a → Fix (PF a)
ddeeeeppFFrroomm =::(Rf oeldg uI nla

deepTo :: (Regular a, Functor (PF a)) ⇒ Fix (PF a) → a
ddeeeeppTToo =::(uRnefgouldla roua t,

Another recursion scheme we can define is compos (Bringert and
Ranta 2006). Much like f old, it t raverses a data structure and p er-
forms operations on the children. T here are different variants of
compos, the simplest is equivalent to PolyP’s mapChildren (Jans-
son and Jeuring 1998): it applies a function of type a → a to all
scohnilda rnend. Tehurisin pgar1 a9m98e)te:ri itsa aplpsloi erses apf ounnsicbtiloe nfoo rf f pt eyrpfeor mai→ nga atht eo rael-l

cursive call, because compos itself is not r ecursive:

compos :: (Regular a, Functor (PF a)) ⇒ (a → a) → a → a
ccoommppooss:f := (R teog g◦uflmaraa p, fF◦ufnrocmto

2.2 Building functors systematically

The approach presented above still requires u s to write f map b y
hand for every datatype. Furthermore, other applications such as
navigation or rewriting require f unctions defined on the pattern
functor that cannot directly be derived from f map. Thus, h aving
to writef map and such other functions manually for each datatype
is u ndesirable. Fortunately, it is also unnecessary.

In the following, we present a fixed set of datatypes that can be
used to construct pattern functors systematically:

data K a r = K a
data I r =Ir
data (f :×:g) r = f r :×: g r
ddaattaa ((ff ::×+:: gg)) rr == f L r(: f× ×r): |g R r (g r)

infixr 7 :×:
iinnffiixxrr 67 ::×+::

The type K is used to represent occurrences of constant types, such
as Int and Bool, the type I r epresents recursive p ositions. Using :×:,
awse I ncat na ncdomB boionle,t hdeiff tyerpeenI t rfeipelrdess eonft as ceocunrsstirvucetop ro,s iatinodn sw.i tUhs i:n+g:,: ×w:e,
can combine constructors.

Using the above datatypes, we can thus r epresent the pattern
functor of Expr as follows:

type PFExpr = K Int :+: (I :×: I) :+: (I :×: I)

type Expr0 = Fix PFExpr

Datatypes, such as Expr, whose recursive structure can be repre-
sented by a p olynomial functor (consisting of sums, products and
constants) are often called regular datatypes. The uniform e ncod-
ing allows us to define functions that work on all regular datatypes.
In particular, we can now define a generic map function b y declar-
ing the following instances of the class Functor:

2 2009/3/2
class Functor f where

fmap :: (a → b) → f a → f b

instance Functor I where
fmapf (I x) =I(f x)

instance Functor (K a) where
fmap (K x) = K x

instance (Functor f,Functor g) ⇒ Functor (f :+: g) where
sftmaanpce f ((LFu uxn) =to Lr (,fmFuanpc tfox)r
fmapf (R y) = R (fmapf y)

instance (Functor f,Functor g) ⇒ Functor (f :× ×: g) where
sftmanapcef ((xF :u ×nc :c tyo)r =f , fFmuanpctf ox r :g ×) :⇒ f ma Fpun fcy t

With these declarations, we obtain fmap on PFExpr for free. Simi-
larly, we getf map on all datatypes as long as we express them as
fixed points of pattern functors using K, I, :×: and :+:. Usingf map,
fwixee dge ptof oinltds, oufn pfoatldte rann dfu cnocmtoprsos u fsoinrg gf rKee,I o,: n× a:lal tnhde s:+e :d.aU tasitnypgef sm. Bapy,
providing one structural representation of a datatype (the instantia-
tions of PF and Regular), we gain access to a multitude of powerful
functions, and can easily define more.

Being able to convert between the original datatype such
as Expr and the fixed point Expr0 or the one-layer unfolding
PF Expr Expr now becomes much more important, because for
application-specific, non-generic functions, we want to be able to
use the original constructor names rather than sequences of con-
structor applications for the representation. This is reflected in the
fact that the conversion functions fromExpr and toExpr, while still
being entirely straight-forward, now become more verbose. Here is
fromExpr as an example:

fromExpr :: Expr → PF Expr Expr
fromExpr (::CEoxnpsrt →i) =F LE (EKx pi)r
fromExpr (Add e e ’) = R (L (Ie :×:Ie ’))
fromExpr ((MAdudl ee ee ’’)) == RR ((RL ((II ee :: ××:: IIee ’’))))

To facilitate the conversion, some generic programming languages
automatically generate mappings that relate datatypes such as Expr

with their structure representation counterparts (Expr0) (Jansson
and Jeuring 1997; L o¨h 2004; Holdermans et al. 2006). In this
case – if we do not want to extend the compiler – we can use
a meta-programming tool such as Template Haskell (Sheard and
Peyton Jones 2002) to generate the PF and Regular instances for a
datatype.

3. Fixed points for mutually recursive datatypes

In Section 2, we h ave shown how we can generically program with
regular datatypes by expressing them as fixed p oints of functors.
In p ractice, one o ften has to d eal with large families of mutually
recursive d atatypes, which are not regular. As an example, consider
the following extended version of our Expr datatype:

data Expr = Const Int
| Add Expr Expr
|| AM dudl Expr Expr
|| EM Vualr Var
|| EL Veta DVaecrl Expr

data Decl = Var := Expr
| Seq Decl Decl

type Var = String

We now h ave two d atatypes t hat are mutually r ecursive, Expr
and Decl. B oth m ake use o f a t hird t ype V ar. I n o rder t o d eal
with families s uch a s t his r epresentation o f a n abstract s yntax t ree,
we w ill now i nvestigate how t o g eneralize the r epresentation o f
datatypes a s f ixed p oints o f functors t o such f amilies.

Submitted t o I CFP 2 009

3.1 Fixed points for a specific number of datatypes

Expressing a family of mutually recursive datatypes as a fixed point
is folklore. However, such approaches make extensive use of the
fact that on paper, you can quantify over many entities that are not
available for quantification in an actual programming language.

Swierstra et al. (1999) have shown how to represent a family of
two mutually recursive types as a fixed point in Haskell. The idea
is to introduce a different fixed point datatype that abstracts over
bifunctors of kind ∗ → ∗ → ∗ rather than functors of kind ∗ → ∗:

data Fix2 f g = In2 (f (Fix2 f g) (Fix2 g f))

We can easily generalize this idea further and define Fix3, Fix4
and so on. Depending on whether we want to count Var as a full
member of our abstract syntax tree family or not, we can then use
either Fix2 or Fix3 to represent such a family as a fixed point of
functors.

The problem, however, is that we can also no longer use I, K, :+:
and :×: to construct functors for arbitrary families systematically.
Ianndste: a×d,: iot ctuonrnsstr uocuttf uthncatt wrse f orerq auribrietr anreywf mvariliiaenst ss ostfe mI, Ktic, :l+ly:.
and :×: for each arity. In the end, we have to rework our entire
ganedner: ×ic: :pf roorg reaamchma inrigty m. Iancht hineere yn fdo,r w eeach ha avreit yto or ef wfaomrkilyo uwre e nwtainret
to support, defeating the very purpose of generic programming.
Furthermore, families ofdatatypes can be very large, and we cannot
hope that supporting a limited amount of arities will suffice in
practice.

3.2 A uniform way to represent fixed points

At first, it looks like we cannot easily abstract over arities in
Haskell. However, we are going to take a somewhat different view
on the different fixed point combinators that will in the end enable
a uniform representation that can be expressed in Haskell.

Let us look at the kinds of Fix and Fix2 next to each other:

Fix :: (∗ → ∗) → ∗

FFiixx2 :::: ((∗∗ →→ ∗∗ → ∗) → (∗ → ∗ → ∗) →→ ∗∗

In general, for a family of n datatypes, the fixed point combinator
takes n arguments. Each argument is again parameterized over n
types. We thus have:

Fixn :: ((∗ →)n∗ →)n∗

If we ignore for the moment that product kinds do not exist in
Haskell, we can uncurry and replace (x →)n∗ by xn → ∗:

Fixn :: (∗n → ∗)n → ∗

This, however, is still not the whole story. For a single datatype, Fix
is applied to a single functor. For a family oftwo datatypes, we have
to apply Fix2 twice to two f unctors. And Fixn has to b e applied n
times t o n f unctors. E ach of t hese applications corresponds t o one
of the t ypes i n the f amily of mutually r ecursive types. Since we
would like t o describe the whole family in t erms of a single fixed
point c ombinator, it is m ore accurate t o view Fixn itself as an n -
tuple:

Fixn :: ((∗n → ∗)n → ∗)n

Now the key i dea is t hat a t uple of n t ypes can also b e d escribed as a
function t hat, g iven the i ndex, selects the c orresponding c omponent
from the t uple. Namely, i f n denotes a t ype w ith n i nhabitants, x n is
isomorphic t o n→ x :

Fixn ::n → (n → ((n → ∗) → ∗)) → ∗

Reordering the a rguments reveals t hat w e h ave r eally g eneralized
from a f ixed p oint for k ind ∗ t o a f ixed p oint for n→ ∗:

Fixn :: ((n → ∗) → (n → ∗)) → (n → ∗)

3 2009/3/2
Apart from the fact that n is not available in Haskell’s k ind system,
we now have a uniform representation of a fixed-point combina-
tor that is suitable to express arbitrary families of datatypes. Fortu-
nately, the r emaining gap is easy to bridge, as we will show in the
next section.

4. Indexed fixed points in Haskell

After h aving presented the idea of how to get a uniform representa-
tion of fixed points, we are now going to explain how to make use
of this idea in Haskell. We develop a library for generic program-
ming with families of mutually recursive types much in the same
style as we did in Section 2 for regular datatypes. W e are going
to use the family of abstract syntax t rees from the i ntroduction of
Section 3 as our running example.

4.1 Encoding indexed f ixed points in Haskell’s kind system

First, we have to find a way to encode n i n H askell’s k ind system,
where n is supposed to be a kind that has exactly n types as
inhabitants. Haskell offers j ust one b ase kind, namely ∗, so we
ainreh lbeiftta nwtsi.thH laitstklee lclh oofifceers. Hj uoswteo vneer, bwasee eck anin ds,im npamly alpyp ∗r,oxs iomwa tee
n b y ∗ in Haskell, as long as we promise to instantiate ∗ w ith only
nn b dyiff∗ eri ennHt tayspkeesl.l

In p ractice, if we h ave a family ϕ with n different types, we
use the types in the family themselves as the indices t o instantiate
such p ositions of ∗. In this p aper, we will write ∗ϕ rather than ∗ for
ssuucchh ppoossiittiioonnss oinf o∗.rd Ienrt htoi sm paapkee ri,t wmeo rwei ellx wplriitceit ∗tharta wthee art reh auns i∗ngf o ar

virtual subkind of ∗ that only consists of the members of family ϕ.

Tvhirtuusa, los uurb ukniinfdoro mf ∗fitx headt- poonilnytc ccoonmsisbtinsao toftr h neomw ehmasb ekrisnod

HFix:: ((∗ϕ → ∗) → (∗ϕ → ∗)) → (∗ϕ → ∗)

and can b e defined in Haskell as

daHtaInH (Ffi (xH(fF: i:x(f∗)ϕ ix→)∗)→ (∗ϕ→∗))(ix::∗ϕ)=
In our abstract syntax tree example, we have a family that we
choose to call AST with three different types, and we are going to
write ∗AST for the subkind of ∗ consisting only of the types Expr,
wDerictel, ∗and V aforr.

We go even further and introduce a family-specific GADT (that
we also call ϕ) and define it such that a value of ϕ ix can serve as
a p roof that ix is a type that belongs to ϕ. Whenever we quantify
over a variable of kind ∗ϕ, we will p ass such a value of type ϕ ix to
movaekrea ev xaprliaicbitl etho aft kwined dq∗ uantify over a limited set of t ypes.

For the example, we introduce the GADT

data AST ::∗AST → ∗ where
tEax pArS ::T TA:S:∗T Exp→r
Decl ::AST Decl
Var ::AST Var

such that a value of AST ix serves as a p roof that ix is a member of
the AST family.

One example where we make use of an explicit p roof is when
defining a map function for higher-order functors. Since the type
has changed, we have to define a new class

class H Functor (ϕ :: ∗ϕ → ∗)

hmap::(∀ix::∗(fϕ :.:ϕ(∗i ϕx →→r ∗ i)x → → (r ∗0ϕix→)→ ∗))(fw r hi exr→ ef r 0ix)
The function hmap now has a rank-2 type. The function that is
mapped is quantified over all members ix of family ϕ. I f for every
index ix in ϕ, this function transforms an r ix into an r0 ix, then we
can transform a functor with recursive calls given by r into a functor
with recursive calls given b y r0.

Submitted to I CFP 2009
It is perhaps instructive to note that if ϕ is a family consisting of

only one type, there will b e only one choice for ϕ ix, and the type
of hmap reduces to the type of fmap for regular functors.

Instead of using explicit p roofs of type ϕ ix, it is sometimes
helpful to use a type class

class El (ϕ ::∗ϕ → ∗) (ix :: ∗ϕ) where
apsrsoE ofl: (:ϕ ϕ :ix∗

and then use an implicit class constraint El ϕ ix instead of a value
of type ϕ ix.

For the AST family, we define the following instances:

instance El AST Expr where proof = E xpr
instance El AST Decl wherep roof= D ecl
instance El AST Var wherep roof= Var

4.2 Defining a pattern functor directly

Before we discuss how to r epresent functors of families generically,
let us show how we can represent our family for abstract syntax
trees as a fixed p oint in terms of H Fix directly.

The functor for AST can b e defined as follows:

data PFAST :: (∗AST → ∗) → (∗AST → ∗) where

ConstF :: Int → PFAST r Expr
AddF :: r Expr → r Expr →→ PPFFAST r Expr
MulF :::: rr EExxpprr →→ rr EExxpprr →→ PPFFAST r Expr
EVarF :::: rr VExarp →→ PPFFAST r Expr
LetF :: r Decl → r Expr →→ PPFFAST r Expr

BindF :: r Var → r Expr → PFAST r Decl
BSeinqFdF :::: rr VDearc→l →→r rE Dxpecrl →→ PPFFAST r Decl

VF ::String → PFAST r Var

The p arameter r is used to denote a r ecursive call. At each r ecursive
position, we apply r to the appropriate index in order to indicate the
type we recurse on. Furthermore, each constructor of the functor
targets a specific member of the family.

By using HFix on the pattern functor, we obtain types that are
isomorphic to the original family:

type Expr0 = H Fix PFAST Expr
type Decl0 = H Fix PFAST Decl
type Var0 = H Fix PFAST Var

The isomorphisms can be witnessed by conversion functions once
more, and for this purpose, we declare a class Family that corre-
sponds to Regular:

class Family ϕ where
from :: ϕ ix → ix → PF ϕ I∗ ix
tfroo :::: ϕ iixx →→ iPxF → ϕ PI∗F iϕx → I∗ ix

type family PF (ϕ :: ∗ϕ → ∗) :: (∗ϕ → ∗) → (∗ϕ → ∗)

Like in the class Regular, we decide to implement a shallow con-
version rather than a deep conversion. For comparison, using a deep
conversion, the t ype of from would be

from ::ϕ ix → ix → HFix (PF ϕ I∗ ix) ix

Note that all c onversion functions take a ϕ ix as first argument, as
proof that ix is indeed a member of ϕ. In the pattern functor, we
have to describe the type of the recursive positions b y means of a
datatype of kind ∗ϕ → ∗. The one-layer unfolding uses the original
ddaattaattyyppeeso fokf tinhed f∗am→ily ∗ i.nT hthee rnece-ulrasyiever u pnofsoitldioinnsg, asneds wthee express
this by choosing I∗ :

data I∗ (ix :: ∗ϕ) = I ∗ {unI∗ :: ix}

The type I∗ behaves as the identity on types so that r ecursive
occurrences∗ inside the functor are stored “as is”. Although the
definition of I∗ is essentially the same as that of I in Section 2, we

4 2009/3/2
give it a different name to highlight that we are using it conceptually
at kind ∗ϕ → ∗ r ather than k ind ∗ → ∗, even though the two k inds
caoti knicnidd∗e in→ →the∗ Hr aatshkeerltl hcoandek .i

Here is the Family instance of AST:

type instance PF AST = PFAST

instance Family AST where
from =f romAST
to = toAST

The functions fromAST and toAST are straight-forward and not
given here.

We can now go on to define a HFunctor instance and sub-
sequently r ecursion schemes such as f old and unfold for PFAST.
However, since we strive for p rogramming generically with fami-
lies of datatypes, we want to avoid having t o define H Functor man-
ually for our family. Instead, we will try – as we have before in

Section 2 – to build our functor systematically from a fixed set of
datatypes.

4.3 Building functors systematically

It turns out that we can use almost the same datatypes as before to
represent functors. The datatypes K, :×:, and :+: can b e lifted from
breepinregs penartaf munectetorirzse.Td ohvee dra atant ry poefsk iK n,d : ∗× t:o, a a bnedin: g+ p:ca aranmb eetel rifitzeedd orovemr
bane rn ogfp kairandm ∗ϕ r→ize ∗d aonvde raa nn irn odefxk iinxd do∗f tkoinb de ∗ϕ:

dddaaatttaaa ((Kff ::a ×+::g g)) (((rrr::::::∗∗∗ϕϕϕ→→→∗ ∗∗))) (((iiixxx::::::∗∗∗ϕϕϕ)))= == K f L r (a fi xr : i ×x):| g R r (i xgr i x)
The type I has b een used to represent a r ecursive call. In the current
situation, r ecursive calls can b e to a specific index in the family.
Therefore, I gets an additional argument xi :: ∗ϕ that is used to
dTheteerremfoinree, ,tI heg reetcsua rsniv aed cdaitlli otnoa mla arkgeu:

data I (xi :: ∗ϕ) (r ::∗ϕ → ∗) (ix ::∗ϕ) = I(r xi)

It is perhaps surprising that xi is different from ix. But where ix
projects out a certain member ofthe family, the type ofthe recursive
call is independent of the type we are u ltimately interested in. But
in fact, we h ave not yet a way to make use of the parameter ix
anywhere. If we look at the direct definition of PFAST, we see that
depending on the index we choose to project out of the functor,
we get different functors. Only the first five constructors of PFAST
contribute to PFAST r Expr, for example.

We introduce another building b lock for pattern functors in
order to express such constraints on the index:

infix 6 :.:

datTaag (f::: .f:r (ixxi →::∗(ϕf):).(:ri x::)∗ rϕi x→∗)(ix::∗ϕ)w here

By tagging a functor with an index from the family, we make
explicit that the tagged part only contributes to the structure of that
particular member of the family.

We now h ave all the building b locks we need to give a structural
representation of the AST pattern functor:

type PFAST = K Int :.: Expr :+: -- Const
(I Expr :×: I Expr) :.: Expr :+: -- Add
((II EExxpprr :: ××:: II EExxpprr)) ::..:: EExxpprr ::++:: -- Mul
I(IV Eaxr ::..:: EExxpprr ::++:: -- E Var
(I Decl :×: I Expr) :.: Expr :+: -- Let
((II VDearc :l ×:××: I: IEE xxpprr) ::..:: EDxepclr ::++:: -- :=
((II VDearc:l ×: ×: I: EI Dxeprc)l) ::..:: DDeeccll ::++:: -- Seq
(KI DStercinlg: × ::..:: VDearc -- V

To match the structure of the direct definition of PFAST more
closely, we have chosen to tag the representation of every construc-
tor with the index it targets. Alternatively, we could have tagged the
sum of all constructors of a type j ust once.

Submitted to I CFP 2009
If we use the structural version of PFAST in the Family in-

stance, we h ave to adapt the conversion f unctions. A gain, these are
straight-forward, but lengthy. We only showf romAST:

fromAST ::AST ix → ix → PFAST I∗ ix
fromAST :E:AxpSrT T(Ci xo→ nst ix) →=P

L (Tag (K i))
fromAST Expr (Add e e’) =

R (L (Tag (ci e :×:ci e ’)))
fromAST Expr (Mul e e(’)T a=g

R (R (L (Tag (ci e :×:ci e’))))

fromAST Expr (EVar x)(a=g

R (R (R (L (Tag (ci x)))))
fromAST Expr (Let d e) =

R (R (R (R (L (Tag (ci d :×: ci e))))))
fromAST Decl (x := e) a=g

R (R (R (R (R (L (Tag (ci x :×:ci e)))))))
fromAST Decl (Seq d d(’)T a=g

R (R (R (R (R (R (L (Tag (ci d :×: ci d’))))))))
froRm(A RST(RV(arR xR a=g

R (R (R (R (R (R (R (Tag (K x))))))))

ci x = I(I∗ x)

4.4 Generic h map

We still h ave to establish that our new functor building blocks are
actually h igher-order functors themselves:

instance El ϕ x i ⇒ HFunctor ϕ (I xi) where
shtamnapcef E E(Il ϕx) =i⇒ ⇒I (f H pFruonocftx o)r

instance H Functor ϕ (K a) where
hmapf (K x) = K x

instance (H Functor ϕ f,HFunctor ϕ g) ⇒
(HH HFFuunnctcotro rϕϕ (ff :H+F: ug)n cwtohreϕ re

hmapf (L x) = L (hmapf x)
hmapf (R y) = R (hmapf y)

instance (H Functor ϕ f,HFunctor ϕ g) ⇒
(HH HFFuunnctcotro rϕϕ (ff ,:H H×F F: ug)n cwtohreϕ re

hmap fH(xF :u ×n :c t y)o r=ϕ h(mfa: ×p: fg x)): ×w :h ehrmeapf y

instance H Functor ϕ f ⇒ H Functor ϕ (f :.: ix) where
shtamnapcef H H(TFaugn c x)t o=r Tϕaf g⇒ ⇒(hHm aFpu nfcx)t

Despite our generalization, the code for hmap looks almost com-
pletely identical to the code forf map. We need an additional, but
trivial c ase for (:.:). A slight change occurs in the case for I, where
we additionally have to require that the r ecursive call is actually in
our family via El ϕ xi, to be able to pass the required proof to the
mapped functionf .

4.5 Generic c ompos

Using hmap, it is easy to define compos:

compos :: (Family ϕ, H Functor ϕ (PF ϕ)) ⇒

((F∀aixm.ϕil iyxϕ →,H ixF u→nc itxo)r →ϕ (ϕP iFx ϕ→))ix⇒ ⇒→ ix

composf p (∀=ix .toϕ p x◦ →hmi axp→ →(λi px)→→ →I ϕ∗ ◦ ixf p→ →◦ u ixn→ I∗) i◦xfromp

The only differences to the version in Section 2 are due to the
presence of explicit p roof terms of type ϕ ix and because the actual
values in the structure are now wrapped in applications of the I ∗
constructor.

Bringert and Ranta (2006) describe in their p aper on compos
how to define the function on families of mutually recursive
datatypes. T heir solution, however, requires to modify the fam-
ily of datatypes and rewrite them as a single GADT. Our version of
compos works on families of mutually r ecursive datatypes without
modification.

5 2009/3/2
As an example use of compos, consider the following expres-

sion:

example = Let ("x" := Mul (Const 6) (Const 9))
(Add (EVar "x") (EVar "y"))

The following function renames all variables inexample – note how
renameVar’ can use the type representation to take different actions
for different nodes – in this case, filter out nodes of type Var.

renameVar :: Expr → Expr
rreennaammeeVVaarr =::E rxenpar→ meE Vaxrp’r Expr

where
renameVar’ ::AST a → a → a
rreennaammeeVVaarr’’ :V:aArSx T T=a x → →++ a " →_" a
renameVar’ p x = compos renameVar’ p x

The call renameVar example yields:

Let ("x_" := Mul (Const 6) (Const 9))
(Add (EVar "x_") (EVar "y_"))

4.6 Genericf old

We can also define f old using hmap. Again, the definition is very
similar to the single-datatype version:

type Algebra ϕ r = ∀ ix.ϕ ix → PF ϕ r ix → r ix

fold :: (Family ϕ, HFunctor ϕ (PF ϕ)) ⇒
A(Flgaembirlay ϕϕ rH →Fu ϕn citxo →rϕ ϕix(P→F rϕ i)x)

fold fp A l=ge fbp r ◦a ϕhm ra→ p (λ ϕp ix x(→I ∗ xi x) → →f roli xdf p x) ◦from p

Usingf old is slightly trickier than using compos, because we have
to construct a suitable argument of type Algebra. This algebra ar-
gument involves a function operating on the pattern functor, which
is itself a generically derived datatype. W e therefore h ave to write
a function that destructs a sum of products, where the fields in the
products are wrapped b y occurrences of K or I. It is much more
natural to define an algebra by giving one function per construc-
tor, with the functions taking as many arguments as there are fields,
preferably even in a curried style.

This problem is not caused by having families ofmany datatypes.
The generic programming language PolyP (Jansson and Jeuring
1997) has a special ad-hoc construct that helps in defining algebras
in a convenient style. W e can do better: in the following, we will
define a type-indexed datatype (Hinze et al. 2004) for algebras, as
a type family inductively defined over the structure of functors. We
can then define algebras in a convenient style, and use them in a
generic fold.

The type-indexed datatype Alg is defined as follows:

type family Alg((rf:: ::(∗∗ϕϕ→→∗ ∗)) (→ ix: :∗∗ϕ):→:∗∗)
type instance Alg (K a) r ix = a → r ix
type instance Alg (I xi) rr iixx == ra x →i →r rx ix
type instance Alg (f :+: g) rr iixx == r(Ax ilg→ →f rr iixx, Alg g r ix)
type instance Alg (K a :×: g) r ix = a → Alg g r ix
ttyyppee iinnssttaannccee AAllgg ((IK Kx ai a: ×××: :gg)) rr iixx == ra x →i →A lAgl gg g rx ix
ttyyppee iinnssttaannccee AAllgg ((fI :x.i :: ×xi): rr iixx == Arx lgi →f →r A xil

The definition shows how we want to define our algebras: Oc-
currences of K and I are unwrapped. An algebra on a sum is a
pair of algebras on the components. In the product case, we make
use of k nowledge on how datatypes are built: products are always
nested to the right, and the left components are always fields, either
wrapped b y K or I. Hence, we can give two cases that allow us to
turn algebras on a product into curried functions. The case for tags
simply recurses.

We then h ave to show that we can transform such a more
convenient algebra into the form thatf old expects. To this end, we
define the generic function a pply:

Submitted to I CFP 2009

class Apply (f :: (∗ϕ → ∗) → ∗ϕ → ∗) where
aassppA lyp p::l Ay(lgf :f: r(∗ix →→ f∗ r) i→x →∗ r →ix

instance Apply (K a) where
applyf (K x) =f x

instance Apply (I xi) where
applyf (Ix) =f x

instance (Apply f, Apply g) ⇒ Apply (f :+: g) where
satapnplcye ((f,A Agp) (lLy xf ,)A =p paplypg l)y f⇒x
apply (f,g) (R x) = apply g x

instance Apply g ⇒ Apply (K a :×: g) where
satappnlcye f A A(pKp px ly y: ×g g:⇒ ⇒y) A=p applypl (yK (af x :)× y

instance Apply g ⇒ Apply (I x i :×: g) where
satappnlcye f A A(Ip xp :y y×g g: y⇒) =A papplpyl(y I(fxix): × y

instance Applyf ⇒ Apply (f :.: xi) where
satappnlcye f A (Tpapgly yx f) ⇒= A apppplyly f (x f

We can further facilitate the construction of algebras b y defining an
infix operator for pairing:

infixr 1&
(&) = (,)

As an example, let u s specify an evaluator on our abstract syntax
tree types using an algebra.

Because different types in our family are mapped to d ifferent
results, we need another family of datatypes for the result type of
our algebra:

data family Value a :: ∗

ddaattaa fianmstailnyc Ve aVluaeluae E:x∗pr = E V (Env → Int)
ddaattaa iinnssttaannccee VVaalluuee EDxepclr == E DVV ((EEnnvv →→ IEnntv))
ddaattaa iinnssttaannccee VVaalluuee DV earc == DVVV V(Eanr

type Env = [(Var, Int)]

An environment maps variables to integers. Expressions can con-
tain variables, we therefore interpret them as functions from en-
vironments to integers. Declarations can be seen as environment
transformers. Variables evaluate to their names. W e can now state
the algebra:

evalAlg ::Algebra AST Value
evalAlg = const (apply

((λx → E V (const x)) -- Const
& (λ(EVx) (EV y) →→ E EVV ((λcomn s→t x) x) m +y m)) -- Add
&& ((λλ((EEVVx x)) ((EEVV y y)) →→ E EVV ((λλmm →→ x x mm ∗y ymm)))) -- Mul
&& ((λλ((VEVVx x)) →→ E EVV ((λfrmom→ Jux st◦m l∗oyok mup)) x)) -- EVar
& (λ(DV e) (EV x) →→ E EVV ((λfrmom →Ju s xt ◦(el omo)k)u) -- Let
&& ((λλ((VDVVe x)) ((EEVV xv)) →→ E DVV ((λλmm →→ x(x(,e ev mm))) :) m)) -- :=
&& ((λλ((DVVVx f)) ((EDVV v g)) →→ D DVV ((gλ ◦mf) →) -- Seq
&& ((λλ(xD →→ VDVV x ()g)◦) -- V

Testing

eval :: Expr → Env → Int
eevvaall : x: E=x plert →(EE Vnf)v = →f oInldt evalAlg E xpr x inf

in the expression eval example [("y" ,− 12)] y ields 42.

4.7 Summary

We have now introduced a library for generic programming on
families ofmutually recursive types. The library consists ofthe type
family PF, the classes Family and El, and the functor constructors
I, K, :+:, :×:, and :.:. Furthermore, the library contains classes
Ia,n dK ,in :s+ta:,n c:×es: ,fa orn da :n.u:m.F buerrt hoefr mgeonreer,it ch efun licbrtiaornys,c osuntchai nass calall tsehes
HFunctor code, the definitions of compos,f old and unfold.

To use the library for a specific family a user has to do the

following: define a GADT such as AST, instantiate the type family
PF to the pattern functor, and construct Family and El instances.

6 2009/3/2
This may still seem a significant amount of work, but all of this
code i s entirely straight-forward and can easily b e automated. In
fact, we have implemented the generation ofmost ofthis boilerplate
code in Template Haskell, so that only the definition of the GADT
and a call to a Template Haskell function remains.

Once the library is instantiated, all generic functions that are
provided b y the library are available for t his family without any
further work.

5. The Zipper

For a tree-like datatype, the Zipper (Huet 1997) is a derived data
structure that allows efficient navigation through a t ree, along its
recursive nodes. At every moment, the Zipper keeps track of a
location: a point of focus p aired with a context that represents the
rest of the tree. The focus can be moved up, down, left, and right.

For regular datatypes, it is well-known how to define Zippers
generically (Hinze et al. 2004). In the following, we first show how
to define a Zipper for a system of mutually r ecursive datatypes us-
ing our example of abstract syntax trees (Section 5.1). T hen, in Sec-
tion 5.2, we give a generic algorithm in terms of the representations
introduced in Section 4 .3.

5.1 Zipper for mutually recursive datatypes

We first give a non-generic presentation of the Zipper for abstract
syntax trees as defined in Section 3.

A location is the current focus paired with context information.

In a setting with multiple types, the type ofthe focus ix is not known
– hence, we make it existential, and carry around a r epresentation
of type AST ix:

data LocAST ::∗AST → ∗ where
Loc ::AST i::x∗ → ix →→ ∗C twxhsAerSeT a ix → LocAST a

The type CtxsAST encodes context information for the focus as a
path from the focus to the root of the full tree. The p ath is stored in
a stack of context frames:

data CtxsAST :: ∗AST → ∗AST → ∗ where
Nil :: Ctxs:A:S∗T a a
Cons :: CtxAST ix b → CtxsAST a ix → CtxsAST a b

A context stack of type CtxsAST a b represents a value of type a
with a b-typed hole in it. More specifically, a stack consists of
frames of type CtxAST ix b that r epresent constructor applications
that yield an ix-value with a h ole of type b in it. The full tree that is
represented by a location can be recovered b y plugging the value in
focus into the topmost context frame, plugging the r esulting value
into the next frame, and so on. For this to work, the target type ix
of each context frame must be equal to the type of the hole in the
remainder of the stack – as enforced by the type of Cons.

5.1.1 Contexts

A single context frame CtxAST is following the structure of the
types in the AST system closely.

data CtxAST :: ∗AST → ∗AST → ∗ where

AddC1 :: Expr → CtxAST Expr Expr
AAddddCC21 :::: EExxpprr →→ CCttxxAST Expr Expr
AMdudlCC12 :::: EExxpprr →→ CCttxxAST Expr Expr
MMuullCC21 :::: EExxpprr →→ CCttxxAST Expr Expr
EMVualrCC2 :::: CCttxxAST Expr Var

LetC1 :: Expr → CtxAST Expr Decl
LLeettCC21 :::: EDxepclr →→ CCttxxAST Expr Expr

BindC1 :: Expr → CtxAST Decl Var
BBiinnddCC21 :::: VExarp →→ CCttxxAST Decl Expr
BSeinqCdC1 :::: DVaecrl →→ CCttxxAST Decl Decl
SSeeqqCC21 :::: DDeeccll →→ CCttxxAST Decl Decl

Submitted to I CFP 2009
The relation between CtxAST and AST becomes even more pro-
nounced if we also look at the directly defined pattern functor
PFAST from Section 4 .2. For every constructor in PFAST, we have
as many constructors in CtxAST as there are r ecursive p ositions.
We can descend into a r ecursive position. The type of the recursive
position then becomes the type of the hole, the second argument
of CtxAST. The other components of the original constructor are
stored in the context. As an example, consider:

Let :: Decl → Expr → Expr
LLeettF :::: :r DDeeccll →→ r EExxpprr →→ PFAST r Expr

We h ave two r ecursive positions. If we descend into the first, then
Decl is the type of the hole, while Expr remains – and so we get

LetC1 :: Expr → CtxAST Expr Decl

If, however, we descend into the second p osition, then Expr is the
type of the hole with Decl r emaining:

LetC2 :: Decl → CtxAST Expr Expr

5.1.2 Navigation

We now define functions that move the focus, transforming a loca-

tion into a new location. These functions return their result in the
Maybe monad, because navigation may fail: we cannot move down
from a leaf of the tree, up from the r oot, or r ight if there are no more
siblings in that direction.

Moving down analyzes the current focus. For all constructors
that do not b uild leaves, we descend into the leftmost child b y
making it the new focus, and by pushing an appropriate frame onto
the context stack. For leaves, we return Nothing.

down :: LocAST ix → Maybe (LocAST ix)

down (Loc E xpr (Add e e ’) cs) =
Just (Loc E xpr e (Cons (AddC1 e’) cs))

down (Loc Expr (Mul e e ’) cs) =
Just (Loc E xpr e (Cons (MulC1 e’) cs))

down (Loc Expr (EVar x) cs) =
Just (Loc Var x (Cons E VarC cs))

down (Loc E xpr (Let d e) cs) =
Just (Loc D ecl d (Cons (LetC1 e) cs))

down (Loc D ecl (x := e) cs) =
Just (Loc Var x (Cons (BindC1 e) cs))

down (Loc D ecl (Seq d d’) cs) =
Just (Loc D ecl d (Cons (SeqC1 d’) cs))

down=Nothing

The function right succeeds for nodes that actually h ave a right
sibling. The size of the context stack remains unchanged: we j ust
replace its top element with a new frame.

right :: LocAST ix → Maybe (LocAST ix)

right (Loc e (Cons (AddC1 e ’) cs)) =
Just (Loc E xpr e ’ (Cons (AddC2 e) cs))

right (Loc e (Cons (MulC1 e ’) cs)) =

Just (Loc E xpr e ’ (Cons (MulC2 e) cs))
right (Loc d (Cons (LetC1 e) cs)) =

Just (Loc E xpr e (Cons (LetC2 d) cs))

right (Loc x (Cons (BindC1 e) cs)) =
Just (Loc E xpr e (Cons (BindC2 x) cs))

right (Loc d (Cons (SeqC1 d’) cs)) =
Just (Loc D ecl d’ (Cons (SeqC2 d) cs))

right = Nothing

The function left is very similar to right. Finally, the function up is
applicable whenever the current focus is not the r oot of the tree, i.e.,
whenever the context stack is non-empty. W e then analyze the top

7 2009/3/2
context frame and plug in the old focus, yielding the new focus, and
retain the r est of the context. The definition is omitted for reasons
of space.

5.1.3 Using the Zipper

To use the Zipper, we need functions to turn syntax trees into
locations, and back again. For manipulating trees, we provide an
update operation that replaces the subtree in focus.

To enter the tree, we p lace it into the empty context:

enter ::AST ix → ix → LocAST ix
eenntteerrp :: eA S=T T Li xoc→ p e ix xN → il

To leave, we move up as far as possible and then return the expres-
sion in focus.

leave :: LocAST Expr → Expr
leave (Loc e NEilx) =r →e

leave loc = leave (fromJust (up loc))

To update the tree, we pass in a function capable of modifying
the current point of focus. Because the value in focus can have
different types, this function needs to b e p arameterized b y the type
representation.

update :: (∀ix.AST ix → ix → ix) →

L(∀oicxA.ASST TEi xxp→r →→i xL→ ocAi xS)T→ →Expr
update f (Locp x cEsx)p =r →LoL cop c (f p x) cs

As an example, we modify the multiplication in

example = Let ("x" := Mul (Const 6) (Const 9))
(Add (EVar "x") (EVar "y"))

To combine the navigation and edit operations, it is helpful to
make use of flipped function composition (>> >) :: (a → b) → (b →

cm) →ke (uas e→o fcf) iapnpde dmof unnadctiico ncoc mompopsoitsiiotnio (n>(= >> >) > ::) :M:(oan→ad bm) ⇒→ ((ab →→

cm) b→) (→a (→b c→) mnd dcm) →on a(ad c→c omm cp)o. iTtihoen c(a>l= l

enter Expr >> > down >= > down >= > right >= > update solve >> >
leave >> > return $ example

with

solve ::AST ix → ix → ix
ssoollvvee E ::AxpSrT Ti =x →Coi xns→ t →4i 2x
solve x = x

results in

Just (Let ("x" := Const 42) (Add (EVar "x") (EVar "y")))

5.2 A generic Zipper

We now define a Zipper generically for a system of mutually re-

cursive datatypes. W e make the same steps as in the example for
abstract syntax trees before.

The type definitions for l ocations and context stacks stay essen-
tially the same:

data Loc :: (∗ϕ → ∗) → ∗ϕ → ∗ where
tLao cL :o: c(F::a(m∗ily→ ϕ, Z)→ ippe ∗r ϕ (P∗ F w ϕhe))r e⇒

(ϕF aixm →ily yixϕ →,Z iCpptxesr ϕϕ a(PixF →ϕ)L)o ⇒c ϕ a

daNtailC t:x:sC::tx(∗sϕϕ → a a∗)→ ∗ ϕ→∗ ϕ→∗ where
Cons :: ϕ ix → Ctx (PF ϕ) ix b → Ctxs ϕ a ix → Ctxs ϕ a b

Instead of a specific proof term AST ix, we now store a generic
proof term ϕ ix for an arbitrary family in a location. Additionally,
we need a Zipper for the system ϕ. This condition is expressed b y
Zipper (PF ϕ) and will b e explained in more detail below.

In the stack Ctxs, we also require that the types of the elements
are in ϕ via the field ϕ ix.

Submitted to I CFP 2009

5.2.1 Contexts

The context type is defined generically on the pattern functor of ϕ.

We thus r euse the type family PF defined in Section 3. W e have
to distinguish between different type constructors that make up the
pattern functor, and therefore define Ctx as a datatype family:

data family Ctx f :: ∗ϕ → ∗ϕ → ∗

Like the context stack, a context frame is p arameterized over both
the t ype of the resulting index and the t ype of the hole.

The simple cases are for constant types, sums and products.

There i s a correspondence between the context of a datatype and
its formal derivative (McBride 2001):

data instance Ctx (K a) ix b = CK Void
data instance Ctx (f :+: g) ix b = CL (Ctx f ix b)

| CR (Ctx g ix b)
data instance Ctx (f :×: g) ix b =| CC1R ((CCttxx fg iixx bb)) (g I∗ ix)

=| CC21 ((fC tI∗x ixf) i x(Cb)tx(g Iix∗ b)

For constants, there are no recursive positions, hence we produce
an empty datatype, i.e., a datatype with no constructors:

data Void

For a sum, we are given either an f or a g, and compute the context
of that. For a product, we can descend either left or r ight. If we
descend into f, we pair a context for f with g. If we descend into g,
we pair f with a context for g.

We are left with the cases for I and (:.:). According to the
analogy with the derivative, the context of the identity should be the
unit type. However, we are in a situation where there are multiple
types involved. The type index of I fixes the type of the hole. We
express this type equality as follows, by means of a GADT:1

data instance Ctx (I xi) ix b where
CId :: Ctx (I xi) ix xi

For the case of tags, we have a similar situation. A tag does not
affect the structure of the context, it only provides information for
the type system. In this case, not the type of the h ole, but the type
of the context itself is required to match the type index of the tag:

data instance Ctx (f :.: xi) ix b where
CTag :: Ctx f x i b → Ctx (f :.: xi) xi b

This completes the definition of Ctx. We can convince ourselves
that instantiating Ctx to PF AST results in a datatype that is iso-
morphic to CtxAST. It is also quite a bit more complex than the
hand-written variant, but fortunately, the programmer never has to
use it directly. Instead, we can interface with it using generic navi-
gation functions.

5.2.2 Navigation

The navigation functions are again generically defined on the struc-
ture of the pattern functor. Thus, we define them in a class Zipper:

class Zipper ϕ f where
.. .

We will fill this class with methods incrementally.

Down To move down in a tree, we define a generic functionf irst
in our class Zipper:

1 Currently, GHC does not allow instances of datatype families to be defined
as GADTs. In the actual implementation, we therefore simulate the GADT
by including an explicit p roof of type equality (Peyton Jones et al. 2006;
Baars and Swierstra 2002).

8 2009/3/2

class Zipper ϕ f where
.. .

first :: (∀b.ϕ b → b → Ctx f ix b → a) →

f(∀I∗b .ixϕ → b → →Mb ay→ be Ca

The function takes a functor f I∗ ix and tries to split off its first

recursive component. This is of s∗ome type b where we k now ϕ b.
The r est is a context of type Ctx f ix b. The function takes a
continuation p arameter that describes what to do with the two parts.
Function down is defined in terms of first:

down :: Loc ϕ ix → Maybe (Loc ϕ ix)
ddoowwnn (::LLoocc pϕ ϕx cxs→) →=M

first (λp ’ z c → L ocp ’ z (Consp c cs)) (from p x)

We try to split the tree in focus x . If this succeeds, we get a new
focus z and a new context frame c. We p ush c on the stack.

We define first by induction on the structure of pattern functors.
Constant t ypes constitute the leaves in the tree. We cannot descend,
and r eturn Nothing.

instance Zipper ϕ (K a) where
.. .

firstf (K a) = Nothing

In a sum, we descend further, and add the corresponding context
constructor CL or CR to the context.

instance (Zipper ϕ f,Zipper ϕ g) ⇒ Zipper ϕ (f :+: g) where
. . .

firstf (L x) =f irst (λp z c →f p z (CL c)) x
ffiirrssttf f ((RL x y)) ==f fiirrsstt ((λλpp z z cc →→f f p p z z ((CCRL cc)))) y

We want to get to the first child. Therefore, we first try to descend
to the left in a product. Only if that fails (mplus), we try to split the
right component.

instance (Zipper ϕ f,Zipper ϕ g) ⇒ Zipper ϕ (f :×: g) where
. . .

firstf (x :×:y) =f irst (λp z c →f p z (C1 c y)) x
×‘m: py)lu= s‘ff iirrsstt ((λλpp z z cc →→f f p p z z ((CC21 c x cy)))) y

In the I case, we have exactly one possibility. We split I(I∗ x) into
x and the context CId and pass the two parts to the continu∗ationf :

instance El ϕ xi ⇒ Zipper ϕ (I xi) where
. . .

firstf (I (I∗ x)) = return (f proofx CId)

It is interesting to see why this is type correct: the type of x is xi, so
applyingf t o x instantiates b to xi and forces the final argument of f
to be of type Ctx (I xi) ix xi. But that is exactly the type of CId.

Finally, for a tag, we also descend further and apply CTag to the
context.

instance Zipper ϕ f ⇒ Zipper ϕ (f :.: xi) where
.. .

firstf (Tag x) =f irst (λp z c →f p z (CTag c)) x

This is type correct because Tag introduces the r efinement that
CTag r equires: applying CTag to c results in Ctx (f :.: xi) xi b. This
can be p assed tof o nly if ix from the type of first is equal to xi. But
it is, because the pattern match on Tag forces it to be.

Up Now that we can move down, we also want to move up again.
We employ the same scheme as before: using an inductively defined
generic h elper functionf ill, we then define up. The functionf ill has
the following type:

class Zipper ϕ f where
.. .
fill ::ϕ b → b → Ctx f ix b → f I∗ ix

Submitted to I CFP 2 009
The function takes a value together with a compatible context frame

and plugs them together, p roducing a value of the pattern functor.
This operation is total, so no Maybe is required in the result.

Withf ill, we can define up as follows:

up :: Loc ϕ ix → Maybe (Loc ϕ ix)
up (::LLoocc pϕ ϕx iNx i→l) o=c Nϕo itxh)ing
up (Locp x (Consp ’ c cs)) = Just (Locp ’ (top ’ (fillp x c)) cs)

We cannot move up in the r oot of the tree and thus fail on an empty
context stack. Otherwise, we pick the topmost context frame, and
callf ill. Sincef ill results in a value of the pattern functor, we have
to convert b ack into the original form using to.

We start the definition of fill with the case for K. A s an argument
to f ill, we need a context for K, for which we defined but one
constructor CK with a Void parameter. In other words, in order
to callf ill on K, we have to produce a value of Void, which, apart
from ⊥, is impossible. In the context of our Z ipper library, we can
fgruoamra⊥ nt,eei s sti hmatp ⊥os sisi bnleev.Ie nr pt rhoedc uocnetde xfot ro fVo ouidr. ZWipep ethrel riebfroarrye ,d wefeinc ea:

instance Zipper ϕ (K a) where
. . .
fillp x (CK void) = impossible void

impossible ::Void → a
iimmppoossssiibbllee :v:oVido =d →erra or " impossible "

The definition of fill is very straight-forward: for I, we return the
element to p lug itself; for (:.:) and (:+:), we callf ill recursively. In
the case for p roducts, we recurse into the context:

instance (Zipper ϕ f,Zipper ϕ g) ⇒ Zipper ϕ (f :×: g) where
. . .
fillp x (C1 c y) =f ill p x c :×:y
ffiillllpp y ((CC21 c x yc)) == f xi :l l×p :x f i lcl: p × y cy

Right As a final example of a navigation function, we define
right. We again employ the same scheme as before. We define a
generic function next with the following type:

class Zipper ϕ f where
. . .
next :: (∀b.ϕ b → b → Ctx f ix b → a) →

((∀ϕb b.ϕ ϕ→b b→ →→b C →tx C Cft ixx fbi x→b M→ a yab)→e a)

The function takes a context frame and an element that fits into the
context. B y looking at the context, it tries to move the focus one
element to the right, thereby p roducing a new element – possibly
of different type – and a new compatible context. These can, as in
first, b e combined using the p assed continuation.

With next, we can define right:

right :: Loc ϕ ix → Maybe (Loc ϕ ix)
rriigghhtt (::LLoocc pϕ ϕx iNx i→l) o=c Nϕo itxh)ing
right (Locp x (Cons p ’ c cs)) =

next (λp z c ’ → L ocp z (Consp ’ c’ cs)) p x c

We cannot move right in the root of the tree, thus right fails in
an empty context. Otherwise, we only need to look at the topmost
context frame, and pass it to n ext, together with the current focus.
On success, we take the new focus, and push the new context frame
back on the stack.

Most cases of next are without surprises: calling next for K
is again impossible; in sums and on tags we recurse. Since an I
indicates a single child – a leaf in the tree – we cannot move r ight
from there and return Nothing.

The most interesting case is the case for products. If we are
currently in the first component, we try to move to the next element
there, but if this fails, we have to select the first child of the second
component, callingf irst. In that case, we also have to plug the old

focus x back into its context c, usingf ill. If, however, we are already

9 2009/3/2
in the right component, we do not need a case distinction and j ust
try to move further to the r ight using next.

instance (Zipper ϕ f,Zipper ϕ g) ⇒ Zipper ϕ (f :×:g) where
.. .
nextf p x (C1 c y) =

next (λp ’ z c’ →f p ’ z (C1 c’ y)) p x c
‘mplus‘fniresxtt ((λλpp ’’ zz cc’’ →→f f p p ’’ z z ((CC21 c(f’illp x c) c’)) y

nex‘mtf pp l y f(iCrs2t (x λc)p ’=z

next (λp ’ z c’ →f p ’ z (C2 x c’)) p y c

5.2.3 Using the Zipper

The functions enter, leave and update can b e converted from the
specific case for AST almost without change. The code is exactly
as before, we only have to adapt the types.

enter :: (Family ϕ, Zipper ϕ (PF ϕ)) ⇒ ϕ ix → ix → Loc ϕ ix
eenntteerrp :: (xF =am m Loilcy p , xZ ZN ipilp

leave :: Loc ϕ ix → ix
lleeaavvee (::LLoocc pϕ ϕx iNx i→l) = ix x
leave loc = leave (fromJust (up loc))

update :: (∀ix.ϕ ix → ix → ix) → Loc ϕ ix → Loc ϕ ix
uuppddaattee :f: ((∀Lioxc.pϕ x ix xc→s) = ix L → oc ixp) (→ fp L x)o ccsϕ

Let us repeat the example from before, but now use the generic Z ip-
per: apart from the additional argument to enter, nothing changes

enter E xpr >> > down >= > down >= > right >= > update solve >> >
leave >> > return $ example

and the result is also the same:

Just (Let ("x" := Const 42) (Add (EVar "x") (EVar "y")))

6. Generic rewriting

Term r ewriting can be specified generically, for arbitrary regular
datatypes, if these are v iewed as fixed p oints of functors (Jansson
and Jeuring 2000,Van Noort et al. 2008). In the following we show
how to generalize term rewriting even further, to work on families
with an arbitrary number of datatypes. For reasons of space, we do
not discuss generic rewriting in complete detail, but focus on the
operation of matching the left-hand side of a r ule with a term.

6.1 Schemes of regular datatypes

Before tackling matching on families of mutually recursive data-
types, we briefly sketch the ideas b ehind its implementation on
regular datatypes. Consider how to implement matching for the
simple version of the Expr datatype introduced in Section 2. F irst,
we define expression schemes, which extend expressions with a
constructor for r ule meta-variables. T hen we define matching of
those schemes against expressions:

data ExprS = MetaVar String | ConstS Int
| A ddS ExprS ExprS || MCounlSst IEnxtprS ExprS

match :: ExprS → Expr → Maybe [(String, Expr)]

On success, m atch returns a substitution mapping meta-variables t o
matched subterms. For example, the call

match (MulS (MetaVar "x") (MetaVar "y"))
(Mul (Const 6) (Const 9))

yields J ust [("x" ,Const 6), ("y" , Const 9)] .
To implement match generically, we need to define the scheme

of a datatype generically. To this end, recall that a regular datatype
is isomorphic to the type Fix f, for a suitably defined f. A meta-
variable can appear deep inside a scheme, this suggests that the
extension with MetaVar should take p lace inside the recursion, and

Submitted to I CFP 2009
hence on f. This motivates the following definition for schemes of
regular datatypes:

type Scheme a = Fix (K String :+: PF a)

For example, the expression scheme that is used above as the first
argument to match can be represented by

In (R (R (R (I (In (L (K "x"))) :×:I(In (L (K "y")))))))

6.2 Schemes of a datatype family and substitutions

A family of mutually r ecursive datatypes requires as many sorts of
meta-variables as there are datatypes. For example, for the family
used in Section 3, we need t hree meta-variables, ranging over Expr,
Decl and Var, r espectively. F ortunately, we can deal with all these
meta-variables in one go:

type Scheme ϕ = HFix (K String :+: PF ϕ)

As in the regular case, the pattern functor is extended with a meta-
variable representation. We want meta-variable representations to
be p olymorphic, so, unlike other constructors, K String is not
tagged with (:.:). Now, the same r epresentation can b e used to
encode meta-variables that m atch, for example, Expr, Decl and

Var.
Dealing with multiple datatypes affects the types of substi-

tutions. W e cannot use a homogeneous list of mappings as we
did earlier, because different meta-variables may map to different
datatypes. W e get around this difficulty by existentially quantifying
over the type of the matched datatype:

data DynIx ϕ = ∀ ix. DynIx (ϕ ix) ix
tdyaptea DSuybnsIxt ϕ == [∀ (ixSt.Drinygn,I xD(yϕniI xx)ϕi)x]

6.3 Generic matching

Generic matching is defined as follows:

type Match M s a = StateT (Subst s) Maybe a

matchM :: (Family ϕ, HZip ϕ (PF ϕ)) ⇒ ϕ ix →

S(Fcahmemilye ϕ iHx →Zip Iϕ∗ i (xP P→F Mϕ)a)t⇒ chϕM ϕ (→)
matchM p S(HchInem m(Le (ϕKi xm→ etaI v∗airx)→)) (M I∗ aet)c

= do subst ← get
csaubses tl←o okg uept metavar subst of

Nothing → put ((metavar, DynIxp e) : subst)
JNuostth →→p f auilt ((("mreeptaevaatr,eDd nu Isxep :p ") :+s+ u bmste)tavar)

matchM p (HIn (R r)→) (faI∗i le()
= combine matchM r∗ (from p e)

Generic matching tries to match a term of type I∗ ix against a
scheme of corresponding type Scheme ϕ ix. The resu∗lting informa-
tion is returned in the MatchM monad. The definition of Match M
uses Maybe for indicating possible failure, and on top of that
monad we use the state transformer StateT. The state monad is
used to thread the substitution as we traverse the scheme and the
term in parallel. The class HZip, which contains functionality for
zipping, is introduced in the following subsection.

Generic matching consists of two cases. When dealing with a
meta-variable, we first check that t here is no previous mapping
for it. (For the sake of brevity, we do not show how to deal with
multiple occurrences of a meta-variable.) If that is the case, we
update the state with the new mapping. The second case deals
with matching c onstructors against constructors. More specifi-
cally, this corresponds to matching Mul (Const 6) (Const 9) against
MulS (MetaVar "x") (MetaVar "y"). This is handled by the
generic function combine, which matches the two pattern functor
representations. If the representations match (as in our example),
then m atchM is applied to the recursive occurrences (for instance,
on MetaVar "x" and Const 6, and MetaVar "y" and Const 9).

10 2009/3/2
Now we can write the following wrapper on matchM to h ide the

use of the state monad that threads the substitution:

match :: (Family ϕ, HZip ϕ (PF ϕ)) ⇒ ϕ ix →

S(Fcahmemilye ϕϕ, iHx →Zip iϕx → (P MF aϕy)b)e⇒ ⇒(Sϕ ubi xst → →ϕ)
match p Sscchheemmee tϕm i=x →exe icxS→ tat eMTa (ymbeatc(ShuMbp st sϕ ch)eme (I∗ tm)) []

6.4 Generic zip and combine

The generic function combine is defined in terms of a another
function, which is a generalization of zipWith for arbitrary functors.
Like hmap, the function hzipM is defined by induction on the
pattern functor b y means of a type class:

class HZip ϕ f where
hzipM:: Monad m ⇒

M(∀ioxn. ϕ imx →⇒ ⇒r ix → r0 ix → m (r00 ix)) →

f(∀ri xix. ϕ→i xf →r0 irx x→→ →m (fi xr0→0 →ixm)

The function hzipM takes an argument that combines the r and r0
structures stored in the pattern functor. The traversal is performed
in a monad to notify failure when the functor arguments do not
match, and to allow the argument to use state, for example.

In our case, we are not interested in the resulting merged struc-
ture (r00 ix). Indeed, matchM stores information only in the state
monad, so we define combine to ignore the result.

data K∗ a b = K ∗ {unK∗ ::a }

combine :: (Monad m, HZip ϕ f) ⇒
((∀Miox.nϕa idx m→, Hr Zixi p→ϕ rf0)ix⇒ → m ()) →

f(∀ri xix. ϕ→i xf →r0 irx x→→ →m ()i

combinef x y = d oh rezitpuMrnw ()rapf xy
where wrapfp x y = do fp x y

return (K∗ ())

In the above, K∗ is used to ignore the type ix in the result. The
definition of hz∗ipM does not differ much from that used when
dealing with a single regular datatype:

instance El ϕ x i ⇒ HZip ϕ (I xi) where
shtzaipncMe f E(lIϕ ϕx x) i(⇒I ⇒y)H =Z ilpif tϕM(II (xif)p w rohoefrx e y)

instance (HZip ϕ a, HZip ϕ b) ⇒ HZip ϕ (a :×: b) where
shtzaipnMce (fH(xZ1 :p p×ϕ ϕ: ax ,2)H (Zy1ip p:ϕ ×ϕ :b)y 2⇒)

p=M Mliff tM(x12 :(×: ×:x:)2 ()h(zyi1pM: ×f :x y 12 y)1) (hzipM fx 2 y2)

instance (HZip ϕ a, HZip ϕ b) ⇒ HZip ϕ (a :+: b) where
shtzaipnMce (fH(LZ i xp) ϕ(La y,)H =Z ipliftϕ Mb L) ⇒(hzH ipZMipf xϕ y()a
hzipMf (R x) (R y) = liftMR (hzipM fx y)
hzipMf =f ail "zip failed in :+ : "

instance HZip ϕ f ⇒ HZip ϕ (f :.: ix) where

shtzaipncMe f H(ZTaipg ϕx)f (⇒ Tag H yZ) p=ϕ ϕli f(tMf: . T:ai gx)(w hzhipeMref x y)

instance Eq a ⇒ HZip ϕ (K a) where
shtzaipncMe f E(qKa ax ⇒) (HK Zy)ip p| xϕ ≡ (K y h=e rreeturn (K x)

|| xot≡ her ywise =f ail "zip failed in K"

In the definition above, we use liftM and liftM2 to turn the pure
structure constructors into monadic functions.

7. Related work

Malcolm (1990) shows how to define two mutually r ecursive types
as initial objects of functor-algebras. Swierstra et al. (1999) show
how to implement fixed points for mutual recursive datatypes in
Haskell. They introduce a new fixed point for every arity of mutu-
ally recursive datatypes. N one of these approaches can b e used as a
basis for an implementation of fixed p oints for mutually recursive
datatypes in Haskell suitable for implementing generic programs.
Higher-order fixed p oints like our H Fix have been used b y Bird

Submitted to I CFP 2009
and Paterson (1999) and Johann and Ghani (2007) to model folds
on n ested datatypes.

Several authors discuss how to generate folds and other re-
cursive schemes on mutually recursive datatypes (B¨o hm and Be-
rarducci 1985; Sheard and Fegaras 1993; Swierstra et al. 1999;
L ¨ammel et al. 2000). Again, the definitions in these papers can-
not b e directly generalised to families of arbitrary many datatypes
in Haskell.

Mitchell and Runciman (2007) show how to obtain traversals
for mutually recursive datatypes using the class Biplate. However,
the type on which an action is performed remains fixed during a

traversal. In contrast, the recursion schemes from Section 4.4 can
apply their function arguments to subtrees of different types.

Since dependently typed programming languages have a much
more powerful type system than Haskell extended with GADTs
and type families, it is possible to define fixed-points for mutually
recursive datatypes in many dependently typed programming lan-
guages. Benke et al. (2003) give a formal construction for mutually
recursive datatypes as indexed inductive definitions in Alfa. Some
similarities with our work are that the pattern functor argument is
indexed by the datatype sort, and r ecursive positions specify the
sort index of the subtree. Altenkirch and McBride (2003) show how
to do generic p rogramming in the dependently typed p rogramming
language OLEG. W e believe that it is easier to write generic pro-
grams on mutually r ecursive datatypes in our approach, since we do
not haves to deal with kind-indexed definitions, environments, type
applications, datatype variables and argument variables, in addition
to the cases for sums, products and constants.

McBride (2001) first described a generic Z ipper on regular
datatypes, which was implemented in Epigram by Morris et al.
(2006). The Z ipper has been used as an example of a type-indexed
datatype in Generic Haskell (Hinze et al. 2004), but again only for
regular datatypes. The dissection operator introduced b y McBride
(2008) is also only defined for regular datatypes, although McBride
remarks that an implementation in a dependently typed program-
ming language for mutually recursive datatypes is p ossible.

8. Conclusions

Until now, many powerful generic algorithms were known, but their
adoption inpractice has been hindered by their r estriction to regular
datatypes. In this paper, we have shown that we can overcome this
restriction in a way that is directly applicable in practice: using

recent extensions of Haskell, we can define generic programs that
exploit the r ecursive structure of datatypes on families of arbitrarily
many mutually r ecursive datatypes. For instance, extensive use
of generic p rogramming becomes finally feasible for compilers,
which are often b ased on an abstract syntax that consists of many
mutually recursive datatypes. Furthermore, our approach is non-
invasive: the definitions of large families of datatypes need not be
modified in order to use generic p rogramming.

Additionally, we have demonstrated our approach by imple-
menting several recursion schemes such as compos and f old, the
Zipper, and r ewriting functionality.

Based on this paper, the libraries multirec and zipper have been
developed. They are available for download from HackageDB. A
version of the rewriting library based on multirec will be released
soon.

The multirec library contains Template Haskell code to auto-
matically generate the b oilerplate code for a f amily of datatypes.
Also, in addition to the f unctionality shown here, the library offers
access to the names of constructors. Furthermore, in this p aper we
have focused on functions that consume or transform values r ather
than functions that produce values. This, however, is no limitation,
and we have for instance implemented a function that generates val-
ues of a particular type according to certain criteria using multirec.

11 2009/3/2
In its current form, our approach cannot b e used directly on

parameterized types and does not support functor composition.
We have, however, prototypical code that demonstrates that our
approach can be extended to support these concepts without too
much difficulty, and we plan to integrate this functionality into the
library in the near future.

In the future, we also hope to investigate the application of our
representation using (:.:) to arbitrary GADTs, hopefully giving us
fold and other generic operations on GADTs, similar to the work of
Johann and Ghani (2008).

In parallel to the Haskell version, we have also experimented
with an Agda (Norell 2007) version of our library, using dependent
types. The Agda version has proved to be invaluable in thinking
about the development without having to worry about Haskell lim-
itations at the same time. As to Haskell, we hope that the support
for type families, which we rely on very much, will continue to sta-
bilize in the future, and t hat perhaps the kind system will be slightly
improved with p ossibilities to encode kinds such as our ∗ϕ, or with
timhep proovssedibw ilitiyth t poo dssefiibnieli ti keinsdt o synonyms.

Acknowledgements Jose ´ Pedro Magalh˜a es and Marcos Viera
commented on a previous version of this paper. Claus Reinke sug-
gested to us the “type families desugaring trick” to get around a
problem with the type checker in an older version of GHC. This
research has b een partially funded by the Netherlands Organisation
for Scientific Research (NWO), through its projects on “Real-life
Datatype-Generic Programming” (612.063.613) and “Scriptable
Compilers” (612.063.406).

References

Thorsten Altenkirch and Conor McBride. Generic programming within
dependently typed programming. In Generic P rogramming, pages 1–
20. Kluwer, 2003.

Arthur Baars and Doaitse Swierstra. Typing dynamic typing. In ICFP’02,
pages 157–166, 2002.

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic
programs and p roofs in dependent type theory. Nordic Journal of
Computing, 10(4):265–289, 2003.

Richard Bird and Ross Paterson. Generalised folds for nested datatypes.
Formal Aspects of Computing, 11: 11–2, 1999.

C. B o¨hm and A. B erarducci. Automatic synthesis of typed Λ-programs on
term algebras. Theoretical Computer Science, 39: 135–154, 1985.

Bj¨o rn Bringert and Aarne Ranta. A pattern for almost compositional
functions. In ICFP’06, pages 216–226, 2006.

James Cheney and Ralf Hinze. A lightweight implementation of generics
and dynamics. In ACM SIGPLANH askell Workshop, 2002.

Jeremy Gibbons. Generic downwards accumulations. SCP, 37(1–3):37–65,
2000.

Ralf Hinze. A new approach to generic functional p rogramming. In
POPL’00, p ages 119–132. ACM Press, 2000a.

RalfH inze. Polytypic values possess polykinded types. In MPC’00, volume
1837 of LNCS, p ages 2–27. Springer, 2000b.

Ralf Hinze. Generics for the masses. In ICFP’04, p ages 236–243. ACM
Press, 2004.

RalfH inze, Johan Jeuring, and Andres L o¨h. Type-indexed data types. SCP,
51(2):1 17–151, 2004.

Stefan Holdermans, Johan Jeuring, Andres L o¨h, and A lexey Rodriguez.
Generic views on data types. In MPC’06, volume 4014 of L NCS, pages
209–234. Springer, 2006.

G ´erard Huet. The Zipper. J FP, 7(5):549–554, 1997.

Patrik Jansson and Johan Jeuring. A framework for p olytypic programming
on terms, with an application to rewriting. In Workshop on Generic
Programming, 2000.

Submitted to I CFP 2 009
Patrik Jansson and Johan Jeuring. PolyP — a p olytypic p rogramming

language extension. In POPL’97, pages 470–482, 1997.

Patrik Jansson and Johan Jeuring. Polytypic unification. J FP, 8(5):527–
536, 1998.

Johan Jeuring. Polytypic pattern matching. In FPCA’95, p ages 238–248,
1995.

P. Johann and N. Ghani. Initial algebra semantics is enough! In Proceed-
ings, Typed L ambda Calculus and A pplications, pages 207–222, 2007.

Patricia Johann and Neil Ghani. Foundations for structured p rogramming
with GADTs. In POPL’08, pages 297–308, 2008.

Ralf L ¨ammel and Simon Peyton J ones. Scrap your b oilerplate: A p ractical
design pattern for generic p rogramming. In ACM SIGPLAN Workshop
on Types in Language D esign and I mplementation, pages 26–37. ACM
Press, 2003.

Ralf L ¨ammel, Joost Visser, and Jan Kort. Dealing with large bananas. In
Workshop on Generic Programming, 2000.

Andres L o¨h. E xploring Generic Haskell. PhD thesis, Utrecht University,
2004.

Grant Malcolm. Data structures and program transformation. SCP, 14:
255–279, 1990.

Conor McBride. Clowns to the left of me, j okers to the r ight (pearl):
dissecting data structures. In POPL’08, p ages 287–295, 2008.

Conor McBride. The derivative of a regular type is its type of one-hole
contexts. strictlypositive .org/diff .pdf, 2001 .

Erik Meijer, Maarten Fokkinga, and Ross P aterson. F unctional program-
ming with bananas, lenses, envelopes, and barbed wire. In FPCA’91,
volume 523 of L NCS, pages 124–144. Springer, 1991.

Neil Mitchell and Colin Runciman. Uniform b oilerplate and list p rocessing.
In ACM SIGPLAN Haskell Workshop, 2007.

Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the
regular tree types. In Typesf or Proofs and Programs, LNCS. Springer,
2006.

Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeuring,
and Bastiaan Heeren. A lightweight approach to datatype-generic rewrit-
ing. In ACM SIGPLAN Workshop on Generic P rogramming, 2008.

UlfNorell. Towards apracticalprogramming language based on dependent
type theory. PhD thesis, Department of Computer Science and E ngineer-
ing, Chalmers University of Technology, 2007.

Simon P eyton Jones, editor. Haskell 98 Language and L ibraries: The
Revised Report. Cambridge University Press, Cambridge, 2003.

Simon Peyton J ones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In
ICFP’06, pages 50–61, 2006.

Tom Schrijvers, Simon Peyton J ones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open t ype functions. In ICFP’08, p ages
51–62. ACM P ress, 2008.

Tim Sheard and Leonidas Fegaras. A fold for all seasons. In FPCA’93,
pages 233–242, 1993.

Tim Sheard and Simon Peyton Jones. Template meta-programming in
Haskell. InACM SIGPLANH askell Workshop, 2002.

Doaitse Swierstra, Pablo Azero Alcocer, and J oa ˜o Saraiva. Designing and
implementing combinator languages. In Advanced Functional Program-
ming, volume 1608 of LNCS, pages 150–206. Springer, 1999.

12 2009/3/2

