
?c ACM, 2007. This is the author’s version of the work. It is posted here b y p ermission of ACM for your personal use.
NCoMt ,fo2 r0 r 0e7d.iTs thriibsui tsiot nh.e Ta uheth doref’isnv ietivrsei ovne rosifot nhe eww aso rp ku.bI tli sishpe od sitne dthh ee rPero bcyep edeirnmgsis osifo nt hoe fH AasCkMellf oWroy rokusrhp oper s20on07a,l

ISBN 978-1-59593-674-5, (30 Sep 2007) h ttp://doi.acm.org/10.1 145/1291201.1291208

Uniform Boilerplate and List Processing

Or: Scrap Your Scary Types

Neil Mitchell

University of York, U K

ndm@cs .york .ac .uk

Abstract

Generic traversals over r ecursive data structures are often referred
to as boilerplate code. The definitions of functions involving such
traversals may repeat very similar p atterns, but with variations for
different data types and different functionality. Libraries of opera-
tions abstracting away boilerplate code typically rely on elaborate
types to make operations generic. The motivating observation for
this p aper is that m ost traversals have value-specific behaviourf or
just one type. W e present the design of a new library exploiting
this assumption. Our library allows concise expression of traver-
sals with competitive performance.

Categories and Subject D escriptors D.3 [Software]: Program-
ming Languages

General Terms Languages, Performance

1. Introduction

Take a simple example of a r ecursive data type:

data Expr = Add Expr Expr | Val Int
=| SAudbd EExxpprr EExxpprr || VVaarl SInttring
|| MSuubl EExxpprr EExxpprr || NVaegr SEtxrpinr
|| DMivul EExxpprr EExxpprr

The Expr type r epresents a small language for integer expres-
sions, which permits free variables. Suppose we need to extract a
list of all the variable occurrences in an expression:

variables :: Expr → [String]
vvaarriiaabblleess (::V Eaxrp xr →) S=t [rixn]g
variables (Val x) = []
variables (Neg x) = variables x
variables (Add x y) = variables x ++ variables y
variables (Sub x y) = variables x ++ variables y
variables (M ul x y) = variables x ++ variables y
variables (Div x y) = variables x ++ variables y

This definition has the following u ndesirable characteristics: (1)
adding a new constructor would require an additional equation; (2)
the code is repetitive, the last four r ight-hand sides are identical;
(3) the code cannot b e shared with other similar operations. This

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies b ear this notice and the full citation
on the first page. To copy otherwise, to r epublish, to post on servers or to redistribute
to lists, requires p rior specific p ermission and/or a fee.

Haskell’07, September 30, 2007, Freiburg, Germany.
Copyright ?c 2007 ACM 978-1-59593-674-5/07/0009. . .$5.00

Colin Runciman

University of York, UK

colin@cs .york .ac .uk

problem is referred to as the boilerplate problem. Using the library
developed in this paper, the above example can b e r ewritten as:

variables :: Expr → [String]
vvaarriiaabblleess :x: E=x p[y →| V [aSr y n←g] universe x]

The type signature is optional, and would b e inferred auto-
matically if left absent. This example assumes a Uniplate in-
stance for the Expr data type, given in §3.2. This example requires
sontalnyc eHaf oskre thlel 9 E8x. Frod ra mtao tyrep ea,dg viavnenceid n e§ x3a.2m.p Tlhesi swe ex ar meqpulierr ee mquuirltei-s
parameter type classes – but no functional dependencies, rank-2
types or GADTs.

The central idea is to exploit a common property of many
traversals: they only require value-specific b ehaviour for a single
uniform type. In the variables example, the only type of interest
is Expr. In practical applications, this pattern is common1 . By
focusing only on uniform type traversals, we are able to exploit
well-developed techniques in list processing.

1.1 Contribution

Ours i s far f rom the first technique for ‘scrapping b oilerplate’. The
area has been r esearched extensively. But there are a number of

distinctive features in our approach:

• We require n o language extensions for single-type t raversals,
and only multi-parameter type classes (Jones 2000) for multi-
type traversals.

• Our choice of operations is new: we shun some traditionally
provided operations, and provide some uncommon ones.

• Our type classes can b e defined independently or on top of
Typeable and Data (L¨a mmel and Peyton J ones 2003), making
optional use of built-in compiler support.

• We make use of list-comprehensions (Wadler 1987) for succinct
queries.

• We compare the conciseness of operations using our library, b y
counting lexemes, showing our approach leads to less boiler-
plate.

• We compare the p erformance of traversal mechanisms, some-
thing that has been neglected in previous papers.

The ideas behind the Uniplate library have b een u sed exten-
sively, in projects including the Yhc compiler (Golubovsky et al.
2007), the Catch tool (Mitchell and Runciman 2007) and the Reach
tool (Naylor and Runciman 2007). In Catch there are over 100 Uni-
plate traversals.

We h ave implemented all the techniques reported here. W e
encourage readers to download the Uniplate library and try it out.

1 Most examples in boilerplate removal p apers meet this restriction, e ven
though the systems being discussed do not d epend on it.
It can b e obtained from the website at http ://www .cs .york . ac .

auknd/~ isn davma/iulanbilpel oantH ea/c.kAacgeop2.yofthelibraryhasalsobeenreleased,

1.2 Road map

§2 i ntroduces the traversal combinators that we propose, along with
§sh2o irntt reoxdaumcepslet hs.e §tr3a vdeisrscauls csoems bhoinwat otrhsest hea tco wmep brinoaptoosres aalreo igmw plieth-
mshoenrttee dx ianm teplremss. §o3f 3ad siiscngulses ep srimh oiwtiv eth. §s4e e cxotemnbdisn athtoisrs sapa preroi amcph eto-
mmeulnttie-dty pine tterramvesro saflas , sainndg §e5p rciomveitrivs e th. e§ 4exe txetnedndeds it hmipsl eamppernotaacthion to.
m§6u iltniv-teysptiegat traevs esrosamlse ,p a enrdfo§ rm5ac novcee rosp tthime iesxatteionndesd. § i7m gpivleems compar-
§is6o ninsv weistthig aottehesrs aopmperop aecrhfeosr,m uasnicnge oexpatimmpisleasti sounsch. §a7s tghiev e“spac roamdpisaer”-
benchmark. §8 presents related work, §9 makes concluding remarks
abendn cshumggaerskt.s§ d8irpercetseionntss froelra tfuedtuwreo rwko,r§k9.

2. Queries and Transformations

We define various traversals, using the Expr t ype defined in the
introduction as an example throughout. We divide traversals i nto
two categories: queries and transformations. A query is a function
that takes a value, and extracts some information of a different type.
A transformation takes a value, and returns a modified version of
the original value. All the t raversals rely on the class Uniplate, an
instance of which is assumed for Expr. The definition of this class
and its instances are covered in §3.

2.1 Children

The first function in the Uniplate library serves as both a function,
and a definition of terminology:

children :: Uniplate α ⇒ α → [α]

The function children takes a value and returns all maximal
proper substructures of the same type. For example:

children (Add (Neg (Var "x")) (Val 12)) =
[Neg (Var "x"), Val 12]

The children function is occasionally useful, but is used more
commonly as an auxiliary in the definition of other functions.

2.2 Queries

The Uniplate library provides a the universe function to support
queries.

universe :: Uniplate α ⇒ α → [α]

This function takes a data structure, and returns a list of all
structures of the same t ype found within it. For example:

universe (Add (Neg (Var "x")) (Val 12)) =
[Add (Neg (Var "x")) (Val 12)
, Neg (Var "x")
,Var "x"
,Val 12]

One use of this mechanism for querying was given in the in-
troduction. Using the universe f unction, queries can be expressed
very concisely. Using a list-comprehension to process the results of
universe is common.

Example 1

Consider the task of counting divisions b y the literal 0.

countDivZero :: Expr → Int
ccoouunnttDDiivvZZeerroo x E=x plern →gthI n[t t() | Div (Val 0) ← universe x]

Here we make essential use of a feature of list comprehensions:
if a pattern does not match, then the item is skipped. In other

2http://hackage.haskell.org/

syntactic constructs, failing to match a pattern results i n a pattern-
match e rror. ⁄

2.3 Bottom-up Transformations

Another common operation provided by many b oilerplate removal
systems (L¨a mmel and Peyton J ones 2003; Visser 2004; L ¨ammel
and Visser 2003; Ren and Erwig 2006) applies a given function to
every subtree of the argument type. We define as standard a bottom-
up transformation.

transform :: Uniplate α ⇒ (α → α) → α → α

The r esult of transform f x is f x0 where x0 is obtained b y
replacing each α-child xi in x b y transform f xi.

Example 2

Suppose we wish to r emove the Sub constructor assuming the
equivalence: x−y ≡ x+(−y). To apply this equivalence as a
erqewurivitailnegn cr eu:le,x a−t yall p≡osx si+ble(− −p yla)c.esT oin aapnp elyxpt rheisssie oqnu, wvael ednecfienea :s

simplify x = transform f x
where f (Sub x y) = Add x (Neg y)

f x = x

This code can be read: apply the subtraction r ule w here you can,
and where you cannot, do nothing. Adding additional r ules is easy.
Take for example: x+y = 2∗x where x ≡ y. Now we can add
tThaisk enf ewor re uxleam minptloe :ox ur+ eyxi=s tin2 g∗ txrawn sfhoerrmeatx ion≡ :

simplify x = transform f x
where f (Sub x y) = Add x (Neg y)

f (Add x y) | x ≡ y = Mul (Val 2) x
ff (xA == xM

Each equation corresponds to the natural Haskell translation of
the r ule. The transform function manages all the required boiler-
plate. ⁄

2.4 Top-Down Transformation

The Scrap Your Boilerplate approach (L¨a mmel and Peyton Jones
2003) (known as SYB) provides a top-down transformation named
everywhere0. We describe this traversal, and our reasons for not
providing it, even though it could easily b e defined. We instead
provide descend, b ased on the composOp operator (Bringert and
Ranta 2006).

The everywhere0 f transformation applies f to a value, then
recursively applies the transformation on all the children of the
freshly generated value. Typically, the intention in a transfor-
mation is to apply f to every node exactly once. Unfortunately,
everywhere0 f does not necessarily have this effect.

Example 3

Consider the following transformation:

doubleNeg (Neg (Neg x)) = x
doubleNeg x = x

The intention is clear: r emove all i nstances of double nega-
tion. When applied in a bottom-up manner, this is the result. But
when applied top-down some nodes are missed. Consider the value
Neg (Neg (Neg (Neg (Val 1)))); only the outermost double nega-
tion will be removed. ⁄

Example 4

Consider the following transformation:

reciprocal (Div n m) = Mul n (Div (Val 1) m)
reciprocal x = x

This transformation removes arbitrary division, converting it
to divisions where the numerator is always 1. If applied once
to each subtree, this computation would terminate successfully.
Unfortunately, top-down t ransformation treats the generated Mul
as being transformed, but cannot tell that the generated Div is the
result of a transformation, not a fragment of the original input. This
leads to a non-termination error. ⁄

As these examples show, when defining top-down transforma-
tions using everywhere0 it is easy to slip up. The problem is that
the program cannot tell the difference between freshly created con-
structors, and values that come originally f rom the input.

So we do support top-down transformations, but require the p ro-
grammer to make the transformation m ore explicit. We introduce
the descend function, inspired by the Compos p aper (Bringert and
Ranta 2006).

descend :: Uniplate α ⇒ (α → α) → α → α

The r esult of descend f x is obtained b y r eplacing each α-child
xi in x by f xi. Unlike everywhere0, there is no recursion within
descend.

Example 5

Consider the addition of a constructor Let String Expr Expr. Now
let us define a function subst to replace free variables with given
expressions. In order to determine which variables are free, we need
to “remember” variables that are b ound as we descend3. W e can
define subst using a descend transformation:

subst :: [(String, Expr)] → Expr → Expr
ssuubbsstt rep Sxt =rin

case x of
Let name bind x → Let name (subst rep bind)

t(sn uabmste (fb iiltnedr x((→ ≡6 nL aemtne a) m◦ efs(t)s urebspt) rxep)
Va(rs xu →st f(rfiolmte rM(a(≡y6b en (aVmaer) x ◦) f (stlo)or ekupp) xx) rep)
→ xd→e scef rnodm (Msuabysbte er(epV)a xr

The Var alternative may return an Expr from rep, but no addi-
tional transformation is p erformed on this value, since all transfor-
mation is made explicit. In the Let alternative we explicitly con-
tinue the subst transformation. ⁄

2.5 Transformations to a Normal Form

In addition to top-down and bottom-up transformations, we also
provide transformations to a normal form. The idea is that a r ule
is applied exhaustively until a normal form is achieved. Consider a
rewrite t ransformation:

rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α

A r ewrite-rule argument r takes an expression e of type α, and
returns either Nothing to indicate that the r ule is not applicable,
or Just e0 indicating that e is rewritten b y r to e0. The intuition
for rewrite r is that it applies r exhaustively; a p ostcondition for
rewrite is that there must b e no p laces where r c ould b e applied.
That is, the following property must h old:

propRewrite r x = all (isNothing ◦ r) (universe (rewrite r x))

One way to define the rewrite function uses transform:

rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α
rreewwrriittee :f: U= ntirpalnatsefoα rm⇒ g

where g x = maybe x (rewrite f) (f x)

This definition tries to apply the rule everywhere in a bottom-

up manner. If at any point it makes a change, then the new value

3 For simplicity, we ignore issues of hygienic substitution that may arise if
substituted expressions themselves contain free variables.
has the rewrite applied to it. The function only terminates when a
normal form is reached.

A disadvantage of rewrite i s that it may check unchanged sub-
expressions r epeatedly. Performance sensitive programmers might
prefer to use an explicit transformation, and m anage the rewrit-
ing themselves. W e show u nder which circumstances a bottom-up
transformation obtains a normal form, and how any transformation
can b e modified to ensure a normal form.

2.5.1 Bottom-Up Transformations to a Normal Form

We define the function always that takes a rewrite r ule r and
produces a function appropriate for use with t ransform.

always :: (α → Maybe α) → (α → α)
aallwwaayyss :r: (xα =→ →fro MmaMybaeyb α)e x→ ((rα αx→)

What r estrictions on r ensure t hat the property rewrite r x ≡

tranWsfhoarmtr (satlrwicatyiosn rs)o xn r hoe ldnss?u Iet tish astu tffhieci penrotp ptehratyt thr eew wcorintestr rucx to≡r s
on the right-hand side of r do not overlap with the constructors on
the left-hand side.

Example 2 (revisited)

Recall the simplify transformation, as a rewrite:

r (Sub x y) = Just $ Add x (Neg y)
r (Add x y) | x ≡ y = Just $ M ul (Val 2) x
rr == JNuostth$ in Mg

Here Add occurs on the r ight-hand side of the first line, and on
the left-hand side of the second. From this we can construct a value

where the two alternatives differ:

let x = Sub (Neg (Var "q")) (Var "q")

rewrite r x ≡ Mul (Val 2) (Var "q")
transform (always r) xx ≡≡ AMdudl ((VVaarl "q" V) a(Nr "egq" ()Var "q"))

To remedy this situation in the original simplify transformation,
whenever the r ight-hand side introduces a new constructor, f may
need to be r eapplied. Here only one additional f application is
necessary, the one attached to the construction of an Add value.

f (Sub x y) = f $ Add x (Neg y)
f (Add x y) | x ≡ y = Mul (Val 2) x
ff (xA == xM ⁄

2.6 Action Transformations

Rewrite transformations apply a set of r ules repeatedly u ntil a
normal form is found. One alternative is an action transformation,
where each node is visited and transformed once, and state is
maintained and updated as the operation p roceeds. The standard
technique is to thread a monad through the operation, which we do
using transform M.

Example 6

Suppose we wish to rename each variable to be unique:

uniqueVars :: Expr → Expr
uunniiqquueeVVaarrss :x: E=x pevra→ lStE axtep (transformM f x) v ars

where
vars = [’ x ’ : show i| i← [1. .]]

f (Var i) = do y : ys ← get

put ys
return (Var y)

f x = return x

The function t ransformM is a monadic variant of transform.
Here a state monad is used to keep t rack of the list of names not yet
used, with evalState computing the r esult of the monadic action,
given an initial state vars. ⁄

2.7 Paramorphisms

A p aramorphism is a fold in which the r ecursive step may refer to
the recursive component of a value, not j ust the results of folding
over them (Meertens 1992). W e define a similar recursion scheme
in our library.

para :: Uniplate α ⇒ (α → [r] → r) → α → r

The para function uses the functional argument to combine a
value, and the results of para on its children, into a new result.

Example 7

Compiler writers might wish to compute the depth of expressions:

depth :: Expr → Int
ddeepptthh :=: E para →(λI n cts → 1+maximum (0 : cs)) ⁄

2.8 Contexts

The final operation in the library seems to b e a novelty – we have
not seen it in any other generics library, even in those which attempt
to include all variations (Ren and Erwig 2006). This operation is
similar to contextual pattern matching (Mohnen 1996).4

contexts :: Uniplate α ⇒ α → [(α, α → α)]

This function returns lists of p airs (x, f) where x is an element
of the data structure which would have b een returned by universe,
and f replaces the hole which x was removed from.

Example 8

Suppose that mutation testing requires all expressions obtained
by incrementing or decrementing any single literal in an original
expression.

mutants :: Expr → [Expr]
mmuuttaannttss :x: E=x p[cr →(V[alE x j)p r| (Val i, c) ← contexts x

, (j ←al [ii,c−)1←, ←i+c 1on] n]

⁄
In general, contexts has the following properties:

propUniverse x = universe x ≡ map fst (contexts x)
pprrooppIUdn x == ualnl (ve≡r sxe) x[b≡ a m| a(p a, sbt) ←co ncotenxttesx xts) x]

2.9 Summary

We present signatures for all our methods in F igure 1, includ-
ing several monadic variants. In our experience, the most com-
monly u sed operations are universe and transform, followed b y
transform M and descend.

3. Implementing the Uniplate class

Requiring each instance of the U niplate class to implement ten
separate methods would be an undue imposition. Instead, given
a type specific instance for a single auxiliary method with a pair
as result, we can define all ten operations generically, at the class
level. The auxiliary is:

uniplate :: U niplate α ⇒ α → ([α] , [α] → α)
uunniippllaattee :x: U=n i(pclhaitledr αen⇒ , cα on→ tex(t[)α

The children are all the maximal proper substructures of the
same t ype as x; the context is a function to generate a new value,
with a different set of children. The caller of context must ensure

4 This function was contributed b y Eric Mertens.

module Data.Generics. Uniplate where

children :: Uniplate α ⇒ α → [α]
contexts :: Uniplate α ⇒ α → [(α, α → α)]

descend :: Uniplate α ⇒ (α → α) → α → α

descend M :: (Uniplate α, ⇒M(oαna→ d m) ⇒
(α → m α) → α → m α

para :: Uniplate α ⇒ (α → [r] → r) → α → r
rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α

rewriteM :: (Uniplate α, ⇒M(oαna→ d m) ⇒
(α → m (Maybe α)) → α → m α

transform :: Uniplate α ⇒ (α → α) → α → α
transform M :: (Uniplate α, ⇒M(oαna→ d m) ⇒

(α → m α) → α → m α

universe :: Uniplate α ⇒ α → [α]

Figure 1. All Uniplate methods.

class Uniplate α where
uniplate :: α → ([α] , [α] → α)

instance Uniplate Expr where

uniplate (Neg a) = ([a] ,λ[a0] → Neg a0)
uniplate (Add a b) = ([a, b] ,λ[a0, b0] → ANeddg aa0 b0)
uniplate (Sub a b) = ([a, b] ,λ[a0, b0] → SAudbd aa0 b0)
uniplate (M ul a b) = ([a, b] ,λ[a0, b0] → SMu ubl aa0 b0)
uniplate (Div a b) = ([a, b] ,λ[a0, b0] → DMivul aa0 b0)
uniplate x = ([] ,λ[] → x)

Figure 2. The Uniplate class and an instance for Expr.

that the length of the list given to context is the same as the length
of children. The r esult pair splits the information in the value, but
by combining the context with the children the original value can
be recovered:

propId x = x ≡ context children
owpIhderx e =(ch xil≡ drc enon, cteoxnttec hxti)ld =re nuniplate x

3.1 Operations in terms of uniplate

All ten operations of §2 can be defined in terms of uniplate very
cAolnlct iesnelo y.p Weraet idoenfisno ef ff§ o2urc faunn cbteiod nesf ainse dexai nmt pelremss.

children :: Uniplate α ⇒ α → [α]
cchhiillddrreenn :=: U Ufnsti p◦l autneipα la⇒ te

universe :: Uniplate α ⇒ α → [α]
uunniivveerrssee :x: U=n ixp :l acteonα ca⇒ tMα ap→ →un[iαve]rse (children x)

transform :: Uniplate α ⇒ (α → α) → α → α

ttrraannssffoorrmm :f: Ux =nip fla a$t ecoα nt⇒ ext(α$ map)(t →ranα sf→ ormα f) children
where (children, context) = uniplate x

descend :: Uniplate α ⇒ (α → α) → α → α

ddeesscceenndd :f: Ux =nip claotnetαe xt ⇒ ⇒$ map →f αch)il →dreα n →
where (children, context) = uniplate x

The common pattern is to call uniplate, then operate on the
current children, often calling context to create a modified value.
Some of these definitions can be made more efficient – see §6. 1.

3.2 Writing Uniplate instances

We define a Uniplate instance for the Expr type in Figure 2.
D[[data d v1...vn = a1 ... am]] =

N[[d]] v1 ...vn x = case x of C[[a1]] ... C[[am]]
wNh[[edr]]e v x is fresxh=

C[[c t1...tn]] =
c y1...yn → UNIT c <> T[[t1]] y1 <> ... <> T[[tn]] yn
where y1...yn are cfre< sh>

T[[TargetType]] = TARGET
T[[PrimitiveType]] = UNIT
T[[d t1...tn]] = N [[d]] T[[t1]] ... T[[tn]]
T[[v]] = v

Nis an injection to fresh variables

Figure 3. Derivation rules for Uniplate instances.

The distinguishing feature of our library is that the children are
defined in terms oftheir type. While this feature keeps the traversals

simple, it does mean that r ules for deriving instance definitions are
not p urely syntactic, but depend on the types of the constructors.
We now describe the derivation r ules, followed b y information
on the DERIVE tool that performs this task automatically. (If we
are willing to make use of Multi-Parameter Type Classes, simpler
derivation r ules can be used: see §5.)

3.3 Derivation Rules

We can define derivation r ules for the children and context func-
tions, allowing the definition:

instance Uniplate Type where
uniplate x = (children x, context x)

Alternatively, it is possible to define one single function which
generates both elements of the pair at once, avoiding the need to
examine each value twice (see §6.2 for an example).

Wmien eme oadcehl tvhaelu deet rwiviacteio(ns eoef § §a6n. 2inf sotraa ncnee bxaym mdeplsec)r.ibing a deriva-
tion from a data t ype to a set of declarations. The derivation rules
have t hree functional p arameters: (< >), UNIT and TARGET. By
varying these parameters we derive either children or context
functions.

The derivation rules are given in Figure 3. The D rule takes a
dataT thyep ede rdievcaltaiorantior unle, sana dre ed gefiivnenes an fFuigncutrieo n3 .o Tveher Dt ha tr dlaet ata ktyespea .
The C rule defines a case alternative for each constructor. The T
rTuhlee d Ce friunlees dteyfpine essp eacci faics eb eahltearvinoatuivr: ea ftoyrpee aicsh hec ithoenrs ttrhuec ttoarrg.eT th teypT e
on which an instance is being defined, or a p rimitive such as Char,
or an algebraic data type, or a free type variable.

Applying D to Expr, the result is:

N[[Expr]] x = case x of
V[[Eaxl y1 → ca sUeN IxT oVfal <> UNIT y1

Var y1 →→ UNIT Var <> N [[List]] UNIT y1

Neg y1 →→ UNIT NVaegr <<> > TNA[R[LGisEtT]] y1

Add y1 y2 →→ UNIT Add <> TARGET y1 <> TARGET y2

Sub y1 y2 →→ UNIT Sub <> TARGET y1 <> TARGET y2

Mul y1 y2 →→ UNIT Mul <> TARGET y1 <> TARGET y2

Div y1 y2 →→ UNIT Div <> TARGET y1 <> TARGET y2

N[[List]] v1 x = case x of
[[]L → UNIT []
(:) y1 y2 →→ UNIT (:) <> v1 y1 <> N [[List]] v1 y2

3.3.1 Defining children

To derive the children function, the derivations are applied with
the following parameter values.

UNIT = const []
TARGET = (:[])
(< >) = (+ +)

children x = N [[Type]] x

The generated function is a traversal which visits every value in
the data type. A list is created of all the target types by placing
the targets into lists, combining lists using (+ +), and skipping
uninteresting values.

From these definitions we can do some r easoning. For example,
list ≡ concatMap, and concatMap (const []) ≡ const [] . This
ilnistfo≡ rma ctoionnc actaMn a bep ,u a sendd c too snicmaptlMifyap pso(cmoen isntst [a]n)c ≡es.

3.3.2 Defining context

For context functions we apply the derivation rules with the fol-
lowing parameter values.

type Cont t α = [α] → (t, [α])

UNIT :: t → Cont t α

UNIT :x: tn→s →=C (oxn,t tn tsα)

TARGET :: α → Cont α α

TARGET :x: α(n→ →: n Cs)o =t α(nα , ns)

(< >) :: Cont (a → b) α → Cont a α → Cont b α

((<< >>)) a Cb ns1 =a →letb ()aα 0, ns2 C) =n a ns1

(b0 ,ns3) = b ns2

in (a0 b0, ns3)

context x ns = fst (N[[Type]] x ns)

The central Cont type is an extension to the type of context
which takes a list of children to substitute into a value, and returns
both the new value, and the children which were not used. By re-
turning the unused children the (< >) operation is able to deter-
mine both the new value for a (namely a0), and the r emaining list
of children (namely ns2), sequencing the use of the children. The
TARGET function consumes a child, and the UNIT function returns
the children unmodified.

3.4 Automated Derivation of uniplate

Applying these derivation rules is a form of boilerplate coding!
The DrIFT tool (Winstanley 1997) derives instances automatically
given rules depending only on the information contained in a type
definition. However DrIFT is unable to operate with certain Haskell
extensions (TEX style literate Haskell, C pre processor), and re-
quires a separate pre-processing stage.

In collaboration with Stefan O’Rear we have developed the
DERIVE tool (Mitchell and O’Rear 2007). DERIVE is b ased on
Template Haskell (Sheard and Jones 2002) and has p redefined r ules
for derivation of Uniplate instances. It has special r ules to remove
redundant patterns to produce simpler and more efficient instances.

Example 9

data Term = Name String
| Apply Term [Term]

AdpeprivlyinT ge r(m { [-!T Uernmip]late !-})

Running the DERIVE tool over this file, the generated code is:
instance Uniplate Term where

uniplate (Name x1) = ([] ,λ → Name x1)
uniplate (Apply x1 x2) = (x1 : x2 ,λ(n : ns) →→ ANpamplye nx ns)

⁄

4. Multi-type Traversals

We have introduced the Uniplate class and an instance of it for type
Expr. Now let u s imagine that Expr is merely the expression type
in a language with statements:

data Stmt = Assign String Expr
| Sequence [Stmt]
|| SIfe [ESxtpmr Stmt Stmt
|| I Wfhile Expr Stmt

We could define a Uniplate instance for Stmt, and so perform
traversals upon statements t oo. However, we may run into limita-
tions. Consider the task of finding all literals in a Stmt – this re-

quires boilerplate to find notj ust inner statements of type Stmt, but
inner expressions of type Expr.

The Uniplate class takes a value of type α, and operates on its
substructures of type α. W hat we now require is something that
takes a value of type β, but operates on the children of type α

within it – we call this class Biplate. T ypically the type β will be a
container of α. We can extend our operations by specifying how to
find the α’s within the β’s, and then perform the standard Uniplate
operations upon the α type. In the above example, α = Expr, and
β = Stmt.

We first introduce UniplateOn, which requires an explicit func-
tion to find the occurrences of type α within t ype β. We then make
use of Multi-parameter t ype classes (MPTC’s) t o generalise t his
function into a type class, n amed Biplate.

4.1 The UniplateOn Operations

We define operations, including universeOn and t ransformOn,
which take an extra argument relative to the standard Uniplate
operators. We call this extra argument biplate: it is a function from
the containing type (β) to the contained type (α).

type BiplateType β α = β → ([α] , [α] → β)
tbyipplaeteB :p: lBatipeTlaytpeTeyβ pαe β= =αβ

The intuition for biplate is that given a structure of type β, the
function should r eturn the largest substructures in it of type α. If
α ≡ β the original value should b e returned:

biplateSelf :: BiplateType α α

biplateSelf x = ([x] , λ[x0] → x0)

We can now define universeOn and transformOn. Each takes a
biplate function as an argument:

universeOn :: Uniplate α ⇒ BiplateType β α → β → [α]
uunniivveerrsseeOOnn b::i pUlantipel axt e=α

concatMap universe $ fst $ biplate x

transformOn :: Uniplate α

⇒ BiplateType β α → (α → α) → β → β
transformOn ⇒bipBl atipel aft exT =yp

context $ map (transform f) children
where (children, context) = biplate x

These operations are similar to the original universe and
transform. They unwrap β values to find the α values within them,
operate u sing the standard Uniplate operations for type α, then
rewrap if necessary. If α is constant, there is another way to ab-
stract away the biplate argument, as the following example shows.

Example 10

The Yhc.Core library (Golubovsky et al. 2007), part of the York
Haskell Compiler (Yhc), makes extensive use of Uniplate. In t his
library, the central types include:

data Core = Core String [String] [CoreData] [CoreFunc]

data CoreFunc = CoreFunc String String CoreExpr

data CoreExpr = CoreVar String
| CoreApp CoreExpr [CoreExpr]
|| CCoorreeCAappse CCoorreeEExxpprr [[C(CoorreeEExpxpr]r, CoreExpr)]
|| CCoorreeLCeats [C (oSrterEinxgp,r rC [o(CreoErexpErx)p p] ,CCoorerEexEpxrp

-r-e Loethter constructors

Most t raversals are p erformed on the CoreExpr t ype. However,
it is often convenient t o start from one of the other t ypes. For

example, coreSimplify::CoreExpr → CoreExpr may be applied not
jeuxsatm mtop alen, ciondrievSiidmuapll efxyp::rCeosrsieoEnx,p pbru →t →toC Caollr eeExxprpersm sioanysb eina ap pfulinecdtinoont
definition, or a complete program. I f we are willing t o freeze the
type of the second argument to biplate as CoreExpr we can write a
class:

class UniplateExpr β where
uniplateExpr :: BiplateType β CoreExpr

universeExpr x = universeOn uniplateExpr x
transformExpr x = t ransformOn uniplateExpr x

instance Uniplate CoreExpr
instance UniplateExpr Core
instance UniplateExpr CoreFunc
instance UniplateExpr CoreExpr
instance UniplateExpr β ⇒ UniplateExpr [β] ⁄

This technique has been used in the Yhc compiler. The Yhc
compiler is written in Haskell 98 to allow for bootstrapping, so only
the standard single-parameter type classes are available.

4.2 The Biplate class

If we are willing to make use of multi-parameter type classes
(Jones 2000) we can define a class Biplate with biplate as its sole
method. We do not require functional dependencies.

class Uniplate α ⇒ Biplate β α where
Ubinpilaptlaet :e e: Bαip ⇒laB teiTpylaptee ββ α

We can now implement universeBi and transformBi in terms of
their On counterparts:

universeBi :: Biplate β α ⇒ β → [α]

uunniivveerrsseeBBii :=: B Buinplivateersβ eOα n ⇒bipβ lat→ e

transformBi :: Biplate β α ⇒ (α → α) → β → β
ttrraannssffoorrmmBBii :=: Btirpanlatseforβ mα O⇒n b i(αpla→ te

In general the move to Biplate requires few code changes,
merely the use of the new set of Bi functions. To illustrate we
give generalisations of two examples from previous sections, im-
plemented using Biplate. W e extend the v ariables and simplify
functions to work on Expr, Stmt or many other types.

Example f rom §1 (revisited)

variables :: Biplate β Expr ⇒ β → [String]
vvaarriiaabblleess :x: B=i p[l y |e V βa rE y ←r⇒ ⇒un βive→ rs[eBSti xin] g

The equation requires only one change: the addition of the
Bi suffix to universe. In the type signature we replace Expr with
Biplate β Expr ⇒ β. Instead of r equiring the input to b e an Expr,
wBiep mlateereβ ly Erxepquri⇒ re βt h.aIt fsrtoemad t ohef ienqpuuitr nwge hk neo iwnp uhot wto btoe raenaE chx parn,
Expr. ⁄

Example 2 (revisited)

simplify :: Biplate β Expr ⇒ β → β
ssiimmpplliiffyy :x: B=i ptlraatnesβ forE mxpBri f⇒ ⇒x

where f (Sub x y) = Add x (Neg y)
f x = x

In this redefinition we h ave again made a single change to the
equation: the addition of Bi at the end of transform. ⁄

5. Implementing Biplate

The complicating feature of biplate is that when defining Biplate
where α ≡ β the function does not descend to the children, but
swihmeprely αre≡ turnβ s ithtse af rugnucmtioennt.d oTehsisn o“tsa dmese etynpde”t o or t ehsetric cthioilndr ec ann, bb uet
captured either using the type system, or using the Typeable class
(L¨a mmel and P eyton Jones 2003). We present three methods for
defining a Biplate instance – offering a trade-off between perfor-
mance, compatibility and volume of code.

1. Direct definition requires O(n2) instances, but offers the high-
est performance with the fewest extensions.

2. The Typeable c lass can b e u sed, requiring O(n) instances and
no further Haskell extensions, but giving worse p erformance.

3. The Data class can be used, p roviding fully automatic instances
with GHC, but requiring the use of r ank-2 types, and giving the
worst performance.

All three methods can be fully automated using DERIVE, and
all provide a simplified method for writing Uniplate instances. The
first two methods require the user to define instances of auxiliary
classes, PlateAll and PlateOne, on top of which the library defines
the Uniplate and Biplate classes. The Biplate class definition itself
is independent of the method used to implement its instances.
This abstraction allows the user to start with the simplest instance
scheme available to them, then move to alternative schemes to gain
increased p erformance or compatibility.

5.1 Direct instances

Writing direct instances requires the Data.Generics. PlateDirect
module to b e imported. This style requires a maximum of n2
instance definitions, where n is the number of types which contain
each other, but gives the highest p erformance and most type-safety.

The instances still depend on the type of each field, but are easier
to define than the Uniplate instance discussed in §3.2. Here is a
ptoos dseibfinlee eint shtaannc the efoU r nthipel Eatxepi rn ntystapnec:

instance PlateOne Expr where
plateOne (Neg a) = plate Neg ∗ a
plateOne (Add a b)) == ppllaattee ANeddg ∗∗ aa ∗ b
ppllaatteeOOnnee ((SAudbd aa bb)) == ppllaattee SAudbd ∗∗ aa ∗∗ bb
ppllaatteeOOnnee ((MSuubl aa bb)) == ppllaattee MSuubl ∗∗ aa ∗∗ bb
ppllaatteeOOnnee ((DMiuvl aa bb)) == ppllaattee DMivul ∗∗ aa ∗∗ bb
ppllaatteeOOnnee (xD == ppllaattee xD

Five infix combinators (∗ , |+ , |-- , |∗ and | |+) indicate the
struFctivureei noffi xthc eo mfieblidn taoto trhse ((ri∗ | g h,t.| T h,e| ,∗ |c∗ |oma bndina|t |or says that the
vsatrulucet uorne tohfet hrieg hfite lisd toof tthhee rt iargghet.t Tt yhpee, ∗|+ says tnhatato ra vaaylsut eh oaft tt hhee
tvaarlgueet otynp eth may hotc cisuor fit nh etht ea rr gigehttt oyppeer,a|n d, |-- says that values of
tthareg etatr gtyept etym pea yc aoncncourt ioncct huer irnig thhte o or pieghrat nodp,er| a--nsd a. |s s∗t aantd v |l u|+e sao ref

tvheerst iaorngse tot fy ∗e aanndn |t+o cucsuerd nwt hheen tigheh tv oaplueera ntod .th| e∗ | ∗ria ghntd di|s a list
veietrhseiro nofs o thfe t|∗a rga ent dtyp| e, or of a type that may contain target values.
The law plate f |-- x ≡ plate (f x) j ustifies the definition p resented
Tabhoevl ea.w

This style of definition naturally expands to the multi-type
traversal. For example:

instance PlateAll Stmt Expr where
plateAll (Assign a b) = plate Assign |-- a ∗ b
plateAll (Sequence a) = plate Sequence || -|+- aa
plateAll (If a b c)) == ppllaattee SIfe ∗| a |+ b |+ c
plateAll (While a b) = plate While ∗∗ aa ||+ bb

From the definitions of PlateOne and PlateAll the library can
define Uniplate and Biplate instances. The information provided
by uses of |-- and |+ avoids r edundant exploration down branches

tbhya tu dseos n ooft |-h-ava ne dthe| target type. The use of |∗ is an optimisation
twhahitcd ho oal nloowth sa av leist th oeft t ahreg ettar tgyepte t.yT peh etou bsee o dfire| c |t∗lyi smaa nni oppultaimteidsa awtiiotnh
biplate instead of producing and consuming this list twice. The use
of | |+ avoids the definition of additional instances.

|I|n the worst case, this approach requires an instance for each
container/contained pair. In reality few traversal p airs are actually
needed. The restricted pairing of types in Biplate instances also
gives increased type safety; instances such as Biplate Expr Stmt
do not exist.

In our experience definitions using these combinators offer sim-
ilar performance to hand-tuned instances; see §7.2 for measure-
milaernpt se.

5.2 Typeable based instances

Instead of writing O(n2) class instances to locate values of the tar-
get type, we can use the Typeable class to test at runtime whether
we have reached the target type. We present derivations much as
before, based t his time only on combinators |+ and |-- :

instance (Typeable α, Uniplate α) ⇒ PlateAll Expr α where
sptlaatnecAel l(T(Nypegea ab)α =,U pnliaptlea tNee αg) |+⇒ ⇒a

plateAll (Add a b)) == ppllaattee ANeddg ||+ a |+ b
ppllaatteeAAllll ((SAudbd aa bb)) == ppllaattee SAudbd ||+ aa ||+ b
ppllaatteeAAllll ((MSuubl aa bb)) == ppllaattee MSuubl ||+ aa ||+ b
ppllaatteeAAllll ((DMiuvl aa bb)) == ppllaattee DMivul ||+ aa ||+ b
ppllaatteeAAllll == ppllaattee xD

instance (Typeable α, Uniplate α) ⇒ PlateAll Stmt α where
sptlaatnecAel l((TAyspseigabnl ,aU bn p)l a=te p αla)te⇒ ⇒A sPsliagtne S|--t am |t+α αb
plateAll (Sequence a) = plate Sequence ||-+- aa
plateAll (If a b c)) == ppllaattee SIfe ||+ a |+ b |+ c
plateAll (While a b) = plate While ||+ aa ||+ bb

The |+ combinator is the most common, denoting that the value
on tThhee er i| ght may be of the target type, or may contain values of
the target type. However, if we were to use |+ when the right-
hthaendt a rvgaelutet ywpaes. H ano Iwnte,v oerr, oi fthw ere ep wrimerieti vtoe tuyspee w|e did not wish to
examine, we would require a PlateAll definition for Int. To omit
these unnecessary instances, we can use |-- to indicate that the t ype
tish ensoet uonfn nientceersesastr.y

The Data.Generics. PlateTypeable module is able to automati-
cally infer Biplate instances given a PlateAll instance. Alas this is
not the case for U niplate. Instead we must explicitly declare:

instance Uniplate Expr where
uniplate = uniplateAll

instance Uniplate Stmt where
uniplate = uniplateAll

The reader may wonder why we cannot define:

instance PlateAll α α ⇒ Uniplate α where
sutnaipnlcaete P l=a euAnilpllα at eαA⇒ ll

repChildren :: (Data α, Uniplate β, Typeable α, Typeable β)
⇒ α → ([β], [β] → α)

repChildren x = (children, context)
where

children = concat $ gmapQ (fst ◦ biplate) x

context xs = evalState (gmapM f x) xs
f y = do let (cs, con) = biplate y

(as, bs) ← liftM (splitAt $ length cs) get
put bbss
return $ con as

Figure 4. Code for Uniplate in terms of Data.

Consider the Expr type. To infer Uniplate Expr we require an

irensqtuainrceeU f noirplP atleat EexApllr– Exw phricE hxw per a.rB eui ntt t hoei p nrfoecret shsiso fi ni nsftearnrcinegw !e5
5.3 Using the Data class

The existing Data and Typeable instances provided by the SYB
approach can also be used to define U niplate instances:

import Data.Generics
import Data.Generics. PlateData

data Expr = ... deriving (Typeable, Data)
data Stmt = ... deriving (Typeable, Data)

The disadvantages of this approach are (1) lack of type safety –

there are now Biplate instances for many p airs of types where one
is not a container of the other; (2) compiler dependence – it will
only work where Data.Generics is supported, namely GHC at the
time of writing.6 The clear advantage is that there is almost no work
required to create instances.

How do we implement the Uniplate class instances? The fun-
damental operation is given in Figure 4. The repChildren function
descends to each of the child nodes, and is guarded by a Typeable
cast to ensure that α ≡ β. The operation to get the children can b e
dcoasntet oue sinnsgu grem tahpatQα . ≡T 6hβe o.T pehreao tiopner taoti roenp ltaocg ee ttht eh ech cihldildrernen nisc amno bree

complex, requiring a state monad to keep track of the items to in-
sert.

The code in Figure 4 is not optimised for speed. Uses of splitAt
and length require the list of children to be traversed multiple

times. We discuss improvements in §6.2.

6. Performance Improvements

This section describes some of the performance improvements we
have been able to make. First we focus on our optimisation of
universe, using continuation passing and some foldr/build fusion
properties (Peyton-Jones et al. 2001). N ext we turn to our Data
class based instances, improving them enough to outperform SYB
itself.

6.1 Optimising the universe function

Our initial universe implementation was presented in §3. 1as:

universe :: Uniplate on ⇒ on → [on]
uunniivveerrssee :x: U=n ixp : actoeno cnat M⇒ao pn nun →ive[rosne (children x)

5GHCh asc o-inductiveo rr ecursive dictionaries, but Hugs does not. T o
allow continuing compatibility with Hugs, and the use of fewer extensions,
we require the user to write these explicitly for each type.

6 Hugs supports the required r ank-2 types for Data.Generics, but the work
to p ort the library has not been done yet.

A disadvantage is that concatMap produces and consumes a
list at every level in the data structure. We can fix this b y using
continuations:

universe x = f x []
where f :: Uniplate on ⇒ on → [on] → [on]

ff :x: Urensitp l=a xe :o cnon ⇒cao tCno →nt [(omna]p→ →f $[ochni]ldren x) rest

concatCont [] rest = rest
concatCont (x : xs) rest = x (concatCont xs rest)

Now we only perform one reconstruction. We can do even better
using GHC’s list fusion (Peyton-Jones et al. 2001). The user of
universe is often a list comprehension, which is a g ood consumer.
We can make concatCont a good consumer, and f a goodproducer:

universe :: Uniplate on ⇒ on → [on]
uunniivveerrssee :x: U=n bipulaildte (of nx⇒)

where
f :: Uniplate on ⇒ on → (on → res → res) → res → res
ff :x: Uconnipsl natile =o nx ⇒`coo nns`

concatCont (map (flip f cons) $ children x) nil

concatCont xs rest = foldr ($) rest xs

6.2 Optimising PlateData

Surprisingly, it is possible to layer Uniplate over the Data instances
of SYB, with better performance than SYB itself. The first optimi-
sation is to generate the two members of the uniplate pair with
only one p ass over the data value. We cannot use SYB’s gmapM or
gmapQ – we must instead use gfoldl directly. W e also make use of
continuation passing style in some places.

With this first improvement in place we perform much the same
operations as SYB. But the overhead of list creation in uniplate
makes traversals about 15% slower than SYB.

The next optimisation relies on the extra information present
in the Uniplate operations – namely the target type. A boilerplate
operation walks over a data structure, looking for target values to
process. In SYB, the target values may be of any type. For Uniplate
the target is a single uniform type. If a value is reached which is not
a container for the target type, no further exploration is required
of the values children. Computing which types are containers for

the target type can be done relatively easily in the SYB framework
(L¨a mmel and Peyton Jones 2004):

data DataBox = ∀ α • (Typeable α, Data α) ⇒ DataBox α

contains :: (Data α, Typeable α) ⇒ α → [DataBox]
ccoonnttaaiinnss :x: (=D aift aisAα l,gTTypypeea bdletyαp)t⇒ henα c→ onc [DataMtaapB ofx c]trs else []

where
f c = gmapQ DataBox (asTypeOf (fromConstr c) x)
ctrs = dataTypeConstrs dtyp
dtyp = dataTypeOf x

The contains function takes a phantom argument x which is
never evaluated. It returns all the fields of all possible constructors
of x’s type, along with a type representation from typeOf. Hence
all types can b e divided into three sets:

1. The singleton set containing the type of the target.

2. The set of other types which may contain the target type.

3. The set of other types which d o not contain the target type.

We compute these sets for each type only once, by u sing a
CAF inside the class to store it. The cost of computing them is
small. When examining a value, if its type is a member of set 3 we
can p rune the search. T his t rick is surprisingly effective. Take for
example an operation over Bool on the value (True, "Haskell ").
The SYB approach finds 16 subcomponents, Uniplate touches only
3 subcomponents.

With all these optimisations we can usually perform both
queries and transformations f aster t han SYB. In the b enchmarks
we r ange from 4 % worse to 127% better, with an average of 56%
faster. F ull details are presented in §7.2.

7. Results and Evaluation

We evaluate our boilerplate r eduction scheme in two ways: firstly
by the conciseness of traversals using it (i.e. the amount of boil-
erplate it removes), and secondly b y its runtime p erformance. We
measure conciseness by counting lexemes – although we concede
that some aspects of concise expression may still be down to per-
sonal p reference. W e give a set of nine example p rograms, written
using Uniplate, SYB and Compos operations. W e then compare
both the conciseness and the performance of these programs. Other
aspects, such as the clarity of expression, are not so easily mea-
sured. Readers can m ake their own assessment b ased on the full
sources we give.

7.1 Boilerplate Reduction

As test operations we have taken the first three examples from this
paper, three from the Compos p aper (Bringert and Ranta 2006), and
the three given in the SYB p aper (L¨a mmel and Peyton Jones 2003)
termed the “Paradise Benchmark”. In all cases the Compos, SYB
and Uniplate f unctions are given an appropriately prefixed name.
In some cases, a helper function can b e defined in the same way
in b oth SYB and Uniplate; where this is possible we have done so.
Type signatures are omitted where the compiler is capable of infer-
ring them. For SYB and Compos we have used definitions from the
original authors where available, otherwise we have followed the
guidelines and style presented in the corresponding paper.

7.1.1 Examples f rom this P aper

Example f rom §1 (revisited)

univ ariables x = [y | Var y ← universe x]

sybv ariables = everything (+ +) ([] `mkQ` f)
where f (Var y) = [y]

f=[]

comv ariables :: Expr a → [String]
ccoommv vaarriiaabblleess :x: E=x pcra ase→ →x [oSf

Var y → [y]
a→r y yc→ omp[yo]sOpFold [] (+ +) comv ariables x

Only Compos needs a type signature, due to the use of GADTs.
List comprehensions allow for succinct queries in Uniplate. ⁄

Example 1(revisited)

uniz eroCount x = length [() | Div (Val 0) ← universe x]

sybz eroCount = everything (+) (0 `mkQ` f)
where f (Div (Val 0)) = 1

f = 0

comz eroCount :: Expr a → Int
ccoommz zeerrooCCoouunntt :x: E=x pcra ase→ →x oInft

Div y (Val 0) → 1+comz eroCount y
D→ivy yco(Vmaplo 0s)O→ pF1 o+ld 0o m(+z)e croomCo uzenrtoyC ount x

In the Uniplate solution the list of () is perhaps inelegant. How-
ever, Uniplate is the only scheme that is able to use the standard
data Stm = SDecl Typ Var | SAss Var Exp

| SBlock [Stm] | SSRAsesturn Exp
data Exp = SESBltmoc kS[tmSt | SEARedtdu Exp Exp

| EVar Var | EEAIndt IE Enxtp
data Var = EVV String

data Typ = Ti nt | Tf loat

Figure 5. Data type from Compos.

length function: the other two express the operation as a fold.
Compos requires additional b oilerplate to continue the operation
on Div y. ⁄

Example 2 (revisited)

simp (Sub x y) = simp $ Add x (Neg y)
simp (Add x y) | x ≡ y = Mul (Val 2) x
ssiimmpp (xA == xM

unis implify = transform simp

sybs implify = everywhere (mkT simp)

coms implify :: Expr a → Expr a
ccoomms siimmpplliiffyy :x: E=x pcra ase→ →x Eofx

Sub a b → coms implify $
Abda d b(c →omc os mimps liimfyp laif)y ($Neg (coms implify b))

Add a b → case (coms implify a, coms implify b) of
((aco0,m mb0s) |m ap0l f≡y ab0, →m sMimupl l(ifVyabl 2))o af0

|| oath≡er wbise →→ AMdudl (aV0 abl0
→ composOp coms imp|ol iftyh exr

This is a modified version of simplify discussed in §2.5.1 . The
twoT rhuislei ss a are m aopdpilfiieedd e vveersriyownhoe fres ipmospsliibfyled . Cscoumsspeods ndo§ e2s n5o.1t. pro-
vide a bottom-up transformation, so needs extra boilerplate. ⁄

7.1.2 Multi-type examples from the Compos p aper

The statement type manipulated b y the Compos p aper is given in
Figure 5. The Compos paper translates this type into a GADT,
while Uniplate and SYB both accept the definition as supplied.

As the warnAssign function from the Compos paper could be
implemented much more neatly as a query, r ather than a monadic
fold, we choose to ignore it. We cover the r emaining three func-
tions.

Example 11(rename)

ren (V x) = V (" _" ++ x)

unir ename = transformBi ren

sybr ename = everywhere (mkT ren)

comr ename :: Tree c → Tree c
ccoomm r reennaammee :t: T=r ecea cse→ →t o Tfr

V x → V ("_" ++ x)

V→x →coVm p("o_sO"p+ + +cox m)r ename t

The Uniplate definition is the shortest, as there is only one
constructor in type Var. As Compos r edefines all constructors in
one GADT, it cannot benefit from this k nowledge. ⁄

Example 12 (symbols)

unis ymbols x = [(v, t) | SDecl t v ← universeBi x]

Table 1. T able of lexeme counts for solutions to the test problems using each of Uniplate, SYB and Compos.

simp var zero const ren syms bill incr incr1 Query Transform All
Uniplate 40 12 18 27 16 17 13 21 30 60 134 194
SYB 43 29 29 30 19 34 21 24 56 113 172 285
Compos 71 30 32 54 27 36 25 33 40 123 225 348

Table 2. Table of timing results, e xpressed as multiples of the run-time for a hand-optimised version not using any traversal library.

simp var zero const ren syms bill incr incr1 Query Transform All
Compos 1.34 1.17 1.74 1.28 1.22 1.30 2.49 1.52 1.57 1.68 1.39 1.5 1
Uniplate Manual 1.16 1.44 2.64 1.27 1.36 1.48 2.28 1.27 1.08 1.96 1.23 1.55
Uniplate Direct 1.22 1.61 3.28 1.21 1.18 1.38 2.35 1.19 1.16 2.15 1. 19 1.62
Uniplate Typeable 1.43 2.09 4.81 1.42 1.37 2.63 5.86 1.53 1.53 3.85 1.46 2.52
Uniplate Data 2.30 4.64 12.70 1.84 1.89 3.60 10.70 2.07 1.69 7.91 1.96 4.60
SYB 2.21 5.88 16.62 2.30 2.13 5.56 24.29 3.12 2.35 13.09 2.42 7. 16

type Manager = Employee

type Name = String

type Address = String

data Company = C [Dept]

data Dept = D Name Manager [Unit]

data Unit = PU Employee | DU Dept

data Employee = EP UPeE rsmopnl Salary

data Person = P Name Address

data Salary = S Integer

Figure 6. Paradise Benchmark data structure.

sybs ymbols = everything (+ +) ([] `mkQ` f)
where f (SDecl t v) = [(v, t)]

f=[]

coms ymbols :: Tree c → [(Tree Var, Tree Typ)]
ccoomm ssyymmbboollss :x: T=r ceac se→ →x [o(Tf

SDecl t v → [(v, t)]
D→ec lco tmv p →osO[(pvM,to)n]oid coms ymbols x

Whereas the Compos solution explicitly manages the traversal,
the Uniplate solution is able to use the built-in universeBi function.
The use of lists again benefits Uniplate over SYB. ⁄

Example 13 (constFold)

optimise (EAdd (EInt n) (EInt m)) = EInt (n+m)
optimise x = x

unic onstFold = transformBi optimise

sybc onstFold = everywhere (mkT optimise)

comc onstFold :: Tree c → Tree c
ccoommc coonnssttFFoolldd :e: T=r ceac se→ →e oTrfe

EAdd x y → case (comc onstFold x, comc onstFold y) of
((EcoImnt n, nEsItnFto mld) →,c oEmIn tc (onns+tFmol)d
((xEI0,n yt0n) ,→E nEtA mdd) x →0 y E0

→ composOp comc on)st→ FoEl dA Aed

The constant-folding operation is a b ottom-up transformation,
requiring all subexpressions to have b een transformed before an
enclosing expression is examined. Compos only supports top-down
transformations, requiring a small explicit traversal in the middle.
Uniplate and SYB both support bottom-up transformations. ⁄

7.1.3 The Paradise B enchmark f rom SYB

The Paradise benchmark was introduced in the SYB paper (L¨a mmel
and Peyton J ones 2003). The data type is shown in F igure 6. The
idea is t hat this data type represents an XML file, and a Haskell
program is being written to perform various operations over it. The
Compos p aper includes an encoding into a GADT, with tag types
for each of the different types.

We h ave made one alteration to the data type: Salary is no
longer of type Float but of type Integer. In various experiments

we found that the rounding errors for floating p oint numbers made
different definitions return different r esults.7 This change is of no
consequence to the b oilerplate code.

Example 14 (increase)

The first function discussed in the SYB paper is increase. This
function increases every item of type Salary by a given p ercentage.
In order to fit with our modified Salary data type, we have chosen
to increase all salaries b y k.

incS k (S s) = S (s+k)

unii ncrease k = t ransformBi (incS k)

sybi ncrease k = everywhere (mkT (incS k))

comi ncrease :: Integer → Tree c → Tree c
ccoommi innccrreeaassee :k: cn t=eg cears →e cT orefe

S s → S (s+k)
s→→ →co Sm(pso+skO)p (comi ncrease k) c

In the Compos solution all constructors b elong to the same
GADT, so instead of j ust matching on S, all constructors must b e
examined. ⁄

Example 15 (incrOne)

The incrOne function performs the same operation as increase, but
only within a named department. The one subtlety is that if the
named department has a sub-department with the same name, then
the salaries of the sub-department should only be increased once.
We are able to r euse the increase function from the previous section

in all cases.

unii ncrOne d k = descendBi f
where f x@(D n)| n ≡ d = unii ncrease k x

|| not≡ herd wise = descend f x

7 Storing your salary in a non-exact manner is probably not a great idea!
sybi ncrOne :: Data a ⇒ Name → Integer → a → a
ssyybb iinnccrrOOnnee :d: Dk xt a| aisD⇒ epN t adm xe →= sy Inbtei gnecrre→ asea ak→ →x

|| iostDheerpwt idsex == gsymbapi nTcr e(asysbei k n xcrOne d k) x
where isDept d| o=t Fearwlseis `em= kQ`g misDapeTpt(Dsy db

isDeptD d (D n)= n ≡ d

comi ncrOne :: Name → Integer → Tree c → Tree c
ccoomm iinnccrrOOnnee :d: Nk xm =e →caI sent exg eofr

D n|n ≡ d → comi ncrease k x
→ com|pn os≡ Opd (→com comi nc irnOcnreea sde k k) xx

The SYB solution has grown substantially more complex, re-
quiring two different utility functions. In addition sybi ncrOne now
requires a type signature. Compos retains the same structure as be-
fore, r equiring a case to distinguish between the types of construc-
tor. For Uniplate we use descend r ather than transform, to ensure
no salaries are incremented t wice. ⁄

Example 16 (salaryBill)

The final function is one which sums all the salaries.

unis alaryBill x = sum [s | S s ← universeBi x]

sybs alaryBill = everything (+) (0 `mkQ` billS)
where billS (S s) = s

coms alaryBill :: Tree c → Integer
ccoommss aallaarryyBBiillll :x: T=r ceac se→ →x Ionft

S s → s
s→→ →cos mposOpFold 0 (+) coms alaryBill x

Here the Uniplate solution wins by being able to use a list
comprehension to select the salary value out of a Salary object.
The Uniplate class is the only one that is able to use the standard
Haskell sum function, not requiring an explicit fold. ⁄

7.1.4 Uniplate compared to SYB and Compos

In order to measure conciseness of expression, we h ave taken
the c ode for all solutions and counted the number of lexemes –

using the lex function provided b y Haskell. A table of results is
given in T able 1. The definitions of functions shared between SYB
and Uniplate are included in both measurements. For the incrOne
function we h ave not included the code for increase as well.

The Compos approach requires much more residual boiler-
plate than Uniplate, p articularly for queries, b ottom-up transforma-
tions and in type signatures. The Compos approach also requires a
GADT representation.

Compared with SYB, Uniplate seems much more similar. For
queries, Uniplate is able to make use of list comprehensions, which
produces shorter code and does not require encoding a manual fold
over the items of interest. For transformations, typically b oth are
able to use the same underlying operation, and the difference often
boils down to the mkT wrappers in SYB.

7.2 Runtime Overhead

This section compares the speed of solutions for the nine exam-
ples given in the previous section, along with h and-optimised ver-

sions, using no boilerplate removal library. W e use four Uniplate
instances, provided by:

Manual: These are Uniplate and Biplate instances written b y
hand. W e have chosen not to use continuation-passing to imple-
ment these instances, as it quickly becomes complex!

Direct: These instances use the direct combinators from §5. 1.

Typeable: T hese instances use the Typeable combinators from
§5.2.

Data: These i nstances use the SYB Data instances directly, as
described in §5.3.

For all data types we generate 100 values at random using
QuickCheck (Claessen and Hughes 2000). In order to ensure a
fair comparison, we define one data type which is the same as
the original, and one which is a GADT encoding. All operations
take these original data types, transform them into the appropriate
structure, apply the operation and then unwrap them. W e measure
all results as multiples of the time taken for a h and-optimised
version. We compiled all programs with GHC 6.6 and -O2 on
Windows XP.

The results are presented in T able 2. Using Manual or Direct
instances, Uniplate is roughly the same speed as Compos – but
about 50% slower than hand-optimised versions. Using the Data
instances provided by SYB, we are able to outperform SYB itself!
See §6 for details of some of the optimisations u sed.

8. Related Work

The Uniplate library is intended to be a way to remove the boil-
erplate of traversals from Haskell p rograms. It is far from the first
library to attempt boilerplate removal.

The SYB library (L¨a mmel and Peyton Jones 2003) is perhaps the
most popular boilerplate removal system in Haskell. One of the
reasons for its success is tight integration with the GHC compiler,
lowering the barrier to use. W e have compared directly against
traversals written in SYB in §7. 1, and have also covered how to
timrapvelersmaelsntw Urinttiepnla itne SinY tBerim ns o7f.1 S,Ya Bnd i hna §v5e. 3a.l Ion oouvre reexdpeh roiwenct eo
immopstle ompeenrtatU ionnisp aatree isnho tretremr sao ndf SsiYmBplei nr §th5.an3. I thne oeuqru ievxapleenrietsn cine
SYB, and we are able to operate without the extension of rank-
2 types. Most of these benefits stem directly from our definition of
children as being the children of the same uniform type, contrasting
with the SYB approach of all direct children.

The SYB library is, however, more powerful than Uniplate.
If you wish to visit values of different type in a single traversal,
Uniplate is unsuitable. The Data and Typeable methods h ave also
been p ushed further in successive papers (L¨a mmel and Peyton
Jones 2004, 2005) – in directions Uniplate may be unable to go.

The Compos library (Bringert and Ranta 2006) is another ap-
proach to the removal of b oilerplate, requiring GADTs (Peyton
Jones et al. 2006) along with rank-2 types. The Compos library
requires an existing data type to be rewritten as a GADT. The con-
version from standard Haskell data structures to GADTs currently
presents several p roblems: they are GHC specific, deriving is not
supported on GADTs, and GADTs require explicit type signatures.
The Compos approach is also harder to write instances for, having
no simple instance generation framework, and no automatic deriva-
tion tool (although one could b e written). The i nner composOp
operator is very p owerful, and indeed we have chosen to r eplicate
it in our library as descend. But the Compos library is unable to
replicate either universe or transform from our library.

The Stratego t ool (Visser 2004) provides support for generic

operations, focusing on b oth the operations and the strategies for
applying them. This approach is performed in an untyped language,
although a typed r epresentation can be modelled (L¨a mmel 2003).
Rather t han being a Haskell library, Stratego implements a domain
specific language that can be integrated with Haskell.

The Strafunski library (L¨a mmel and Visser 2003; L ¨ammel 2002)
has two aspects: generic transformations and queries for trees of
any type; and features to integrate components into a larger p ro-
gramming system. Generic operations are performed using strategy
combinators which can define special case b ehaviour for particu-
lar types, along with a default to perform in other situations. The
Strafunski library is i ntegrated with Haskell, p rimarily providing
support for generic programming in application areas that involve
traversals over large abstract syntax trees.

The A pplicative library (McBride and Paterson 2007) works by
threading an Applicative operation through a data structure, in a
similar way to threading a Monad through the structure. There is
additionally a notion of Traversable functor, which can be used to
provide generic p rogramming. W hile the Applicative library can
be used for generic p rogramming, this task was not its original
purpose, and the authors note they have “barely begun to explore”
its p ower as a generic toolkit.

Generic P rogramming There are a number of other libraries
which deal with generic p rogramming, aimed more at writing type
generic (or p olytypic) functions, but which can be used for boiler-
plate removal. The Haskell generics suite8 showcases several ap-
proaches (Weirich 2006; Hinze 2004; Hinze and Jeuring 2003).

9. Conclusions and Future Work

We have presented the Uniplate library. It defines the classes
Uniplate and Biplate, along with a small set of operations to per-
form queries and transformations. W e h ave illustrated b y example
that the b oilerplate required in our system is less than in others
(§7. 1), and that we can achieve these results without sacrificing
s(p§7ee.1d) ,(a §7n.d2)t .h aOtu wr elibc raanrya cish eb voetht hpersaectir ecaslu tasn dw ip thoortuatb lsea,c friifnidciinngg
uspsee eidn (a§ n7.u2m)b.O er uorf laipbpralriycati isonb so, hanp dr uasctinicga lfea wnder epxotretanbslioen,sf ntod tinheg
Haskell language than alternatives.

The restriction to a u niformly typed value set in a traversal
allows the power of well-developed techniques for list p rocessing
such as list-comprehensions to be exploited. We feel this decision
plays to Haskell’s strengths, without being limiting in p ractice.

There is scope for further speed improvements: for example,
use of continuation passing style may eliminate tuple construction
and consumption, and list fusion may be able to eliminate some of
the intermediate lists in uniplate. W e have made extensive practical
use of the Uniplate library, but there may b e other traversals which
deserve to be added.

The use of boilerplate reduction strategies in Haskell is not yet
ubiquitous, as we feel it should be. W e have focused on simplicity
throughout our design, working within the natural typed design
of Haskell, r ather than trying to extend it. Hopefully the removal
of complicated language features (particularly ‘scary’ types) will
allow a wider base of users to enjoy the benefits of boilerplate-free
programming.

Acknowledgments

The first author is a supported by an E PSRC PhD studentship.
Thanks to Bj¨o rn Bringert, J ules Bean and the anonymous r eviewers
for feedback on an earlier drafts of this p aper; Eric Mertens for
helpful ideas; and Stefan O’Rear for work on DERIVE.

References
Bj¨o rn Bringert and Aarne Ranta. A pattern for almost compositional

functions. In P roc. I CFP ’06, p ages 216–226. ACM Press, 2006.

Koen Claessen and J ohn Hughes. QuickCheck: A lightweight tool for
random testing of Haskell p rograms. In P roc. ICFP ’00, p ages 268–279.
ACM Press, 2000.

Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor. Yhc.Core - from
Haskell to Core. The M onad.Reader, (7):45–61, April 2007.

Ralf Hinze. Generics for the masses. In Proc. I CFP ’04, pages 236–243.
ACM Press, 2004. ISBN 1-581 13-905-5.

8 http ://darcs .haskell .org/generics/
Ralf Hinze and J ohan Jeuring. Generic Haskell: Practice and theory. In

Summer School on Generic P rogramming, volume 2793 of L NCS, p ages
1–56. Springer-Verlang, 2003.

Mark P. J ones. Type classes with functional dependencies. In P roc E SOP
’00, volume 1782 of LNCS, p ages 230–244. Springer-Verlang, 2000.

R. L ¨ammel and J . Visser. A Strafunski Application Letter. In P roc.
PADL’03, volume 2562 of LNCS, p ages 357–375. Springer-Verlag, J an-
uary 2003.

Ralf L ¨ammel. The sketch of a p olymorphic symphony. In Proc. of Interna-
tional Workshop on R eduction Strategies in R ewriting and Programming
(WRS 2002), volume 70 of ENTCS. Elsevier Science, 2002.

Ralf L ¨ammel. Typed generic traversal with t erm rewriting strategies. J our-
nal of Logic and A lgebraic P rogramming, 54: 1–64, 2003.

Ralf L ¨a mmel and Simon Peyton J ones. Scrap y our b oilerplate: a p ractical
design pattern for generic programming. In Proc. TLDI ’03, volume 38,
pages 26–37. ACM Press, March 2003.

Ralf L ¨a mmel and Simon Peyton J ones. Scrap more b oilerplate: r eflection,

zips, and generalised casts. In P roc. I CFP ’04, pages 244–255. ACM
Press, 2004.

Ralf L ¨ammel and Simon Peyton J ones. Scrap your boilerplate with class:
extensible generic functions. In P roc. I CFP ’05, pages 204–215. ACM
Press, September 2005.

Conor McBride and R oss Paterson. Applicative programming with effects.
JFP, 17(5):1–13, 2007.

Lambert G. L. T . Meertens. Paramorphisms. FormalA spects of Computing,
4(5):413–424, 1992.

Neil Mitchell and Stefan O’Rear. Derive - project home page. http :
//www . cs .york .ac .uk/~ndm/derive/, March 2007.

Neil Mitchell and Colin R unciman. A static checker for safe pattern
matching in Haskell. In Trends in Functional Programming (2005
Symposium), volume 6, pages 15–30. Intellect, 2007.

Markus Mohnen. Context patterns in Haskell. In I mplementation of
Functional L anguages, pages 41–57. Springer-Verlag, 1996.

Matthew N aylor and Colin R unciman. Finding inputs that reach a target
expression. In P roc. S CAM ’07. I EEE Computer Society, September
2007. To appear.

Simon Peyton-Jones, A ndrew Tolmach, and T ony Hoare. Playing b y the
rules: R ewriting as a p ractical optimisation technique in GHC. In P roc.
Haskell ’01, pages 203–233. ACM Press, 2001.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. I n Proc.
ICFP ’06, p ages 50–61. ACM P ress, 2006.

Deling Ren and Martin Erwig. A generic r ecursion toolbox for Haskell or:
scrap your b oilerplate systematically. In Proc. Haskell ’06, p ages 13–24.
ACM Press, 2006.

Tim Sheard and Simon Peyton J ones. Template meta-programming for
Haskell. In Proc. Haskell Workshop ’02, p ages 1–16. ACM Press, 2002.

Eelco Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In D omain-Specific Program
Generation, v olume 3016 of L NCS, pages 216–238. Spinger-Verlag,
June 2004.

Philip Wadler. List comprehensions. In Simon Peyton Jones, editor,
Implementation of Functional P rogramming L anguages. Prentice Hall,
1987.

Stephanie Weirich. RepLib: a library for d erivable type classes. In P roc.
Haskell ’06, pages 1–12. ACM Press, 2006.

Noel Winstanley. Reflections on instance derivation. In 1997 Glasgow
Workshop on F unctional P rogramming. BCS Workshops in Computer
Science, September 1997.

