
Scrap Your Boilerplate:
A Practical Design Pattern for Generic Programming

Ralf L a¨mmel
Vrije Universiteit, Amsterdam

Abstract
We describe a design pattern for writing programs that traverse data
structures b uilt from r ich mutually-recursive data types. Such p ro-
grams often h ave a great deal of “boilerplate” code that simply
walks the structure, hiding a small amount of “real” code t hat c on-
stitutes the r eason for the traversal.
Our technique allows most of this boilerplate to b e written once and
for all, or even generated mechanically, leaving the p rogrammer
free to concentrate on the important p art of the algorithm. T hese
generic programs are much more adaptive when faced with data
structure evolution because they contain many fewer lines of type-
specific code.
Our approach is simple to understand, reasonably efficient, and it
handles all the data types found inconventional functional program-
ming languages. It m akes essential use of rank-2 polymorphism, an
extension found in some implementations of Haskell. Further it re-
lies on a simple type-safe cast operator.

Categories and Subject Descriptors



D.3. 1 [Programming Languages]: Formal Definitions and T he-
ory; D.2. 13 [Software Engineering]: Reusable Software
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1 Introduction
Suppose you have t o write a function t hat traverses a r ich, r ecur-
sive data structure r epresenting a company’s organisational struc-
ture, and increases the salary of every p erson in the structure b y
10%. The interesting bit of this algorithm is performing the salary-
increase — but the code for the function is probably dominated by
“boilerplate” code that recurses over the data structure to find the
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specified department as spelled out in Section 2. This is not an un-
usual situation. On the contrary, performing queries or transforma-
tions over rich data structures, nowadays often arising from XML
schemata, is becoming increasingly important.
Boilerplate code is tiresome to write, and easy to get wrong. More-
over, it is vulnerable to change. If the schema describing the com-
pany’s organisation changes, then so does every algorithm that re-
curses over that structure. In small programs which walk over one
or two data t ypes, each with half a dozen constructors, this is not
much of a problem. In large p rograms, with dozens of mutually
recursive data types, some with dozens of constructors, the mainte-
nance b urden can become heavy.

Genericp rogramming techniques aim to eliminate boilerplate code.
There is a large literature, as we discuss in Section 9, but much
of it is rather theoretical, requires significant language extensions,
or addresses only “purely-generic” algorithms. In this paper, we
present a simple but powerful design pattern for writing generic
algorithms in the strongly-typed lazy functional language Haskell.
Our technique has the following p roperties:

It makes the application program adaptive in the face of data
type (or schema) evolution. As the data types change, only
two functions h ave to be modified, and those functions can



easily be generated because they are not application-specific.

It is simple and general. It c opes with arbitrary data-type
structure without fuss, including parameterised, mutually-
recursive, and nested types. It also subsumes other styles of
generic p rogramming such as term r ewriting strategies.

It requires two extensions to the Haskell type system, namely
(a) r ank-2 types and (b) a form of type-coercion operator.
However these extensions are relatively modest, and are inde-
pendently useful; they have both been available in two popular
implementations of Haskell, GHC and Hugs, for some time.

Our contribution is one of synthesis: we put together some rela-
tively well-understood ideas (type-safe cast, one-layer maps) in an
innovative way, to solve a practical problem of increasing impor-
tance. The paper should b e of direct interest to programmers, and
library designers, but also to language designers because of the fur-
ther evidence for the usefulness of r ank-2 p olymorphic types.

The code for all the examples is available online at:

http :/ /www .cs .vu .nl/Strafunski/gmap/

The distribution comes with generative tool support to generate
all datatype-specific b oilerplate code. Our benchmarks show that
it i s possible to get the run-time performance of typical generic
programs r easonably close to the hand-coded boilerplate-intensive
counterparts (Section 10).

2 The problem
We begin by characterising the problem we are addressing. Con-
sider the following data types that describe the organisational struc-
ture of a company. A company is divided into departments which
in turn h ave a manager, and consists of a collection of sub-units.



A unit is either a single employee or a department. Both managers
and ordinary employees are persons receiving a salary. That is:

data Company = C [Dept ]
data Dept = D Name Manager [ SubUnit ]
data SubUnit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Float
type Manager = Employee
type Name = String
type Address = String

Here is a small company represented b y such a data structure:

genCom : : Company
genCom = C [D "Research" ralf [PU joost , PU marlow] ,

D "Strategy" blair [ ] ]

ralf, joost , marlow, blair : : Employee
ralf = E (P "Ralf" "Amsterdam" ) ( S 8 00 0 )
joost = E (P "Joost " "Amsterdam" ) ( S 100 0 )
marlow = E (P "Marlow" "Cambridge " ) ( S 2 00 0 )
blair = E (P "Blair " "London " ) ( S 100 0 0 0 )

The advent of XML has made schemata like this much more
widespread, and many tools exist for translating XML schemata
into data type definitions in various languages; in the case of
Haskell, HaXML includes such a tool [35]. There are often many
data types involved, sometimes with many constructors, and t heir
structure tends to change over time.

Now suppose we want to increase the salary ofeveryone in the com-
pany by a specified p ercentage. That is, we must write the function:

increase : : Float -> Company -> Company

So that ( increase 0 .1 genCom) will b e j ust like genCom except



that everyone’s salary is increased by 10%. It is perfectly straight-
forward to write this function in Haskell:

increase k (C ds ) = C (map ( incD k) ds )

incD : : Float -> Dept -> Dept
incD k (D nm mgr us ) =

D nm ( incE k m gr) (map ( incU k) us )

incU : : Float -> SubUnit -> SubUnit
incU k (PU e ) = PU ( incE k e )
incU k (DU d) = DU ( incD k d)

incE : : Float -> Employee -> Employee
incE k (E p s ) = E p ( incS k s )

incS : : Float -> Salary -> Salary
incS k (S s ) = S ( s * ( 1+k) )

Looking at this code, it should b e apparent what we mean by “boil-
erplate”. Almost all the code consists of a routine traversal of the
tree. The only interesting bit is incS which actually increases a
Salary. As the size of the data type increases, the r atio of inter-
esting code to boilerplate decreases. Worse, t his sort of b oilerplate
needs to be produced for each new p iece of t raversal functionality.
For example, a function that finds the salary of a named individual
would require a new swathe of boilerplate.

3 Our solution
Our goal, then, is to write increase without the accompanying
boilerplate code. To give an idea of what is to come, here is the

code for increase:

increase : : Float -> Company -> Company
increase k = everywhere (mkT ( incS k ) )

And that is it! This code is formed f rom four distinct ingredients:



The function incS (given in Section 2) is the “interesting
part” of the algorithm. It performs the arithmetic to increase
a Salary.

The function mkT makes a type extension of incS (read mkT
as “make a transformation”), so that it can b e applied to any
node in the tree, not j ust Salary nodes. The type-extended
function, mkT ( incS k ) , behaves like incS when applied to
a Salary and like the identity function when applied to any
other type. We discuss type extension in Section 3. 1.

The function everywhere is a generic traversal combinator
that applies its argument function to every node in the tree.
In this case, the function is the type-extended incS func-
tion, which will increase the value of Salary nodes and leave
all others u nchanged. W e discuss generic traversal in Sec-
tions 3.2 and 3.3.

Both mkT and everywhere are overloaded functions, in the
Haskell sense, over the classes Typeable and Term (to be
introduced shortly). For each data type involved (Company,
Dept, Person, etc.) the programmer must therefore give an
instance declaration for the two classes. However these in-
stances are, as we shall see in Sections 3.2 and 8, extremely
simple — in fact, they are “pure b oilerplate” — and they can
easily b e generated mechanically. The software distribution
that comes with the p aper includes a tool to do j ust that.

The following sections fill in the details of this sketch.

3.1 Type extension

The first step is to extend a function, such as incS, that works over
a single type t, to a function that works over many types, but is
the identity at all types but t. The fundamental building-brick i s a
type-safe cast operator the type of which involves a Haskell class



Typeable of types that can b e subject to a cast:

-- An abstract class
clas s Typeable

-- A type-safe cast operator
cast : : (Typeable a, Typeable b) => a -> Maybe b

This cast function takes an argument x of type a. It makes a r un-
time test that compares the types a and b; if they are the same type,
cast returns Just x; if not, it returns Nothing.1 For example, here
is an interactive GHCi session:

Prelude> ( cast ’ a’ ) : : M aybe Char
Just ’ a ’
Prelude> ( cast ’ a’ ) : : M aybe Bool
Nothing
Prelude> ( cast True ) : : Maybe Bool
Just True

The t ype signature in the above samples gives cast its r esult con-
text, Typeable b, so it knows what the r esult type must be; without
that, it cannot do the type test. Because the type class Typeable
constrains the types involved, cast is not completely polymor-
phic: b oth argument and result types must be instances of the class
Typeable.

Type-safe cast can be integrated with functional p rogramming in
various ways, p referably b y a language extension. In f act, it is

1In many languages a “cast” operator performs a representation
change as well as type change. Here, cast is operationally the
identity function; it only makes a type change.
well-known folk lore in the Haskell community that much of the
functionality of cast can be programmed in standard Haskell. In
Section 8, we provide a corresponding Haskell-encoding that can
be regarded as a reference implementation for type-safe cast. This



will clarify that a corresponding extension turns out to b e a modest
one. For the coming sections we will simply assume that cast is
available, and that every type is an instance of Typeable.

Given cast, we can write mkT, which we met in Section 3:

mkT : : ( Typeable a, Typeable b)
=> (b -> b) -> a -> a

mkT f = case cast f of
Just g -> g
Nothing -> id

That is, mkT f x applies f to x if x’s type is the same as f’s argu-
ment type, and otherwise applies the identity function to x. Here
are some examples:

Prelude> (mkT not ) True
Fal se
Prelude> (mkT not ) ’ a’
’ a’

“mkT” is short for “make a transformation”, because it constructs a
generic transformation function. We can use mkT to lift incS, thus:

inc : : Typeable a => Float -> a -> a
inc k = mkT ( incS k)

So inc is applicable to any type that is an instance of Typeable but
we ultimately aim at a function that applies inc to all nodes in a
tree. This necessitates generic traversal.

3.2 One-layer traversal
Our approach to traversal has two steps: for each data type we write
a single function, gmapT, that traverses values of that type; then we
build a variety of recursive traversals from gmapT. In the context of
Haskell, we overload gmapT using a type class, Term:



class Typeable a => Term a where
gmapT : : ( forall b . Term b => b -> b) -> a -> a

The intended behaviour is this: gmapT takes a generic transforma-
tion (such as inc k) and applies it to all the immediate children of
the value. It is easiest to understand this idea b y example. Here is
the instance declaration for Employee:

instance Term Employee where
gmapT f (E per sal ) = E ( f per) ( f sal )

Here we see clearly that gmapT simply applies f to the immediate
children of E, namely per and sal, and rebuilds a new E node.

There are two things worth mentioning regarding the type of
gmapT and its hosting class Term. Firstly, gmapT has a non-
standard type: its first argument is a p olymorphic function, of type
forall b . Term b => b -> b. Why? Because it is applied to
both per and sal in the instance declaration, and those two fields
have different types. Haskell 98 would reject the type of gmapT,
but rank-2 types like these have become quite well-established in
the Haskell community. We elaborate in Section 9.1. Secondly,
note the r ecursion in the class declaration of Term. The member
signature for gmapT refers to Term via a class constraint.

Obviously, we can provide a simple schematic definition for gmapT
for arbitrary terms C t1 . . . tn:

gmapT f (C t 1 . . . tn) = C ( f t1) . . . ( f tn)
When the node has no children, gmapT has no effect. Hence the
Term instance for Bool looks like this:

instance Term Bool where
gmapT f x = x

The important thing to notice is that gmapT only applies f to the
immediate children of the node as opposed to any kind of recursive
traversal. Here, for example, is the Term instance for lists, which



follows exactly the same pattern as the instance for Employee:

instance Term a => Term [ a ] where
gmapT f [ ] = [ ]
gmapT f (x :xs ) = f x : f xs

Notice the “f xs” for the tail — not “gmapT f xs”; gmapT tra-
verses one layer only, unlike the common recursive map function.

3.3 Recursive traversal

Even though gmapT has this one-layer-only b ehaviour, we can syn-
thesise a variety of r ecursive traversals from it. Indeed, as we shall
see, it is p recisely its one-layer behaviour that makes t his variety
easy to capture.

For example, the everywhere combinator applies a transformation
to every node in a tree:

-- Apply a transformation everywhere, bottom-up
everywhere : : Term a

=> ( forall b . Term b => b -> b )
-> a -> a

everywhere f x = f (gmapT (everywhere f ) x)
We can read this function as follows: first apply everywhere f to
all the children of x, and then apply f to the result. The r ecursion is
in the definition of everywhere, not in the definition of gmapT.2

The b eautiful thing about building a r ecursive traversal strategy
out of non-recursive gmapT is that we can build many different
strategies using a single definition of gmapT. A s we h ave seen,
everywhere works b ottom-up, because f is applied after gmapT
has p rocessed the children. It is equally easy to do top-down:

-- A pply a transformation everywhere, top-down
everywhere’ : : Term a

=> ( forall b . Term b => b -> b)



-> a -> a
everywhere ’ f x = gmapT ( everywhere ’ f ) ( f x)

In the rest of this p aper we will see many different recursive strate-
gies, each of which takes a line or two to define.

This extremely elegant way of building a recursive traversal in two
steps — first define a one-layer map, and then tie the recursive
knot separately —  is well-known folk lore in the functional p ro-
gramming community, e.g., when dealing with ana- and catamor-
phisms for regular data types such as lists [22]. For lack of better-
established terminology we call it “the n on-recursive map trick”,
and review it in Section 9.2.

3.4 Another example

Lest we get fixated on increase here is another example that uses
the same design pattern. Let us write a function that flattens out a
named department d; that is, it takes all d’s sub-units and makes
them part of d’s parent department:

flatten : : Name -> Company -> Company
flatten d = everywhere (mkT ( flatD d) )

flatD : : Name -> Dept -> Dept
flatD d (D n m us )

= D n m ( concatMap unwrap us )
where

unwrap : : SubUnit -> [ SubUnit ]
unwrap (DU (D d’ m us ) ) | d==d’ = PU m : us
unwrap u = [u ]

2In “point-free” notation:
everywhere f = f . gmapT (everywhere f)
The function flatD does the interesting work on a department: it
looks at each of its sub-units, u, applies unwrap to get a listo f units



(usually the singleton list [u] ), and concatenates the results.3 When
unwrap sees the target department (d == d’ ) it returns all its sub-
units. The manager m is not fired, but is turned into a plain work-
ing unit, PU m (presumably subject to drastic subsequent salary de-
crease).

Again, this is all the code for the task. The one-line function
flatten uses exactly the same combinators everywhere and mkT
as before to “lift” flatD into a function that is applied everywhere
in the tree.

Furthermore, if the data types change –  for example, a new form
of SubUnit is added – then the per-data-type b oilerplate code must
be r e-generated, but the code for increase and flatten is un-
changed. Of course, if the number of fields in a Dept or SubUnit
changed, then flatD would have to change too, because flatD
mentions the DU and D constructors explicitly. But that is not unrea-
sonable; if a Dept’s units were split into two lists, say, one for peo-
ple and one for sub-departments, the algorithm r eally would have
to change.

3.5 Summary

We have now completed an initial description of our new design
pattern. To summarise, an application is b uilt from three chunks of
code:

Programmer-written: a short piece of code for the particular ap-
plication. This typically consists of (a) a code snippet to do the
real work (e.g., incS) and (b) the application of some strategy
combinators that lift that function to the full data type, and
specify the traversal scheme.

Mechanically-generated: for each data type, two instance dec-
larations, one for class Typeable and one for class Term. The



former requires a fixed amount of code per data type (see Sec-
tion 8). The latter requires one line of code per constructor,
as we have seen. Because the two kinds of instance decla-
rations take a very simple, regular form, they can readily be
generated mechanically.

Library: a fixed library of combinators, such as mkT and
everywhere. The p rogrammer can readily extend this library
with new forms of traversal.

One way to generate the instance declarations is to use the DrIFT
pre-processor [38]. Furthermore, derivable type classes [11] (al-
most) can do the j ob, or Template Haskell [30]. The software dis-
tribution that comes with the p aper includes a customised version
of DrIFT. However, mechanical support is not absolutely necessary:
writing this boilerplate code by hand is not onerous and it still p ays
off because it is a one-off task.

The rest ofthe paper consists of an elaboration and generalisation of
the ideas we have p resented. The examples we have seen so far are
all generic transformations that take a Company and produce a new
Company. It turns out that two other forms of generic algorithms
are important: generic queries (Section 4) and monadic transfor-
mations (Section 5). After introducing these forms, we pause to
reflect and generalise on the ideas (Section 6), before showing that
the three forms of algorithm can all b e regarded as a form of fold
operation (Section 7). Lastly, we return to the type-safe cast opera-
tor in Section 8.

3concatMap : : ( a-> [b] ) -> [ a] -> [b ] maps a function
over a list and concatenates the results.



4 Queries
Thus far we have concentrated on generic transformations. We re-
call the corresponding type scheme:

forall a . Term a => a -> a

There is a second interesting class of generic programs that we call
generic queries. A generic query has a type of the following form:

forall a . Term a => a -> R
Here R is some fixed result type. For example, suppose we wanted
to compute the salary bill ofthe company; we would need a function
of the following type:

salaryBill : : Company -> Float

Here Float is the fixed result type R.

4.1 Implementing queries

Our general approach is exactly the same as before: we use type ex-
tension to lift the interesting p art of the function into a p olymorphic
function; for each data types we give a single overloaded traversal
function; and we build salaryBill from t hese two pieces. Here is
the code, which looks very similar to that for increase:

salaryBill : : Company -> Float
salaryBill = everything ( + ) ( 0 ‘mkQ ‘ billS )

bil lS : : Salary -> Float
billS ( S f) = f

The interesting p art of salaryBill is the function billS that ap-
plies to a Salary. To lift billS to arbitrary types, we use mkQ, a
cousin of mkT:

mkQ : : (Typeable a, Typeable b)
=> r -> (b -> r) -> a -> r



( r ‘mkQ ‘ q) a = case cast a of
Just b -> q b
Nothing -> r

That is, the query (r ‘mkQ ‘ q) behaves as follows when applied to
an argument a: ifa’s type is the same as q’s argumentt ype, use q to
interrogate a; otherwise return the default value r. To illustrate, here
are some examples of using mkQ in an interactive session (recall that
ord has type Char -> Int):

Prelude> ( 22 ‘mkQ ‘ ord) ’ a’
9 7

Prelude> ( 22 ‘mkQ ‘ ord) ’ b’
98
Prelude> ( 22 ‘mkQ ‘ ord) True
22

The next step is to extend the Term class with a function gmapQ that
applies the specified query function and makes a list of the results:

class Typeable a => Term a where
gmapT : : ( forall b . Term b => b -> b) -> a -> a
gmapQ : : ( forall b . Term b => b -> r) -> a -> [ r]

The instances of gmapQ are as simple as those for gmapT:

instance Term Employee where
gmapT = . . . as b efore . . .
gmapQ f (E p s ) = [ f p, f s ]

instance Term a => Term [ a ] where
gmapT = . . . as before . . .
gmapQ f [ ] = [ ]
gmapQ f (x : xs ) = [ f x, f xs ]

instance Term Bool where
gmapT x = . . . as before . . .
gmapQ x = [ ]



Just as with gmapT, n otice that there is no r ecursion involved (it is a
one-layer operator), and that the function has a rank-2 type.
Now we can use gmapQ to build the everything combinator that
performs the recursive traversal. Like any fold, it needs an operator
k to combine results from different sub-trees:

-- Summarise all nodes in top-down, left-to-right
everything : : Term a

=> ( r -> r -> r)
-> ( forall a . Term a => a -> r)
-> a -> r

everything k f x
= foldl k ( f x) (gmapQ (everything k f) x)

Here we see that everything processes the children of x, giving a
list ofresults; and then combines those results using the ordinary list
function foldl, with the operator k as the combiner. The ( f x) is
the result of applying the query to x itself, and that result is included
in the foldl. And that concludes the definition of salaryBill.

4.2 Other queries
By changing the query function and combining operator we can
easily query for a single value r ather than combining values from
all nodes in the tree. For example, here is how to extract a named
department from the company data structure:

find : : Name -> Company -> Maybe Dept
find n = everything orElse (Nothing ‘mkQ ‘ findD n)

findD : : String -> Dept -> Maybe Dept
findD n d@ (D n’ _ _ )

| n == n’ = Just d
| otherwise = Nothing

orElse : : M aybe a -> Maybe a -> M aybe a
x ‘orElse ‘ y = case x of



Just _ -> x
Nothing -> y

The use of foldl in everything means that find will find the
leftmost, shallowest department with the specified name. It is easy
to make variants of everything that would find the right-most,
deepest, or whatever. Laziness p lays a role here: once a department
of the specified name has b een found, traversal will cease.

5 Monadic transformation
As well as transformations (Section 3) and queries (Section 4) there
is a third useful form of generic algorithm, namely a monadic trans-
formation. For example, suppose we wanted to process a Company
structure discarding the old Salary values, and filling in new ones
by looking up the employee’s name in an external database. That
means there is input/output involved, so the function must have type

lookupSalaries : : Company -> IO Company
This type does not fit the scheme for generic transformations or
queries, so we have to re-run the same development one more time.
First, we need a function mkM to construct basic monadic transfor-
mations:

mkM : : (Typeable a, Typeable b,
Typeable (m a ) , Typeable (m b ) ,
Monad m)

=> (b -> m b) -> a -> m a
mkM f = case cast f of

Just g -> g
Nothing -> return

The type of mkM looks somewhat scary, but it simply explains all
the type-representation constraints that are needed for type-safe
cast. Then we need to extend once more the class Term to support
monadic traversal:



class Typeable a => Term a where
gmapT : : . . . as before . . .

gmapQ : : . . . as before . . .

gmapM : : Monad m
=> ( forall b . Term b => b -> m b)
-> a -> m a

The instances for gmapM are j ust as simple as before; they use
Haskell’s do notation for monadic composition:

instance Term Employee where
. . .
gmapM f (E p s ) = do p’ <- f p

s ’ <- f s
return (E p’ s ’ )

instance Term a => Term [ a] where
. . .
gmapM f [ ] = return [ ]
gmapM f ( x : xs ) = do x’ <- f x

xs ’ <- f xs
return (x’ :xs ’ )

Now we can make an everywhereM combinator:

everywhereM : : (Monad m, Term a)
=> ( forall b . Term b => b -> m b)
-> a -> m a

everywhereM f x = do xf’ x ’<- gmapM (everywhereM f) x
Finally, we can write lookupSalaries as follows:

lookupSalaries = everywhereM (mkM lookupE )

lookupE : : Employee -> IO Employee



lookupE (E p@ (P n _ ) _ )
= do { s <- dbLookup n; return (E p s ) }

dbLookup : : Name -> IO Salary
-- Lookup the person in the external database

The obvious question is this: will each new application require a
new variant of gmap? We discuss that in Section 7. Meanwhile, we
content ourselves with two observations. First, gmapT is j ust a spe-
cial case of gmapM, u sing the identity monad. (In fact, gmapQ can
also b e encoded u sing gmapM, although not so directly.) Second,
one might wonder whether we need a monadic form of gmapQ, by
analogy with gmapT/gmapM. No, we do not: a monadic query is j ust
a special case of an ordinary query. To see that, we need only recog-
nise that Maybe is a monad, so the find operation of Section 4.2 is
really p erforming a monadic query.

6 Refinements and reflections
Having introduced the basics, we pause to reflect on the ideas a little
and to make some modest generalisations.

6.1 An aside about types

It i s worth noticing that the type of everywhere could equivalently
be written thus:

everywhere : : ( forall b . Term b => b -> b)
-> ( forall a . Term a => a -> a)

by moving the implicit forall a inwards. The nice thing about
writing it this way is that it becomes clear that everywhere is a
generic-transformation transformer. We might even write this:

type GenericT = forall a . Term a => a -> a
everywhere : : GenericT -> GenericT



The same approachg ives am ore perspicuous typef oreverything:

type GenericQ r = forall a . Term a => a -> r
everything : : ( r -> r -> r)

-> GerericQ r -> GerericQ r
From a type-theoretic point of view, these type signatures are iden-
tical to the original ones, and GHC supports such isomorphisms
directly. In p articular, GHC allows a forall in type synonym
declarations (such as GenericT) and allows a forall to the right
of a function arrow (which happens when the type synonym is ex-
panded).

6.2 Richer traversals

Sometimes we need to combine generic queries and transforma-
tions. For example, suppose we want to increase the salaries of
everyone in a named department, leaving everyone else’s salary un-
changed. The main function is a generic transformation, incrOne,
but it uses the services of a generic query isDept:

incrOne : : Name -> Float -> GenericT
incrOne n k a

| isDept n a = increase k a
| otherwise = gmapT ( incrOne d k ) a

isDept : : Name -> GenericQ Bool
isDept n = False ‘mkQ ‘ isDeptD n

isDeptD : : Name -> Dept -> Bool
isDeptD n (D n’ _ _ ) = n==n’

incrOne first tests its argument to see whether it is the targeted de-
partment b ut, because incrOne is a generic transformation, it must
use a generic query, isDept to make the test. The latter is builtj ust
as b efore using mkQ. Returning to incrOne, if the test returns True,
we call increase (from Section 3) on the department4; otherwise



we apply incrOne recursively to the children.

In this case we did not use one of our traversal combinators
(everything, everywhere, etc.) to do the j ob; it turned out to
be more convenient to write the recursion explicitly. This is yet
another example of the benefit of keeping the recursion out of the
definition of the gmap functions.

6.3 Identifying the interesting cases

Our generic programming technique encourages fine type distinc-
tions via algebraic data types as opposed to anonymous sums and
products. The specific data types usually serve for the identification
of interesting cases in a generic algorithm. For example, we used a
separate data type for Salary:

data Salary = S Float

If we had instead u sed an ordinary Float instead of Salary, and
if the Person type also included a Float (the person’s height, per-
haps) the increase of Section 3 might end up increasing everyones
height as well as their salary!

If this happens, one solution is to add more type distinctions, i.e.,
declarations of datatypes and newtypes as opposed t o type syn-
onyms. Another is simply to include some more context to the
program in terms of the intercepted patterns. Thus, instead of us-
ing mkT to build special case for Float, build a special case for
Employee:

increase k = everywhere (mkT ( incE k) )

incE : : Float -> Employee -> Employee
incS k (E p s ) = E p ( s * ( 1+k) )

There is a dual problem, which is persuading the traversal functions
to stop. The programmer m ight want to cut offtraversal explicitly at
certain kinds of nodes. In the case of a transformation, such cut-offs



are useful to restrict the extent of changes in the tree. For example,

4Actually, Section 3 gave a monomorphic type to increase,
whereas we need it to have a generic type here, so we would have
to generalise its type signature.
we could further parameterise everywhere by a generic query that
returns True if the traversal should not visit the sub-tree:

everywhereBut : : GenericQ Bool
-> GenericT -> GenericT

everywhereBut q f x
| q x = x
| otherwise = f (gmapT (everywhereBut q f ) x)

increase k = everywhereBut names (mkT ( incS k ) )

names : : GenericQ Bool
names = False ‘mkQ ‘ isName

isName : : String -> Bool
isName n = True

Writing such “stop conditions” is useful not only to restrict the cov-
erage of traversal, but also to avoid “fruitless traversal”. For exam-
ple, the increase function will unnecessarily traverse every char-
acter of the department’s name, and also of each person’s name.
(In Haskell, a String is j ust a list of Char.) From the p oint of
view of the generic function, it is entirely possible that there might
be a Salary buried inside the name. Writing efficiency-directed
stop conditions is undoubtedly tiresome, and is a shortcoming of
our approach. It can only be avoided by an analysis of the data-
type structure, which is certainly feasible, but only with compiler
support.

6.4 Compound type extension



Continuing the same example, what if there happened to be two or
more uninteresting types, that we wanted to refrain from traversing?
Then we would need a generic query that returned True for any of
those types, and False otherwise. Compound type extensions like
this are the topic of this section.

The general question is this: given a generic query, how can we
extend it with a new t ype-specific case? W e need extQ, a cousin of
mkQ:

extQ : : (Typeable a, Typeable b)
=> (a -> r) -> (b -> r) -> (a -> r)

(q ‘extQ ‘ f ) a = case cast a of
Just b -> f b
Nothing -> q a

We can now build a generic query that has arbitrarily many special
cases simply b y composing extQ. There are similar type-extension
functions, extT and extM, that allow a generic transformation to
have an arbitrary number of type-specific cases.

Here is a more interesting example. Suppose we want to generate
an association list, giving the total head-count for each department:

headCount : : Company -> [ (Name, Int ) ]
headCount c = fst (hc c)

type HcInfo = ( [ (Name, Int ) ] , Int )

hc : : GenericQ HcInfo

The main generic function, hc, returns an HcInfo; that is, a pair of
the desired association list together with the total head count of the
sub-tree. (Returning a p air in this way is j ust the standard tupling
design pattern, nothing to do with generic p rogramming.) F irst we
define the the type-specific cases for the two types Dept and Person
of interest:



hcD : : Dept -> [ HcInfo ] -> HcInfo
hcD (D d _ us ) kids = ( (d, n ) :l, n)

where
(l,n) = addResult s kids

hcP : : Person -> [HcInfo ] -> HcInfo

hcP p _ = ( [ ] , 1)

addResult s : : [ HcInfo ] -> HcInfo
addResults rs = (concat (map fst rs ) ,

sum (map snd rs ) )

Each of them takes a list of HcInfo, the head-count information for
the c hild nodes (irrelevant for a Person), and the node itself, and
builds the head-count information for the node. For a person we
return a h ead-count of 1and an empty list of departments; while for
a department we add the department to the list of sub-departments,
plus one for the manager herself. Now we can combine these func-
tions using a new traversal combinator queryUp:

queryUp : : ( forall a . Term a => a -> [ r ] -> r)
-> GenericQ r

queryUp f x = f x ( gmapQ ( queryUp f) x )

hc : : GenericQ HcInfo
hc = queryUp (hcG ‘extQ ‘ hcP ‘extQ ‘ hcD )

hcG : : Term a => a -> [ HcInfo ] -> HcInfo
hcG node kids = addResults kids

Here queryUp first deals with the children (via the call to gmapQ),
and then applies the specified function to the node x and the query
results of the children. The main function, hc, calls queryUp with a
function formed from a generic case hcG, with two type extensions



for hcP and hcD. As an aside, we are using generic queries with a
higher-order result type h ere, namely [ r ] ->r.

6.5 Strange types

Programming languages like ML and Haskell permit rather free-
wheeling data type definitions. Algebraic data types can be mu-
tually r ecursive, parameterised (perhaps over higher-kinded type
variables), and their r ecursion can be non-uniform. Here are some
typical examples (the last one is taken from [3]):

data Rose a = MkR a [Rose a ]
data Flip a b = Nil | Cons a (Fl ip b a )

data E v = Var v | App (E v) (E v) | Lam (E ( Inc v) )
data Inc v = Zero | Succ v

For all of these the Term instance declaration follow the usual form.
For example, here is the Term instance for Rose:

instance Term a => Term (Rose a ) where
gmapT f (MkR a rs ) = MkR ( f a) ( f rs )
gmapQ f (MkR a rs ) = [ f a, f rs ]
gmapM f (MkR a rs ) = do a’ <- f a

rs ’ <- f rs
return (MkR a’ rs ’ )

Components of algebraic data types can also involve local quanti-
fiers and function types. The former do not necessitate any specific
treatment. As for the latter, there is of course no extensional way
to traverse into function values unless we meant to traverse into the
source code of functions. However, encountering functions in the
course of traversal does not pose any challenge. W e can treat func-
tions as atomic data types, once and for all, as shown here:

instance Term (a -> b) where



gmapT f x = x
gmapQ f x = [ ]
gmapM f x = return x

Type-safe cast copes with all these strange types as well because it
is not at all sensitive to the structure of the datatype components.
The Typeable instances deal with the names of the datatypes, and
the names of their p arameter types or type constructors.

7 Generalising gmap

We have seen three different maps, gmapT, gmapQ, and gmapM. They
clearly have a lot incommon, and have a r ich algebra. For example:

gmapT id id
gmapT f . gmapT g gmapT ( f . g)
gmapQ f . gmapT g gmapQ ( f . g)

Two obvious questions are these: (a) might a new application re-
quire a new sort of gmap? (b) can we capture all t hree as special
cases of a more general combinator?

So far as (a) i s concerned, any generic function must have type

Term a => a -> F?a?

for some type-level function F. We restrict ourselves to type-
polymorphic functions F; t hat is, F can r eturn a r esult involving a,
but cannot b ehave differently depending on a’s (type) value. T hen
we can see that F can b e the identity function (yielding a generic
transformation), ignore a (yielding a query), or return some com-
pound type involving a. In the latter case, we view F?a? as the
application of a p arameterised type constructor. We covered the
case of a monad via gmapM but we lack coverage for other t ype con-
structors. So indeed, a generic function with a type of the form



Term a => a -> (a, a)

is not expressible b y any of our gmap functions.

But all is not lost: the answer to question (b) is “yes”. It turns out
that all the generic maps we have seen are j ust special instances of
a more fundamental scheme, namely a fold over constructor appli-
cations. At one level this comes as no surprise: from dealing with
folds for lists and more arbitrary datatypes [22], it is known that
mapping can be regarded as a form of folding. However, it is ab-
solutely not straightforward to generalise the map-is-a-fold idea to
the generic setting, because one usually expresses map as a fold b y
instantiating the fold’s arguments in a data-type-specific way.

In this section we show that by writing fold in a rather cunning
way it is nevertheless possible to express various maps in terms
of a single fold in a generic setting. Before diving in, we r emark
that this section need not concern the application p rogrammer: our
three gmaps have been carefully chosen to match a very large class
of applications directly.

7.1 The generic fold

We r evise the class Term for the last time, adding a new operator
gfoldl. We will b e able to define all three gmap operators using
gfoldl but we choose to leave them as methods of the class. Doing
so means that when giving an instance for Term the programmer
may, if she wishes, define gmapT etc. directly, as we h ave done
earlier in the p aper.

class Typeable a => Term a where
gmapT : : ( forall b . Term b => b -> b) -> a -> a
gmapQ : : ( forall b . Term b => b -> r) -> a -> [r]
gmapM : : M onad m

=> ( forall b . Term b => b -> m b ) -> a -> m a

gfoldl : : ( forall a b . Term a => w (a -> b)



-> a -> w b )
-> ( forall g . g -> w g)
-> a -> w a

Trying to understand the type of gfoldl directly can lead to b rain
damage. It is easier to see what the instances look like. Here is the
instance for the types Employee and SubUnit:

instance Term SubUnit where
gfoldl k z (PU p) = z PU ‘k ‘ p
gfoldl k z (DU d) = z DU ‘k ‘ d

instance Term Employee where
gfoldl k z (E p s ) = ( z E ‘k ‘ p) ‘k ‘ s

Notice that the constructor itself (E, or PU etc.) is passed to the z
function as a base case; this is the key difference from a vanilla fold,
and is essential to generic definitions of gmapT etc. using gfoldl.
In p articular:

gfoldl ( $ ) id x x

That is, instantiating z to the identity function, and k to function
application ( $ ) simply rebuilds the input structure. T hat is why we
chose a left-associative fold: because it matches the left-associative
structure of function application.

7.2 Using gfoldl

We will now show that gmapT and friends are j ust special instances
of gfoldl. That idea is familiar from the world of lists, where map
can be defined in terms of foldr. Looking at an instance helps to
make the point:

gmapT f (E p s ) = E ( f p) ( f s )
gfoldl k z (E p s ) = ( z E ‘k ‘ p ) ‘k ‘ s

How can we instantiate k and z so that gfoldl will behave like
gmapT? We need z to be the identity function, while k should be



defined to apply f to its second argument, and then apply its first
argument to the result:

gmapT f = gfoldl k id
where

k c x = c ( f x)

Operationally this is perfect, but the types are not quite right. gmapT
returns a value of t ype a while gfoldl returns a (w a) . W e would
like to instantiate w to the identity function (at the t ype level), ob-
taining the following specialised type for gfoldl:

gfoldl : : ( forall a b . Term a => (a -> b)
-> a -> b )

-> ( forall g . g -> g)
-> a -> a

However, functions at the type level make type inference much
harder, and in p articular, Haskell does not have them. The solu-
tion is to instantiate w to the type constructor ID accompanied b y
some wrapping and unwrapping:

newtype ID x = ID x

unID : : ID a -> a
unID ( ID x ) = x

gmapT f x = unID (gfoldl k ID x)
where

k ( ID c) x = ID (c ( f x) )

The ID constructor, and its deconstructor unID are operationally no-
ops, but they serve to t ell the type checker what to do. The encoding
of gmapM is very similar to the one for gmapT. W e use do notation
instead of nested function application. The type of gmapM does not
require any wrapping because the monad type constructor directly
serves for the p arameter w. That is:

gmapM f = gfoldl k return



where
k c x = do c’ <- c

x’ <- f x
return (c’ x’ )

The last one, gmapQ, is a little more tricky because the structure
processed by gfoldl is left-associative, whereas the structure of
the list returned b y gmapQ is right-associative. For example:

gmapQ f (E p s ) = f p : ( f s : [ ] )
gfoldl k z (E p s ) = ( z E ‘k ‘ p ) ‘k ‘ s

There is a standard way to solve this, using higher-order functions:
gmapQ f = gfoldl k ( const id) [ ]

where
k c x rs = c ( f x : rs )

However, again we must do some tiresome type-wrapping to ex-
plain to the type inference engine why this definition is OK:

newtype Q r a = Q ( [ r ] -> [ r ] )
unQ (Q f ) = f

gmapQ f x = unQ (gfoldl k ( const (Q id) ) x) [ ]
where

k (Q c) x = Q ( \rs -> c ( f x : rs ) )

Notice that (Q r ) is a constant function at the type level; it ignores
its second parameter a. Why? Because a query returns a type that
is independent of the type of the argument data structure.

7.3 Summary

We contend that one-layer folding is the fundamental way to p er-
form term traversal in our framework. T his section has shown that
the gmap functions can all b e defined in terms of a single function
gfoldl. Lest the involved type-wrapping seems onerous, we note
that it occurs only in the definitions of the gmap functions in terms



of gfoldl. The p rogrammer need never encounter it. The gmap
definitions in terms of gfoldl might not be very efficient because
they involve some additional amount of higher-order functions. So
the programmer or the implementor of the language extension has a
choice. Either the gmap operators are defined directly per datatype,
or they are defined i n terms of gfoldl once and for all via the
shown “default” declarations.

8 Type-safe cast
Our entire approach is p redicated on the availability of a type-safe
cast operator, which in turn is closely related to intensional poly-
morphism and dynamic typing. We will discuss such related work
in Section 9.3. In fact, it is well-known folk lore in the Haskell com-
munity that much of the functionality of cast can be p rogrammed
in standard Haskell. Strangely, there is no published description
of this trick, so we review it here, giving an encoding that can be
regarded as a r eference implementation.

8.1 The Typeable class

The key idea is to r efine the type class Typeable, which was previ-
ously assumed to b e abstract, as follows:

class Typeable a where
typeOf : : a -> TypeRep

The overloaded operation typeOf takes a value and returns a run-
time r epresentation of its type. Here is one possible implementation
of the TypeRep type, and some i nstances:

data TypeRep = TR String [ TypeRep]

instance Typeable Int where
typeOf x = TR "Prelude .Int " [ ]

instance Typeable Bool where



typeOf x = TR "Prelude .Bool " [ ]

instance Typeable a => Typeable [ a ] where
typeOf x = TR "Prelude .List " [typeOf (get x) ]

where
get : : [ a ] -> a
get = undefined

instance (Typeable a, Typeable b)
=> Typeable (a->b) where

typeOf f = TR "Prelude .-> " [typeOf (getArg f) ,
typeOf (getRes f) ]

where
getArg : : (a->b) -> a
getArg = undefined

getRes : : (a->b) -> b
getRes = undefined

Notice that typeOf never evaluates its argument. In p articular, the
call (get x) in the list instance will never be evaluated5 ; it simply
serves as a proxy, telling the compiler the type at which to instanti-
ate the r ecursive call of typeOf, namely to the element type of the
list. If Haskell had explicit type arguments, typeOf could dispense
with its value argument, with its calls using type application alone.6

8.2 Defining cast using typeOf

Type-safe cast is easy to implement given typeOf, p lus a small
Haskell extension:

cast : : (Typeable a, Typeable b) => a -> M aybe b
cast x = r

where
r = if typeOf x == typeOf (get r)

then Just (unsafeCoerce x)



else Nothing

get : : M aybe a -> a
get x = undefined

Here we check whether the argument x and result r have the same
type r epresentation, and if so coerce the one into the other. Here,
unsafeCoerce is an extension to Haskell, with the following type:

unsafeCoerce : : a -> b
It is easy to implement: operationally it is j ust the identity function.
It is, of course, j ust as unsafe as its name implies, and we do not
advocate its wide-spread use. Rather, we regard unsafeCoerce as
an implementation device to implement a safe feature (cast); many
language implementations contain a similar trap-door.

8.3 What a mess?

At this point the reader may be inclined to throw up his hands and
declare that if this p aper requires unsafeCoerce, and instance
declarations with magic strings that must b e distinct, then it has no
place in a language like Haskell. But note that the above scheme
is meant b y us as a reference implementation as opposed to a pro-
gramming technique.

That is, the compiler should provide direct support for the class
Typeable, so that its instance for each data type is automatically
generated by the compiler. The programmer does not instantiate
the class him- or herself. F urthermore, cast should be provided
as a primitive — it may b e implemented inside the system library
with some kind of low-level coercion, but that is invisible to (and
inaccessible to) the application programmer. W ith this degree of
compiler support, the system is indeed type-safe.

So this section does not present a programming technique for the
user. Rather, it shows that compiler support for cast does not



require some mysterious fiddling with runtime data r epresenta-
tions. Instead, somewhat surprisingly, it can be cleanly imple-
mented using Haskell’s type-class framework with some readily-
generated simple instance declarations. Furthermore, albeit as an
unsavoury stop-gap measure, it is a real advantage to be able to
prototype the system without r equiring any compiler support ex-
cept unsafeCoerce.

5The value undefined has type forall a .a in Haskell.
6GHC supports scoped type variables, so a nicer way to write

the list instance of typeOf is this:
TR "Prelude .List " [typeOf (undefined : : a) ]

One might worry about efficiency, because cast involves compar-
ing TypeRep data structures. That cost, however, is not fundamen-
tal. The TypeRep structures can readily be hash-consed (especially
if there is direct compiler support) so that they can b e compared in
constant time. Again, this is the business of the library writer (or
even compiler implementor) not the application programmer.

9 Alternative approaches
Generic programming has received a great deal of attention, and we
review the work of others in this section. Before we do, it is worth
mentioning that one very brutal approach to generic programming
lies readily to hand, namely using a universal data type, such as:

data Univ = I Int | S String | . . . etc . . . .
| B ConstrName [Univ]

type ConstrName = String

A generic program works b y (a) converting (embedding) the input
data structure to Univ, (b) traversing the universal data structure,
and (c) converting (projecting) the r esult back to the original type.
This approach has the merit of simplicity, but it is inefficient, and



(worse) completely untyped. In step (b) there is no static check
that, when matching on a constructor named "Person ", the correct
number or type of fields are matched. There are ways to improve
the type safety and efficiency ofthis approach; for example, one can
use an abstract datatype for generic functions to separate typed and
untyped code [17]. However, we concentrate on statically-typed
approaches in the rest of this section.

9.1 Rank-2 types

The Hindley-Milner type system is gracefully balanced on a cusp
between expressiveness and decidability. A polymorphic type may
be quantified only at the outermost level — this is called a rank-1
type — but in exchange a type inference engine can find the most
general type for any typeable program, without the aid of any type
annotations whatsoever.

Nevertheless, higher-ranked types are occasionally useful. A good
example is the type of build, the list-production combinator that is
central to the short-cut deforestation technique [6]. Its type is:

build : : forall a . ( forall b . (a->b->b) -> b -> b )
-> [ a ]

Another example is runST, the combinator that encapsulates a state-
ful computation in a pure function [19]:

runST : : forall a . ( forall s . ST s a ) -> a

It is well known that type inference for programs that use higher-
ranked types is intractable [16]. Nevertheless, it is not only tractable
but easy if sufficient type annotations are given [24]. The two
Haskell implementations GHC and Hugs support data constructors
with r ank-2 types; the type inference problem is easier here because
the data constructor itself acts as a t ype annotation. However that
would be very inconvenient h ere: gmapT is not a data constructor,
and it would require tiresome unwrapping to make it so.



So in fact GHC uses a type inference algorithm that permits any
function to have a type of arbitrary-rank t ype, provided sufficient
type annotations are given. The details are beyond the scope of this
paper, but are given in [3 1]. We believe that the gmap family of
functions offers further evidence of the usefulness of rank-2 types
in practical programming.

9.2 Generic traversal

Polytypic p rogramming

The core idea underlying polytypic p rogramming [15, 14, 10] is
to define a generic function b y induction on the structure of an ar-
gument type or the result type of a function. I nduction is usually

isnupitipoonrt hedas bc yaa se csof rorres spuomnds,inp gro ldauncgtus,aa gnede xo ttehnesriso.nT :ht ihsea f pupnrcotaiocnhd i neif--

itabiinsayrevt lelt h hjaryuste lse tpe ,sa uatdr cbruoosemcl utytoutp-t r gpaeherueino rso ofeennrlt iylhc-yoe gp p ept runyeorrepagreetrli.icayom-E  nfgsmuxe,naninma centprgiidoclni eh so ssa;t poi sent hhorcaialnr tutegiodi ss.tne,rU iso s c,ennt iarefvionsaerdld tit usroo ainuv barteeito oneu wnl yse,ean nfnt tdiv hurielee.i sltweys
Thus m otivated, c ustomisation o f generic programs i s a ddressed i n
the Generic Haskell program. I n [ 4], t echniques are d iscussed t o
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Giinse,ten ogenrraeitcec H adnaw snioktthel wlo ,rra idtg ieneagn ryeernif ecur nficuctnf icuontinocatnliop i snrson goo rtpaa emraf mirtsiitnn-ggc.l oaF snsuro c ttihhtieezrremg noe.rneT e,hri iacnt
functions, a s our t raversal c ombinators ( e.g., everywhere) require.
Also, ( run-time and nominal) t ype-safe c ast i s a lien t o p olytypic
programming. U sing t echniques s uch a s t hose i n [ 4], one can en-



code t raversals a s opposed t o u sing our c ombinator s tyle.
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structural induction.

Generalisedf olds

It is a well-established idea that maps and folds can be defined for
all kinds of datatypes, even for systems of datatypes [22, 29, 23].

Tfitrrshao vpemeeirnrf oshaourlrermie s senim fdtaapv bslosyeuur trmha eendpd .ftoioT y lendhtiiso sm phw oeearrraeye,ttig hw oeannetei rat resallecloluwfa r.pspit T ohrhoneiasi pcnrs thooegw tcsrohat memhripemsol ei uadrnyet deaort-a ew wpriamirsretse
uatircptiipcr eauclteaurtdse diroei cnnu in[r 1si8oa ]nn:y,i w  gfel anayergrt haelraitss yei ssdtf ef omoludsnso ds fc ud ofafntevartef ynprioeemnsta. a rnB eoec tshoiednressip drt eohreebdla e,mni t-
is impractical to enumerate all the ingredients for folding by hand.
In effect, this is another instance of boilerplate: most ingredients
follow a certain scheme, only few ingredients should be provided
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kinds of traversal schemes as opposed o simple catamorphic or
paramorphic fold. Thirdly, he fold algebra approach suffers from a
closed-world assumption; adding new data types s not straightfor-
ward. No such assumption s present nour present development.

The non-recursive map rick

The non-recursive map rick introduced n Sections 3.2 and 3.3)
has been known n he unctional programming community or
Isonmtheis tiampper,o e.agc.h,,i fnot rheevseernysereo cfurp srivoegrdaamtamtyinpge,wTirtheef usnacyt,oo rnse[2d2e,f2 in8e]s.
nauxiliary ype, Tree’ hati s he unctor f orT Tree:

ata ree = eaf a | Fork Tree ) Tree )
ata ree’ t a = eaf’ a | Fork’ t

Now the f ollowing t ype i somorphism h olds

Tree’ (Tree a ) a Tree a

Recursive t raversals can t hen b e defined a s r ecursive f unctions i n
terms o f a o ne-layer f unctorial map T o use t his approach directly
for p ractical lp rogramming, one n eeds t o w rite f unctions t o convert
to and f rom between t hese the a bove i somorphic t ypes, and the s it-
uation becomes n oticeably m ore c omplicated w hen t here are m any
mutually-recursive t ypes involved [ 32, 2 8], and b reaks d own a lto-
gether w hen the r ecursion i s n on-uniform [ 25]:

data Seq a = Nil | C ons a Seq (a, a)
In c ontrast, our approach d oes not require a n a uxiliary d ata t ype,
works f ine for a rbitrary d atatypes. and i t a lso c opes w ith systems



dopinrifeap m vteriuaoctc uhutsaiicll wdley.ore rrI nenk,c oa  aufnnrs daiu vtt n heetriyd mspam etia datsyks r peeaesttthist neh.gerT ,st  he tthircseahii gni sdhiqa etuma foet raowm jom oarrrdei amp,l ip eo k.rvgeoe.lv,yre t mit ohneeb P nei tmro o umlvoseeged-.r
Icnomdemedu,ni tits yeea mlresadt hyaf ta orv q eruyites is momilaert t iemchen.7iqueh asb eenu sedi nL isp
The i dea o f building a library o f c ombinators t hat f acilitate f irst-
class t ree-traversal s trategies ( e.g. t op-down, b ottom-up, repeat-
until, l eftmost-first, e tc.) i n t erms o f o ne-layer t raversal s teps i s
also w ell e stablished i n the t erm-rewriting c ommunity. T his i dea
has s een a f lurry ofr ecent a ctivity. T here are t hree m ain a pproaches
to the c ombinator style. One i s t o d efine a new language for strate-

geaggtducooiglaibieceramtsosassrtprl b[  yc3 ii aori nanonvc3n wtegta] aoed r.r ttonalha  Almt aethre aw nnma xsl tiotyiiibih ttnu spnrhhtigednageilsrer fnie.uyv.gesa nA   uT[ p of rcsn3p puthm5aiirnevrooi]elcen.i  dmater amcisae Yonlahtpeancle  plt aoxtreht d ldaaoya mmaigtnl pneta oeracnpgan;taltmght na n aeyuetmeiipa erag  oselgiodnnsa ,et opohegsdda pi eb  nso risefou e t dot anx tut  octahop w symeeht rrm predet ap sisttoet edhnlreodasnal g etfi ts taoseleunw  “grnps gmt syohettpurrerrc oaakait ocrgtshH teetmeegp ags s S iXittiae ebrtnrrasMsairptnaitta uca eeatL-st-s---
bfcfthuournnmaesrsc mkyttiir oooa pnfdtrses atgo”trgeicatr doa-tecmi g otnyhmmea c ebp. t oiymn8rpaobetgAdiornrallf uamatt nophmcerpstesri.oreo.O ans cuaT tlhrrehl  tan aiomesnw tagrs apuc o vpaofgernorw etsar,aoicw blrhkuhc au ted inorneednb set ceierrsrls iit mbmeoesos t roa t hhatohr eviwelcyS rhh tsa roaal ciwl--s-

apforloledyo imrndgeinn otapo erfyrafr  autonnrkci -tm2iopnt yrsopoveensst  ahon ednu ts  thheeer-i e dndeecfnointdieifidncgad atsiaot annt do ypfc eot hsm.eA bf iulnsnaodt,oat rhmes ueen itmteas-l
in previous work.

The visitorp attern



In object-oriented programming, the visitor pattern is the classic
incarnation of recursive traversal. In fact, though, an instance of

tsthaervt eidsi wtoritp hai tnteS renc itsior anth2 e:rt  hliekev it shiteop rrr oebqlueimreastia cc ianscer feoars eeacthhatd  awtae
ttoypb ee ( dsoayn,e ct laose sa)c,ha nn dot dhee[  t2ra6v].eM rsaalni ysv m airxiaetdiou npsw o intht ht eh beap sriocc evisssiintogr
npaattitveren,t  hhaeveWab lekeanbp orouptocsleads.s,P b aalssebdero gns  ruegflgeecsttisona ;m  itosr peeg rfeonremriacna cleteri -s
pchoooir,ce asnd[ 2P 6]a.lsbA er ggeo nffeerrastiva nei a nppterroeasctihng tod  filsecxuisbslieons uo pfpo otrhte rfod re spirgon-
wgriathmma id nigscw uistshiov nis oiftor otsh iesr sg uegngeersatteivdeb  ayppV riosasecrhe[ s3.4]G a icvceonma pac nlaiessd
hmcieuessrciahrnc ginhay tn,hdea nrs et cyinuletresrio fvfae cstterraaf ovteergrv sicaislp iirtsooegrfrfc aeomcmtimvbieinnlgyat( osesrespeai ra sabi tonedvset,a)a n.ntN idaoaterddbeitvp  raerrroyy-
raversal chemes an be defined.

7Personal ommunicationA AlexA Aiken.
http: / / www. c s. v u. n l/Strafunski

Lieberherr’s et al.’s adaptive p rogramming offers a high-level ap-
proach to traversal of object structures [21] when compared to visi-
tors. This style assumes primitives to specify p ieces of computation
to be performed along paths that are constrained by starting nodes,
nodes to b e passed, nodes to b e by-passed, and nodes t o b e reached.
Adaptive programs are typically implemented by a language exten-
sion, a reflection-based API, or b y compilation t o a visitor.

9.3 Type-safe cast

There are two main ways to implement type-safe cast, each with an
extensive literature: intensional type analysis; or dynamic typing.

Intensional type analysis enables one to write functions that depend
on the (run-time) t ype of a value [8, 37]. T o this end, one uses a



typecase construct to examine the actual structure of a type pa-
rameter or the type of a p olymorphic entity, with case alternatives
for sums, products, function types, and b asic datatypes. This struc-
tural type analysis can also b e p erformed r ecursively (as opposed to
mere one-level type case). Checking for type equality is a standard
example, and so looks like a promising base for a type-safe cast, as
Weirich shows [36].

There are two difficulties. First, adding intensional p olymorphism
to the language is a highly non-trivial step. Second, and even more
seriously, all the work on intensional polymorphism is geared to-
wards structural type analysis, whereas our setting absolutely re-
quires nominal type analysis (cf. [7]). For example, these two types
are structurally equal, but not nominally equal:

data Person = P String Float -- Name and height
data Dog = D String Float -- Name and weight

We should not treat a Person like a Dog — or at least we should
allow them to b e distinguished.

There is a great deal of excellent research on introducing dynamic
types into a statically-typed language; for example [1, 2, 20]. H ow-
ever, it addresses a more general question than we do, and is there-
fore much more complicated than necessary for our purpose. In
particular, we do not need the type Dynamic, which is central to
dynamic-typing systems, and h ence we do not need typecase ei-
ther, the p rincipal language construct underlying dynamic typing.

The class Typeable and the unsafeCoerce function, are the foun-
dation of the Dynamic library, which has been a standard p art of the
Hugs and GHC distributions for several y ears. However, it seems
that the material of Section 8 has never appeared in p rint. The key
idea first appeared in an 1990 email from one of the current au-
thors to the (closed) fplanc mailing list [27], later forwarded to the



(open) Haskell mailing list [12]. The cast function i s not so well
known, however; the first r eference we can t race was a message to
the Haskell mailing list from H enderson [9].

10 Concluding remarks

We h ave p resented a p ractical design pattern for generic program-
ming in a typed functional setting. This pattern encourages the p ro-
grammer to avoid the implementation of tiresome and maintenance-
intensive b oilerplate code that is typically needed to recurse into
complex data structures. T his pattern is relevant for XML docu-
ment processing, language implementation, software reverse and
re-engineering. Our approach is simple to understand because it
only involves two designated concepts of one-layer traversal and
type cast. Our approach is general because it does not restrict
the datatypes subject to traversal, and it allows to define arbitrary
traversal schemes — reusable ones but also application-specific
ones. Language support for the design pattern was shown to be
simple. The approach takes advantage of research to put rank-2
type systems to work.

Performance

Our benchmarks show that generic programs are reasonably ef-
ficient (see also the accompanying software distribution). The
generic program for salary increase, for example, is 3.5 times
slower 9 than the normal hand-coded program. The dominant cause
of this penalty is our sub-optimal encoding technique for type-safe
cast. Recall that generic traversals perform a comparison of type
representations for every encountered node at run-time. So it is
crucial to make type representations very efficient, preferably via
built-in support. A hand-written solution does not involve any such
checks. The above factor is also caused b y the fact that generic



traversal schemes are not accessible to a number of optimisations
which are available for hard-wired solutions. T his is because the
gmap family relies on the Term class and higher-order style. Fi-
nally, recall that generic traversals tend to traverse more nodes than
necessary if extra p recautions are omitted to stop recursion.

Perspective

We are currently investigating options to support the key combina-
tors cast and gfoldl (or the gmap family) efficiently by the GHC
compiler for Haskell. Such a native implementation will remove the
penalty related to the comparison of type representations, and it will
render external generative tool support u nnecessary. As the paper
discusses, such built-in support is not h ard to provide, but there is
some design space to explore. We are also working on automating
the derivation of stop conditions for traversals b ased on reachability
properties of the recursive traversal schemes and the traversed data
structure. W e envisage that a template-based approach [30] can be
used to derive optimised traversals at compile time.
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