
Scrap More Boilerplate: Reflection, Zips,
and Generalised Casts

Ralf Lämmel
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Abstract
Writing boilerplate code is a royal pain. Generic programming
promises to alleviate this pain by allowing the programmer to write
a generic “recipe” for boilerplate code, and use that recipein many
places. In earlier work we introduced the “Scrap your boilerplate”
approach to generic programming, which exploits Haskell’sexist-
ing type-class mechanism to support generic transformations and
queries.

This paper completes the picture. We add a few extra “introspec-
tive” or “reflective” facilities, that together support a rich variety
of serialisation and de-serialisation. We also show how to perform
generic “zips”, which at first appear to be somewhat tricky inour
framework. Lastly, we generalise the ability to over-ride ageneric
function with a type-specific one.

All of this can be supported in Haskell with independently-useful
extensions: higher-rank types and type-safe cast. The GHC imple-
mentation of Haskell readily derives the required type classes for
user-defined data types.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.1.1
[Programming Techniques]: Functional Programming; D.3.1
[Programming Languages]: Formal Definitions and Theory
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1 Introduction
It is common to find that large slabs of a program consist of “boil-
erplate” code, which conceals by its bulk a smaller amount of“in-
teresting” code. So-calledgeneric programmingtechniques allow
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programmers to automate this “boilerplate”, allowing effort to be
focused on the interesting parts of the program.

In our earlier paper, “Scrap your boilerplate” [16], we described
a new technique for generic programming, building on the type-
class facilities in Haskell, together with two fairly modest exten-
sions (Section 2). Our approach has several attractive properties:
it allows the programmer to over-ride the generic algorithmat ex-
actly the desired places; it supports arbitrary, mutually-recursive
data types; it is an “open-world” approach, in which it is easy to
add new data types; it works without inefficient conversion to some
intermediate universal data type; and it does not require compile-
time specialisation of boilerplate code.

The main application in our earlier paper was traversals andqueries
over rich data structures, such as syntax trees or terms thatrepresent
XML documents. However, that paper did not show how to imple-
ment some of the best-known applications of generic programming,
such as printing and serialisation, reading and de-serialisation, and
generic equality. These functions all require a certain sort of type
introspection, or reflection.

In this paper we extend our earlier work, making the following new
contributions:

• We show how to support a general form of type reflection,
which allows us to define generic “show” and “read” functions
as well as similar functions (Sections 3 and 4).

• These classical generic functions rely on a new reflection API,
supported on a per-data-type basis (Section 5). Once defined,
this API allows other generic reflective functions to be de-
fined, such as test-data generators (Section 5.4).

• Functions like generic equality require us to “zip together”
two data structures, rather than simply to traverse one. We
describe how zipping can be accommodated in the existing
framework (Section 6).

• A strength of theScrap your boilerplateapproach is that it
it easy to extend a generic function to behave differently on
particular, specified types. So far it has not been clear how to
extend a generic function for particular typeconstructors. In
Section 7 we explain why this ability is very useful, and show
how to generalise our existing type-safecast operator so that
we can indeed express such generic function extension.

Everything we describe has been implemented in GHC, and many
examples are available online at the boilerplate web site [17]. No
new extensions to Haskell 98 are required, beyond the two already
described inScrap your boilerplate, namely (a) rank-2 types, and
(b) type-safe cast. The latter is generalised, however, in Section 7.2.



2 Background
To set the scene for this paper, we begin with a brief overviewof
theScrap your boilerplateapproach to generic programming. Sup-
pose that we want to write a function that computes the size ofan
arbitrary data structure. The basic algorithm is “for each node, add
the sizes of the children, and add 1 for the node itself”. Hereis the
entire code forgsize :

gsize :: Data a => a -> Int
gsize t = 1 + sum (gmapQ gsize t)

The type forgsize says that it works over any typea, provideda
is a data type — that is, that it is an instance of the classData 1

The definition ofgsize refers to the operationgmapQ, which is a
method of theData class:

class Typeable a => Data a where
...other methods of class Data...
gmapQ :: (forall b. Data b => b -> r) -> a -> [r]

(The classTypeable serves for nominal type cast as needed for
the accommodation of type-specific cases in generic functions. We
will discuss this class in Section 7, but it can be ignored fornow.)
The idea is that(gmapQ f t) applies the polymorphic functionf
to each of the immediate children of the data structuret . Each of
these applications yields a result of typer , andgmapQreturns a list
of all these results. Here are the concrete definitions ofgmapQat
typesMaybe, list, andInt respectively:

instance Data a => Data (Maybe a) where
gmapQ f Nothing = []
gmapQ f (Just v) = [f v]

instance Data a => Data [a] where
gmapQ f [] = []
gmapQ f (x:xs) = [f x, f xs]

instance Data Int where
gmapQ f i = [] -- An Int has no children!

Notice thatgmapQappliesf only to theimmediatechildren of its
argument. In the second instance declaration above,f is applied to
x andxs , resulting in a list of exactly two elements, regardless of
how long the tailxs is. Notice too that, in this same declaration,f
is applied to arguments of different types (x has a different type to
xs ), and that is why the argument togmapQmust be apolymorphic
function. SogmapQmust have a higher-rank type – that is, one with
a forall to the left of a function arrow — an independently-useful
extension to Haskell [20].

It should now be clear howgsize works for termt whose type is
an instance of the classData . The call(gmapQ gsize t) applies
gsize to each oft ’s immediate children, yielding a list of sizes.
The standard functionsum :: [Int] -> Int sums this list, and
then we add 1.

The classData plays a central role in this paper. Our earlier paper
placed three generic mapping operations in classData : the opera-
tion gmapQfor generic queries, as illustrated above, and the opera-
tions gmapT for transformations, andgmapMfor monadic transfor-
mations. In fact, all such forms of mapping can be derived from
a single operatorgfoldl for generic folding, as we also described
in the earlier paper. The instances ofData are easy to define, as
we saw for the operationgmapQabove. The definition ofgfoldl is
equally simple. In fact, the instances aresoeasy and regular that a
compiler can do the job, and GHC indeed does so, when instructed
by a so-called “deriving ” clause. For example

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving( Eq, Typeable, Data )

1Note: in our earlier paper [16] the class now called “Data ” was
called “Term”.

The “deriving( Eq ) ” part is standard Haskell 98, and in-
structs the compiler to generate an instance declaration for
instance Eq a => Eq (Tree a) . GHC extends this by support-
ing deriving for the classesTypeable andData as well.

While the operationgfoldl is sufficient for transformations and
queries, it is not enough for other applications of generic program-
ming, as we shall shortly see. Much of the rest of the paper fills out
theData class with a few further, carefully-chosen operations.

3 Generic “show” and friends
We will now consider generic functions that take any data value
whatsoever, and render it in some way. For instance, a generic show
operation is a generic function that renders terms as text, and hence
it is of the following type:

gshow :: Data a => a -> String
That is,gshow is supposed to take any data value (i.e. any instance
of classData ), and to display it as a string. The generic function
gshow has many variants. For example, we might want to perform
binary serialisation withdata2bits , where we turn a datum into
a string ofZero s andOnes (Sections 3.2 and 3.3). We might also
want to translate a datum into a rose tree withdata2tree , where
the nodes store constructor names (Section 3.4).

data2bits :: Data a => a -> [Bit]
data2tree :: Data a => a -> Tree String

A generalisation ofdata2tree can perform type erasure for XML.

3.1 Data to text
We can almost dogshow already, because it is very likegsize 2:

gshow t = "("
++ concat (intersperse " " (gmapQ gshow t)
++ ")"

Of course, this function only outputs parentheses!
gshow [True,False] = "(() (() ()))"

We need to provide a way to get the name of the constructor used
to build a data value. It is natural to make this into a new operation
of the classData :

class Typeable a => Data a where
...
toConstr :: a -> Constr

Rather than delivering the constructor name as a string,toConstr
returns a value of an abstract data typeConstr , which offers the
functionshowConstr (among others – Section 5):

showConstr :: Constr -> String
Given this extra function we can write a working version ofgshow :

gshow :: Data a => a -> String
gshow t

= "(" ++ showConstr (toConstr t)
++ concat (intersperse " " (gmapQ gshow t))
++ ")"

We have made use of an intermediate data typeConstr so that, as
well as supportingshowConstr , we can also offer straightforward
extensions such as fixity:

constrFixity :: Constr -> Fixity
The typeFixity encodes the fixity and precedence of the construc-
tor, and we can use that to write a more sophisticated versionof
gshow that displays constructors in infix position, with minimum
parenthesisation.

2The standard functionconcat :: [[a]] -> [a] concate-
nates the elements of a list of lists, whileintersperse :: a ->
[a] -> [a] inserts its first argument between each pair of ele-
ments in its second argument.



Built-in data types, such asInt , are also instances of theData class,
so (toConstr (3::Int)) is a value of typeConstr . Applying
showConstr to this value yields the string representation of the in-
teger value3.

3.2 Binary serialisation
Our next application is binary serialisation, in which we want to
encode a data value as a bit-string of minimum length:

data Bit = Zero | One
data2bits :: Data a => a -> [Bit]

Rather than outputting the constructor name as a wasteful string,
the obvious thing to do is to output a binary representation of its
constructor index, so we need another function overConstr :

constrIndex :: Constr -> ConIndex
type ConIndex = Int -- Starts at 1; 0 for undefined

But how many bits should be output, to distinguish the construc-
tor from other constructors of the same data type? To answer this
question requires information about the entire data type, and hence
a new function,dataTypeOf :

class Typeable a => Data a where
...
toConstr :: a -> Constr
dataTypeOf :: a -> DataType

We note thatdataTypeOf never ever examines its argument; it
only uses its argument as a proxy to look-up information about its
data type.3 The abstract data typeDataType offers the operation
maxConstrIndex (among others):

maxConstrIndex :: DataType -> ConIndex
Using these functions, we are in a position to writedata2bits :

data2bits :: Data a => a -> [Bit]
data2bits t = encodeCon (dataTypeOf t) (toConstr t)

++ concat (gmapQ data2bits t)

-- The encoder for constructors
encodeCon :: DataType -> Constr -> [Bit]
encodeCon ty con = natToBin (max-1) (idx-1)

where
max = maxConstrIndex ty
idx = constrIndex con

Here we have assumed a simple encoder for natural numbers
natToBin :: Int -> Int -> [Bit] where (natToBin m x)
returns a binary representation ofx in the narrowest field that can
representm.

3.3 Fancy serialisation
One could easily imagine more sophisticated serialisers for data
values. For example, one might want to use adaptive arithmetic
coding to reduce the number of bits required for common construc-
tors [23, 18]. To do this requires the serialiser to carry along the
encoder state, and to update this state whenever emitting a new
constructor. So the fancy encoder will have this signature,which
simply adds a state toencodeCon ’s signature:

data State -- Abstract
initState :: State
encodeCon :: DataType -> Constr

-> State -> (State, [Bit])
Now we just need to modify the plumbing indata2bits . At first
blush, doing so looks tricky, becausegmapQknows nothing about
passing a state, but we can use a standard trick by makinggmapQ

3One could instead use a ‘phantom type’ for proxies, to make
explicit thatdataTypeOf does not care about values of typea, i.e.:

data Proxy a = Proxy
dataTypeOf :: Proxy a −> DataType

return a list of functions of type[State -> (State,[Bit])] :

data2bits :: Data a => a -> [Bit]
data2bits t = snd (show_bin t initState)

show_bin :: Data a => a -> State -> (State, [Bit])
show_bin t st = (st2, con_bits ++ args_bits)

where
(st1, con_bits) = encodeCon (dataTypeOf t)

(toConstr t) st
(st2, args_bits) = foldr do_arg (st1,[])

enc_args

enc_args :: [State -> (State,[Bit])]
enc_args = gmapQ show_bin t

do_arg fn (st,bits) = (st’, bits’ ++ bits)
where

(st’, bits’) = fn st

Notice that the call togmapQpartially appliesshow_bin to the chil-
dren of the constructor, returning a list of state transformers. These
are composed together by thefoldr do_arg . Of course, the ap-
pending of bit-strings is not efficient, but that is easily avoided by
using any O(1)-append representation of bit-strings (see e.g. [9]).

A more elegant approach would instead present the encoder ina
monadic way:

data EncM a -- The encoder monad
instance Monad EncM where ...
runEnc :: EncM () -> [Bit]
emitCon :: DataType -> Constr -> EncM ()

The monadEncM carries (a) the sequence of bits produced so far
and (b) any accumulating state required by the encoding technol-
ogy, such asState above. The functionemitCon adds a suitable
encoding of the constructor to the accumulating output, andupdates
the state. The functionrunEnc runs its argument computation start-
ing with a suitable initial state, and returns the accumulated output
at the end. All the plumbing is now abstracted, leaving a rather
compact definition:

data2bits :: Data a => a -> [Bit]
data2bits t = runEnc (emit t)

emit :: Data a => a -> EncM ()
emit t = do { emitCon (dataTypeOf t) (toConstr t)

; sequence_ (gmapQ emit t) }

Here, the standard monad function
sequence_ :: Monad m => [m a] -> m ()

is used to compose the list computations produced bygmapQ emit .

3.4 Type erasure
The rendering operations so far are all forms of serialisation. We
can also render terms astrees, where we preserve the overall shape
of the terms, but erase the heterogeneous types. For instance, we
can easily turn a datum into a rose tree of the following kind:

data Tree a = Tree a [Tree a]
The rendering operation is easily defined as follows:

data2tree :: Data a => a -> Tree String
data2tree x = Tree (showConstr (toConstr x))

(gmapQ data2tree x)
Rendering data values as rose trees is the essence of type erasure for
XML. Dually, producing data values from rose trees is the essence
of type validation for XML. Generic functions for XML type era-
sure and type validation would necessarily reflect various technical-
ities of an XML binding for Haskell [21, 2]. So we omit the tedious
XML-line of scenarios here.



4 Generic “read” and friends
Our rendering functions are all genericconsumers: they consume
a data structure and produce a fixed type (String or [Bit] ).
(Generic traversals that query a term, are also consumers.)The
inverse task, of parsing or de-serialisation, requires genericproduc-
ers, that consume a fixed type and produce a data structure. It is far
from obvious how to achieve this goal.

The nub of the problem is this. We are sure to need a new mem-
ber of theData class, fromConstr , that is a kind of inverse of
toConstr . But what is its type? The obvious thing to try is to
reverse the argument and result oftoConstr :

class Typeable a => Data a where
...
toConstr :: a -> Constr
fromConstr :: Constr -> a -- NB: not yet correct!

But simply knowing theconstructoralone does not give enough
information to build a value: we need to know what the children of
the constructor are, too. But we can’t pass the children as arguments
to fromConstr , because then the type offromConstr would vary,
just as constructor types vary.

We note that the typeConstr -> a could be usedas is, if
fromConstr returned a term constructor filled by bottoms (“⊥”).
A subsequent application ofgmapT could still fill in the sub-terms
properly. However, this is something of a hack. Firstly, thebot-
toms imply dependence on laziness. Secondly, the approach fails
completely for strict data types. So we seek another solution.

The solution we adopt is to pass a generic function tofromConstr
that generates the children. To this end, we employ a monad to
provide input for generation of children:

fromConstrM :: (Monad m, Data a)
=> (forall b. Data b => m b)
-> Constr -> m a

We will first demonstratefromConstrM , and then define it.

4.1 Text to data
Here is the code for a generic read, where we ignore the need to
consume spaces and match parentheses:

gread :: Data a => String -> Maybe a
gread input = runDec input readM

readM :: Data a => DecM a
readM =

do { constr <- parseConstr ??? -- to be completed
; fromConstrM readM constr }

The two lines ofreadM carry out the following steps:
1. Parse aConstr from the front of the input. This time we

employ a parser monad,DecM, with the following signature:
data DecM a -- The decoder monad
instance Monad DecM where ...
runDec :: String -> DecM a -> a
parseConstr :: DataType -> DecM Constr

The monad carries (a) the as-yet-unconsumed input, and (b)
any state needed by the decoding technology. The function
parseConstr parses a constructor from the front of the input,
updates the state, and returns the parsed constructor. It needs
the DataType argument so that it knows how many bits to
parse, or what the valid constructor names are. (This argument
still needs to be filled in for “???” above.)

2. UsefromConstrM to call readM successively to parse each
child of the constructor, and construct the results into a value
built with the constructor identified in step 1.

The functionrunDec runs the decoder on a particular input, discard-
ing the final state and unconsumed input, and returning the result.
In case the monadic presentation seems rather abstract, we briefly
sketch one possible implementation of theDecM monad. A parser
of typeDecM a is represented by a function that takes a string and
returns a depleted string together with the parsed value, wrapped in
a Maybe to express the possibility of a parse error:

newtype DecM a = D (String -> Maybe (String, a))
The typeDecM can be made an instance ofMonad in the standard
way (see [10], for example). It remains to define the parser for
constructors. We employ a new function,dataTypeConstrs , that
returns a list of all the constructors of a data type. We try tomatch
each constructor with the beginning of the input, where we ignore
the issue of constructors with overlapping prefixes:

parseConstr :: DataType -> DecM Constr
parseConstr ty = D (\s -> match s (dataTypeConstrs ty))

where
match :: String -> [Constr] -> Maybe (String, Constr)
match _ [] = Nothing
match input (con:cons)

| take (length s) input == s
= Just (drop (length s) input, con)

| otherwise
= match input cons

where
s = showConstr con

The same code forgread , with a different implementation ofDecM
and a different type forrunDec , would serve equally well to read
the binary structures produced bydata2bits .

4.2 DefiningfromConstrM
The functionfromConstrM can be easily defined as a new mem-
ber of theData class, with the type given above. Its instances are
extremely simple; for example:

instance Data a => Data [a] where
fromConstrM f con

= case constrIndex con of
1 -> return []
2 -> do { a <- f; as <- f; return (a:as) }

However, just asgmapQ, gmapT and gmapM are all instances
of the highly parametricgfoldl operation, so we can define
fromConstrM as an instance of the dual ofgfoldl — a highly para-
metric operation for unfolding. This operation,gunfold needs to
be added to theData class:

class Typeable a => Data a where
...
gunfold :: (forall b r. Data b

=> c (b -> r) -> c r)
-> (forall r. r -> c r)
-> Constr
-> c a

The two polymorphically typed arguments serve for buildingnon-
empty vs. empty constructor applications. In this manner,gunfold
really dualisesgfoldl , which takes two similar arguments for the
traversal of constructor applications. The operationsgunfold and
gfoldl also share the use of a type constructor parameterc in their
result types, which is key to their highly parametric quality.

The instances ofgunfold are even simpler than those for
fromConstrM , as we shall see in Section 5.1. The operation
fromConstrM is easily derived as follows:

fromConstrM f = gunfold k z
where

k c = do { c’ <- c; b <- f; return (c’ b) }
z = return



Here, the argumentz in (gunfold k z) turns the empty construc-
tor application into a monadic computation, whilek unfolds one
child, and combines it with the rest.

4.3 Getting hold of the data type
In the generic parser we have thus-far shown, we left open theques-
tion of how to get theDataType corresponding to the result type,
to pass toparseConstr , the “??? ” in readM . The difficulty is that
dataTypeOf needs an argument of the result type, but we have not
yet built the result value.

This problem is easily solved, by a technique that we frequently
encounter in type-class-based generic programming. Here is the
code forreadM without “??? ”:

readM :: Data a => DecM a
readM = read_help

where
read_help

= do { let ty = dataTypeOf (unDec read_help)
; constr <- parseConstr ty
; fromConstrM readM constr }

unDec :: DecM a -> a
unDec = undefined

Here, unDec ’s type signature maps the typeDecM a to a as de-
sired. Notice the recursion here, whereread_help is used in its
own right-hand side. But recall thatdataTypeOf is not interested
in thevalueof its argument, but only in itstype; the lazy argument
(unDec read_help) simply explains to the compiler whatData
dictionary to pass todataTypeOf .

Rather than using an auxiliaryunDec function, there is a more direct
way to express the type ofdataTypeOf ’s argument. That is, we
can use lexically-scoped type variables, which is an independently
useful Haskell extension. We rewritereadM as follows:

readM :: Data a => DecM a
readM = read_help

where
read_help :: DecM a

= do { let ty = dataTypeOf (undefined::a)
; constr <- parseConstr ty
; fromConstrM readM constr }

The definition
read_help :: DecM a = ...

states thatread_help should have the (monomorphic) type
DecM a, for some typea, and furthermore brings the type variable
a into scope, with the same scope asread_help itself. The argu-
ment todataTypeOf , namely(undefined::a) , is constrained to
have the same typea, because the type variablea is in scope. A
scoped type variable is only introduced by a type signature directly
attached to a pattern (e.g.,read_help :: DecM a ). In contrast, a
separate type signature, such as

read_help :: Data a => DecM a
is short for

read_help :: forall a. Data a => DecM a
and does not introduce any scoping of type variables. However,
we stress that, although convenient, lexically-scoped type variables
are not required to support theScrap your boilerplateapproach to
generic programming, as we illustrated with the initial definition of
read_help .

5 Type reflection — the full story
The previous two sections have introduced, in a piecemeal fashion,
three new operations in theData class. In this section we sum-
marise these extensions. The three new operations are these:

class Typeable a => Data a where
...
dataTypeOf :: a -> DataType
toConstr :: a -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)

-> (forall r. r -> c r)
-> Constr
-> c a

Every instance ofdataTypeOf is expected to be non-strict — i.e.
does not evaluate its argument. By contrast,toConstr must be
strict — at least for multi-constructor types — since it gives a result
that depends on the constructor with which the argument is built.

The functiondataTypeOf offers a facility commonly known as “re-
flection”. Given a type — or rather a lazy value that serves as
a proxy for a type — it returns a data structure (DataType ) that
describes the structure of the type. The data typesDataType and
Constr are abstract:

data DataType -- Abstract, instance of Eq
data Constr -- Abstract, instance of Eq

The following sections give the observers and constructorsfor
DataType andConstr .

5.1 Algebraic data types
We will first consider algebraic data types, although the APIis de-
fined such that it readily covers primitive types as well, as we will
explain in the next section. These are the observers forDataType :

dataTypeName :: DataType -> String
dataTypeConstrs :: DataType -> [Constr]
maxConstrIndex :: DataType -> ConIndex
indexConstr :: DataType -> ConIndex -> Constr
type ConIndex = Int -- Starts at 1

These functions should be suggestive, just by their names and
types. For example,indexConstr takes a constructor index and
a DataType , and returns the correspondingConstr . These are the
observers forConstr :

constrType :: Constr -> DataType
showConstr :: Constr -> String
constrIndex :: Constr -> ConIndex
constrFixity :: Constr -> Fixity
constrFields :: Constr -> [String]
data Fixity = ... -- Details omitted

(The name ofshowConstr is chosen for its allusion to Haskell’s
well-knownshow function.) We have already mentioned all of these
observers in earlier sections, exceptconstrType which returns the
constructor’sDataType , andconstrFields which returns the list
of the constructor’s field labels (or[] if it has none). Values of
typesDataType andConstr are constructed as follows:

mkDataType :: String -> [Constr] -> DataType
mkConstr :: DataType -> String -> [String]

-> Fixity -> Constr
The functionreadConstr parses a given string into a constructor;
it returnsNothing if the string does not refer to a valid constructor:

readConstr :: DataType -> String -> Maybe Constr
When the programmer defines a new data type, and wants to use it
in generic programs, it must be made an instance ofData . GHC
will derive these instance if aderiving clause is used, but there
is no magic here — the instances are easy to define manually if
desired. For example, here is the instance forMaybe:

instance Data a => Data (Maybe a) where
... -- gfoldl as before
dataTypeOf _ = maybeType
toConstr (Just _) = justCon
toConstr Nothing = nothingCon



gunfold k z con =
case constrIndex con of

1 -> z Nothing -- no children
2 -> k (z Just) -- one child, hence one k

justCon, nothingCon :: Constr
nothingCon = mkConstr maybeType "Nothing" [] NoFixity
justCon = mkConstr maybeType "Just" [] NoFixity

maybeType :: DataType
maybeType = mkDataType "Prelude.Maybe"

[nothingCon, justCon]

Notice that the constructors mention the data type and vice versa, so
that starting from either one can get to the other. Furthermore, this
mutual recursion allowsmkDataType to perform the assignment of
constructor indices: the fact thatNothing has index 1 is specified
by its position in the list passed tomkDataType .

5.2 Primitive types
Some of Haskell’s built-in types need special treatment. Many
built-in types are explicitly specified by the language to bealge-
braic data types, and these cause no problem. For example, the
boolean type is specified like this:

data Bool = False | True
There are a few types, however,primitive types, that cannot be
described in this way:Int , Integer , Float , Double , andChar .
(GHC happens toimplementsome of these as algebraic data types,
some with unboxed components, but that should not be revealed to
the programmer.) Furthermore, GHC adds several others, such as
Word8, Word16, and so on.

How should the “reflection” functions,dataTypeOf , toConstr ,
and so on, behave on primitive types? One possibility would be
to supportdataTypeOf for primitive types, but nottoConstr and
fromConstr . That has the disadvantage that every generic function
would need to define special cases for all primitive types. While
there are only a fixed number of such types, it would still be tire-
some, so we offer a little additional support.

We elaborateConstr so that it can represent a value of primitive
types. Then,toConstr constructs such specific representations.
While Constr is opaque, we provide an observerconstrRep to get
access to constructor representations:

constrRep :: Constr -> ConstrRep
data ConstrRep

= AlgConstr ConIndex -- Algebraic data type
| IntConstr Integer -- Primitive type (ints)
| FloatConstr Double -- Primitive type (floats)
| StringConstr String -- Primitive type (strings)

The constructors from an algebraic data type have anAlgConstr
representation, whoseConIndex distinguishes the constructors of
the type. AConstr resulting from anInt or Integer value will
have anIntConstr representation, e.g.:

constrRep (toConstr (1::Int)) == IntConstr 1
The sameIntConstr representation is used for GHC’s data types
Word8, Int8 , Word16, Int16 , and others. TheFloatConstr rep-
resentation is used forFloat andDouble , while StringConstr is
used for anything else that does not fit one of these more efficient
representations. We note thatChar s are represented asInteger s,
andString s are represented as lists ofInteger s.

There is a parallel refinement ofDataType :

dataTypeRep :: DataType -> DataRep
data DataRep

= AlgRep [Constr] -- Algebraic data type
| IntRep -- Primitive type (ints)
| FloatRep -- Primitive type (floats)
| StringRep -- Primitive type (strings)

There are dedicated constructors as well:

mkIntType :: String -> DataType
mkFloatType :: String -> DataType
mkStringType :: String -> DataType
mkIntConstr :: DataType -> Integer -> Constr
mkFloatConstr :: DataType -> Double -> Constr
mkStringConstr :: DataType -> String -> Constr

The observersconstrType , showConstr andreadConstr all work
for primitive-typeConstr s. All that said, theData instance for a
primitive type, such asInt , looks like this:

instance Data Int where
gfoldl k z c = z c
gunfold k z c = case constrRep c of

IntConstr x -> z (fromIntegral x)
_ -> error "gunfold"

toConstr x = mkIntConstr intType (fromIntegral x)

intType = mkIntType "Prelude.Int"

5.3 Non-representable data types
Lastly, it is convenient to giveData instances even for types that are
not strictlydata types, such as function types or monadicIO types.
Otherwisederiving ( Data ) would fail for a data type that had
even one constructor with a functional argument type, so theuser
would instead have to write theData instance by hand. Instead,
we make all such types into vacuous instances ofData . Traversal
will safely cease for values of such types. However, values of these
types can not be read and shown.

For example, the instance for(->) is defined as follows:

instance (Data a, Data b) => Data (a -> b) where
gfoldl k z c = z c
gunfold _ _ _ = error "gunfold"
toConstr _ = error "toConstr"
dataTypeOf _ = mkNoRepType "Prelude.(->)"

Here we assume a trivial constructor for non-representabletypes:
mkNoRepType :: String -> DataType

To this end, the data typeDataRep provides a dedicated alternative:
data DataRep = ... -- As before

| NoRep -- Non-representable types
Some of GHC’s extended repertoire of types, notablyPtr , fall into
this group of non-representable types.

5.4 Application: test-data generation
As a further illustration of the usefulness ofdataTypeOf , we
present a simple generic function that enumerates the data struc-
tures of any user defined type. (The utility of generic programming
for test-data generation has also been observed elsewhere [14].)
Such test-data generation is useful for stress testing, differential
testing, behavioural testing, and so on. For instance, we can use
systematic test-data generation as a plug-in for QuickCheck [3].

Suppose we start with the following data types, which constitute
the abstract syntax for a small language:

data Prog = Prog Dec Stat
data Dec = Nodec | Ondec Id Type | Manydecs Dec Dec
data Id = A | B
data Type = Int | Bool
data Stat = Noop | Assign Id Exp | Seq Stat Stat
data Exp = Zero | Succ Exp

We want to define a generic function that generates all terms of a
given finite depth. For instance:

> genUpTo 3 :: [Prog]
[Prog Nodec Noop, Prog Nodec (Assign A Zero),

Prog Nodec (Assign B Zero), Prog Nodec (Seq Noop



Noop), Prog (Ondec A Int) Noop, Prog (Ondec A Int)
(Assign A Zero), Prog (Ondec A Int) (Assign B Zero),
Prog (Ondec A Int) (Seq Noop Noop), ... ]

Here is the code forgenUpTo:

genUpTo :: Data a => Int -> [a]
genUpTo 0 = []
genUpTo d = result

where
-- Recurse per possible constructor
result = concat (map recurse cons)

-- Retrieve constructors of the requested type
cons :: [Constr]
cons = dataTypeConstrs (dataTypeOf (head result))

-- Find all terms headed by a specific Constr
recurse :: Data a => Constr -> [a]
recurse = fromConstrM (genUpTo (d-1))

The non-trivial case (d > 0) begins by findingcons , the list of all
the constructors of the result type. Then it mapsrecurse overcons
to generate, for eachConstr , the list of all terms of given depth
with that constructor at the root. In turn,recurse works by using
fromConstrM to rungenUpTo for each child. Here we take advan-
tage of the fact that Haskell’s list type is a monad, to produce a
result list that consists of all combinations of the lists returned by
the recursive calls.

The reason that we bindresult in the where-clause is so that we
can mention it in the type-proxy argument todataTypeOf , namely
(head result) — see Section 4.3.

Notice that we have not taken account of the possibility of primi-
tive types in the data type — indeed,dataTypeConstrs will fail
if given a primitiveDataType . There is a genuine question here:
what value should we return for (say) anInt node? One very sim-
ple possibility is to return zero, and this is readily accommodated
by usingdataRep instead ofdataTypeConstrs :

cons = case dataTypeRep ty of
AlgRep cons -> cons
IntRep -> [mkIntConstr ty 0]
FloatRep -> [mkIntConstr ty 0]
StringRep -> [mkStringConstr ty "foo"]

where
ty = dataTypeOf (head result)

We might also pass around a random-number generator to select
primitive values from a finite list of candidates. We can alsore-
fine the illustrated approach to accommodate other coveragecrite-
ria [15]. We can also incorporate predicates into term generation
so that only terms are built that meet some side conditions inthe
sense of attribute grammars [6]. Type reflection makes all manner
of clever test-data generators possible.

6 Generic zippers
In our earlier paper, all our generic functions consumed asingle
data structure. Some generic functions, such as equality orcom-
parison, consumetwo data structures at once. In this section we
discuss how to program such zip-like functions. The overallidea is
to define such functions as curried higher-order generic functions
that consume position after position.

6.1 Curried queries
Consider first the standard functionsmap andzipWith :

map :: (b->c) -> [b] -> [c]
zipWith :: (a->b->c) -> [a] -> [b] -> [c]

By analogy, we can attempt to definegzipWithQ — a two-
argument version ofgmapQthus. The types compare as follows:

gmapQ :: Data a
=> (forall b. Data b => b -> r)
-> a -> [r]

gzipWithQ :: (Data a1, Data a2)
=> (forall b1 b2. (Data b1, Data b2)

=> b1 -> b2 -> r)
-> a1 -> a2 -> [r]

The original function,(gmapQ f t) , takes a polymorphic function
f that it applies to each immediate child oft , and returns a list
of the results. The new function,(gzipWithQ f t1 t2) takes a
polymorphic functionf that it applies tocorresponding pairs of
the immediate children oft1 and t2 , again returning a list of the
results. For generality, we do not constraina1 anda2 to have the
same outermost type constructor, an issue to which we returnin
Section 6.5.

We can gain extra insight into these types by using some type ab-
breviations. We define the type synonymGenericQ as follows:

type GenericQ r = forall a. Data a => a -> r
That is, a value of typeGenericQ r is a generic query function that
takes a value of any type in classData and returns a value of typer .
Haskell 98 does not support type synonyms that containforall ’s,
but GHC does as part of the higher-rank types extension. Suchex-
tended type synonyms are entirely optional: they make typesmore
perspicuous, but play no fundamental role.

Now we can write the type ofgmapQas follows:
gmapQ :: GenericQ r -> GenericQ [r]

We have taken advantage of the type-isomorphism∀a.σ1 → σ2 ≡
σ1 →∀a.σ2 (wherea 6∈ σ1) to rewritegmapQ’s type as follows:

gmapQ :: (forall b. Data b => b -> r)
-> (forall a. Data a => a -> [r])

Applying GenericQ , we obtainGenericQ r -> GenericQ [r] .
SogmapQthereby stands revealed as ageneric-query transformer.

The type ofgzipWithQ is even more interesting:
gzipWithQ :: GenericQ (GenericQ r)

-> GenericQ (GenericQ [r])
The argument togzipWithQ is a generic query that returns a generic
query. This is ordinary currying: when the function is applied to the
first data structure, it returns a function that should be applied to the
second data structure. ThengzipWithQ is a transformer for such
curried queries. Its implementation will be given in Section 6.3.

6.2 Generic comparison
GivengzipWithQ , it is easy to define a generic equality function:

geq’ :: GenericQ (GenericQ Bool)
geq’ x y = toConstr x == toConstr y

&& and (gzipWithQ geq’ x y)
That is,geq’ x y checks thatx andy are built with the same con-
structor and, if so, zips together the children ofx andy with geq’
to give a list of Booleans, and takes the conjunction of theseresults
with and :: [Bool] -> Bool . That is the entire code for generic
equality. Generic comparison (returningLT, EQ, or GT) is equally
easy to define.

We have called the functiongeq’ , rather thangeq , because it has a
type that is more polymorphic than we really want. If we spellout
theGenericQ synonyms we obtain:

geq’ :: (Data a1, Data a2) => a1 -> a2 -> Bool
But we do not expect to take equality between values of different
types,a1 anda2, even if both do lie in classData ! The real function
we want is this:

geq :: Data a => a -> a -> Bool
geq = geq’



Why can’t we give this signature to the original definition ofgeq’ ?
Because if we did, the call(gzipWithQ geq’ x y) would be
ill-typed, becausegzipWithQ requires a function that is indepen-
dently polymorphic in its two arguments. That, of course, just begs
the question of whethergzipWithQ could be less polymorphic, to
which we return in Section 6.5. First, however, we describe the
implementation ofgzipWithQ .

6.3 ImplementinggzipWithQ
How can we implementgzipWithQ ? At first it seems difficult, be-
cause we must simultaneously traverse two unknown data struc-
tures, but thegmap combinators are parametric in just one type.
The solution lies in the type ofgzipWithQ , however: we seek a
generic query that returns a generic query. So we can evaluate
(gzipWithQ f t1 t2) in two steps, thus:

gzipWithQ f t1 t2 -- NB: not yet correct!
= gApplyQ (gmapQ f t1) t2

Step 1: use the ordinarygmapQto applyf to all the children oft1 ,
yielding a list of generic queries.

Step 2: use an operationgApplyQ to apply the queries in the pro-
duced list to the corresponding children oft2 .

Each of these steps requires a little work. First, in step 1, what is
the type of the list(gmapQ f t1) ? It should be a list of generic
queries, each of which is apolymorphicfunction. But GHC’s sup-
port for higher-rank type still maintainspredicativity. What this
means is that while we can pass a polymorphic function as an argu-
ment, we cannot make a list of polymorphic functions. Since that
really is what we want to do here, we can achieve the desired result
by wrapping the queries in a data type, thus:

newtype GQ r = GQ (GenericQ r)

gzipWithQ f t1 t2
= gApplyQ (gmapQ (\x -> GQ (f x)) t1) t2

Now the call togmapQhas the result type[GQ r] , which is fine.
The use of the constructorGQserves as a hint to the type inference
engine to perform generalisation at this point; there is no run-time
cost to its use.

Step 2 is a little harder. A brutal approach would be to addgApplyQ
directly to the classData . As usual, the instances would be very
simple, as we illustrate for lists:

class Typeable a => Data a where
...
gApplyQ :: [GQ r] -> a -> [r]

instance Typeable a => Data [a] where
...
gApplyQ [GQ q1, GQ q2] (x:xs) = [q1 x, q2 xs]
gApplyQ [] [] = []

But we can’t goon adding new functions toData , and this one
seems very specific to queries, so we might anticipate that there
will be others yet to come.

Fortunately,gApplyQ can be defined in terms of the generic fold-
ing operationgfoldl from our original paper, as we now show. To
implementgApplyQ , we want to perform a fold on immediate sub-
terms while using anaccumulatorof type([GQ r], [r]) . Again,
for lists, the combination of such accumulation and foldingor map-
ping is a common idiom (cf.mapAccumL in moduleData.List ).
For each child weconsumean element from the list of queries (com-
ponent[GQ r] ), while producingan element of the list of results
(component[r] ). So we want a combining functionk like this:

k :: Data c => ([GQ r], [r]) -> c -> ([GQ r], [r])
k (GQ q : qs, rs) child = (qs, q child : rs)

Here c is the type of the child. The functionk simply takes the
accumulator, and a child, and produces a new accumulator. (The
results accumulate in reverse order, but we can fix that up at the
end usingreverse , or we use the normal higher-order trick for
accumulation.) We can perform this fold usinggfoldl , or rather a
trivial instance thereof —gfoldlQ :

gApplyQ :: Data a => [GQ r] -> a -> [r]
gApplyQ qs t = reverse (snd (gfoldlQ k z t))

where
k (GQ q : qs, rs) child = (qs, q child : rs)
z = (qs, [])

The folding function,gfoldlQ has this type4:
gfoldlQ :: (r -> GenericQ r) -> r -> GenericQ r

The definition ofgfoldlQ employs a type constructorR to mediate
between the highly parametric type ofgfoldl and the more specific
type ofgfoldlQ :

newtype R r x = R { unR :: r }
gfoldlQ k z t = unR (gfoldl k’ z’ t)

where
z’ _ = R z -- replacement of constructor
k’ (R r) c = R (k r c) -- fold step for child c

6.4 Generic zipped transformations
We have focused our attention on generic zippedqueries, but all the
same ideas work for generic zippedtransformations, both monadic
and non-monadic. For example, we can proceed for the latter as
follows. We introduce a type synonym,GenericT , to encapsulate
the idea of a generic transformer:

type GenericT = forall a. Data a => a -> a
Then gmapT, from our earlier paper, appears as a generic trans-
former transformer; its natural generalisation,gzipWithT , is a
curried-transformer transformer:

gmapT :: GenericT -> GenericT
gzipWithT :: GenericQ GenericT -> GenericQ GenericT

The typeGenericQ GenericT is a curried two-argument generic
transformation: it takes a data structure and returns a function that
takes a data structure and returns a data structure. We leaveits im-
plementation as an exercise for the reader, along with similar code
for gzipWithM . Programmers find these operations in the generics
library [17] that comes with GHC.

6.5 Mis-matched types or constructors
At the end of Section 6.2, we raised the question of whether
gzipWithQ could not have the less-polymorphic type:

gzipWithQ’ :: (Data a)
=> (forall b. (Data b) => b -> b -> r)
-> a -> a -> [r]

Then we could definegeq directly in terms ofgzipWithQ’ , rather
than detouring viageq’ . One difficulty is thatgzipWithQ’ is now
not polymorphicenoughfor some purposes: for example, it would
not allow us to zip together a list of booleans with a list of integers.
But beyond that, an implementation ofgzipWithQ’ is problematic.
Let us try to use the same definition as forgzipWithQ :

gzipWithQ’ f t1 t2 -- Not right yet!
= gApplyQ (gmapQ (\x -> GQ (f x)) t1) t2

The trouble is thatgApplyQ requires a list ofpolymorphicqueries
as its argument, and for good reason: there is no way to ensure
statically that each query in the list given togApplyQ is applied to an
argument that has the same type as the child from which the query
was built. Alas, ingzipWithQ’ the query(f x) is monomorphic,

4Exercise for the reader: definegmapQusinggfoldlQ . Hint: use
the same technique as you use to definemap in terms offoldl .



becausef ’s two arguments have the same type. However, we can
turn the monomorphic query(f x) into a polymorphic one, albeit
inelegantly, by using a dynamic type test: we simply replacethe
call (f x) by the following expression:

(error "gzipWithQ’ failure" ‘extQ‘ f x)
The functionextQ (described in our earlier paper, and reviewed
here in Section 7.1) over-rides a polymorphic query (that always
fails) with the monomorphic query(f x) .

Returning to the operationgzipWithQ , we can easily specialise
gzipWithQ at more specific types, just as we specialisedgeq’ to
geq . For example, here is how to specialise it to list arguments:

gzipWithQL :: (Data a1, Data a2)
=> (forall b1,b2. (Data b1, Data b2) => b1 -> b2 -> r)
-> [a1] -> [a2] -> [r]

gzipWithQL = gzipWithQ

A related question is this: what doesgzipWithQ do when the con-
structors of the two structures do not match? Most of the timethis
question does not arise. For instance, in the generic equality func-
tion of Section 6.2 we ensured that the structures had the same con-
structor before zipping them together. But thegzipWithQ imple-
mentation of Section 6.3 is perfectly willing to zip together differ-
ent constructors: it gives a pattern-match failure if the second argu-
ment has more children than the first, and ignores excess children
of the second argument. We could also definegzipWithQ such that
it gives a pattern-match failure if the two constructors differ. Either
way, it is no big deal.

7 Generic function extension
One of the strengths of theScrap your boilerplate approachto
generic programming, is that it is very easy to extend, or over-ride,
the behaviour of a generic function at particular types. To this end,
we employ nominal type-safe cast, as opposed to more structural
notions in other approaches. For example, recall the functiongshow
from Section 3:

gshow :: Data a => a -> String
Whengshow is applied to a value of typeString we would like
to over-ride its default behaviour. For example,(gshow "foo")
should return the string"\"foo\"" rather than the string
"(: ’f’ (: ’o’ (: ’o’ [])))" , which is whatgshow will give
by default, since aString is just a list of characters.

The key idea is to provide a type-safecast operation, whose real-
isation formed a key part of our earlier paper; we review it inSec-
tion 7.1. However, further experience with generic programming
reveals two distinct shortcomings, which we tackle in this section:

• The type of type-safecast is not general enough for some
situations. We show why it should be generalised, and how,
in Section 7.2.

• Type-safecast works ontypesbut not ontype constructors.
This limitation is important as we show in Section 7.3, where
we also describe how the restriction can be lifted.

We use the term generic function “extension” for the accommo-
dation of type-specific cases. We do not use the term “specialisa-
tion” to avoid any confusion with compile-time specialisation of
generic functions in other approaches. Our approach uses fixed
code and run-time type tests. As a separate matter, however,our
dynamic code can, if desired, be specialised like any other type-
class-overloaded function, to produce type-test-free residual code.

7.1 Monomorphic function extension
In our earlier paper [16], we described a functionextQ that can ex-
tend (or, over-ride) a fully-generic query with a type-specific query.
This allows us to refinegshow as follows:

gshow :: Data a => a -> String
gshow = gshow_help ‘extQ‘ showString

gshow_help :: Data a => a -> String
gshow_help t

= "("
++ showConstr (toConstr t)
++ concat (intersperse " " (gmapQ gshow t))
++ ")"

showString :: String -> String
showString s = "\"" ++ concat (map escape s) ++ "\""

where
escape ’\n’ = "\\n"
...etc...
escape other_char = [other_char]

Here, the type-specificshowString over-rides the fully-generic
gshow_help to make the combined functiongshow . Notice the
mutual recursion betweengshow and gshow_help . The function
extQ is defined in the generics library as follows:

extQ :: (Typeable a, Typeable b)
=> (a -> r) -> (b -> r) -> (a -> r)

extQ fn spec_fn arg
= case cast arg of

Just arg’ -> spec_fn arg’
Nothing -> fn arg

The function (gshow_help ‘extQ‘ showString) behaves like
the monomorphicshowString if given aString , and like the poly-
morphic functiongshow_help otherwise. To this end,extQ uses a
type-safecast operator, which is regarded as a primitive of the fol-
lowing type:

cast :: (Typeable a, Typeable b) => a -> Maybe b
If the cast froma to b succeeds, one obtains a datum of the form
Just ... , andNothing otherwise. The constraints on the argu-
ment and result type ofcast highlight thatcast is not a parametri-
cally polymorphic function. We rather require the typesa andb to
be instances of the classTypeable , a superclass ofData :5

class Typeable a where
typeOf :: a -> TypeRep

Given a typeable valuev , the expression(typeOf v) computes
the type representation (TypeRep ) of v . Like dataTypeOf , typeOf
never inspects its argument. Type representations admit equality,
which is required to coincide with nominal type equivalence. One
specific implementation of type-safecast is then to trivially guard
an unsafe coercion by type equivalence. This and other approaches
to casting are discussed at length in [16]. In what follows, we are
merely interested in generalising thetypeof cast .

7.2 Generalisingcast
The scheme that we used for extending genericqueriesis specific
to queries. It cannot be reused as is for generictransformations:

extT :: (Typeable a, Typeable b)
=> (a -> a) -> (b -> b) -> (a -> a)

extT fn spec_fn arg
= case cast arg of -- WRONG

Just arg’ -> spec_fn arg’
Nothing -> fn arg

The trouble is that the result ofspec_fn arg’ has a different type
than the callfn arg . Hence,extT must be defined in a different
style thanextQ . One option is to cast thefunctionspec_fn rather
than theargumentarg :

5We use two separate classesData andTypeable to encourage
well-bounded polymorphism. That is, the classTypeable supports
nominal type representations, just enough to do cast and dynamics.
The classData is about structure of terms and data types.



extT fn spec_fn arg
= case cast spec_fn of -- RIGHT

Just spec_fn’ -> spec_fn’ arg
Nothing -> fn arg

This time, thecast compares the type ofspec_fn with that of fn ,
and uses the former when the type matches. The only infelicity is
that we thereby compare the representations of the typesa->a and
b->b , when all wereally want to do is compare the representations
of the typesa andb. This infelicity becomes more serious when we
move tomonadictransforms:

extM :: ( ??? ) => (a -> m a) -> (b -> m b) -> (a -> m a)
extM fn spec_fn arg

= case cast spec_fn of
Just spec_fn’ -> spec_fn’ arg
Nothing -> fn arg

Now, we need to construct the representation ofa -> m a , and
hencem a must beTypeable too! So the(...???...) must be
filled in thus:

extM :: (Typeable a, Typeable b,
Typeable (m a), Typeable (m b))

=> (a -> m a) -> (b -> m b) -> (a -> m a)

Notice the Typeable constraints on(m a) and (m b) , which
should not be required. The type ofcast is too specific. The prim-
itive that wereally want isgcast — generalisedcast :

gcast :: (Typeable a, Typeable b) => c a -> Maybe (c b)

Herec is an arbitrary type constructor. By replacingcast by gcast
in extT andextM , and instantiatingc to Λa.a-> a, andΛa.a -> m a
respectively, we can achieve the desired effect.

But wait! Haskell does not support higher-order unification, so how
can we instantiatec to these type-level functions? We resort to the
standard technique, which uses anewtype to explain to the type
engine which instantiation is required. Here isextM :

extM :: (Typeable a, Typeable b)
=> (a -> m a) -> (b -> m b) -> (a -> m a)

extM fn spec_fn arg
= case gcast (M spec_fn) of

Just (M spec_fn’) -> spec_fn’ arg
Nothing -> fn arg

newtype M m a = M (a -> m a)

Here, (M spec_fn) has type(M m a) , and that fits the type of
gcast by instantiatingc to M m. We can rewriteextQ and extT
to usegcast , in exactly the same way:

extQ fn spec_fn arg
= case gcast (Q spec_fn) of

Just (Q spec_fn’) -> spec_fn’ arg
Nothing -> fn arg

newtype Q r a = Q (a -> r)

extT fn spec_fn arg
= case gcast (T spec_fn) of

Just (T spec_fn’) -> spec_fn’ arg
Nothing -> fn arg

newtype T a = T (a -> a)

As with cast before,gcast is best regarded as a built-in primitive,
but in factgcast replacescast . Our implementation ofcast , dis-
cussed at length in [16], can be adopted directly forgcast . The
only difference is thatgcast neglects the type constructorc in the
test for type equivalence [17].

This generalisation, fromcast to gcast , is not a new idea. Weirich
[22] uses the same generalisation, fromcast to cast’ in her case,
albeit using structural rather than nominal type equality.We used
a very similar pattern in our earlier paper, when we generalised
gmapQ, gmapT andgmapMto produce the functiongfoldl [16].

7.3 Polymorphic function extension
The function extQ allows us to extend a generic function at
a particularmonomorphictype, but not at apolymorphic type.
For example, as it standsgshow will print lists in prefix form
"(: 1 (: 2 : []))" . How could we print lists in distfix nota-
tion, thus"[1,2]" ?

Our raw material must be alist-specific, but still element-generic
function that prints lists in distfix notation:

gshowList :: Data b => [b] -> String
gshowList xs

= "[" ++ concat (intersperse "," (map gshow xs)) ++ "]"

Now we need to extendgshow_help with gshowList — but extQ
has the wrong type. Instead, we need a higher-kinded versionof
extQ , which we callext1Q :

ext1Q :: (Typeable a, Typeable1 t)
=> (a -> r)
-> (forall b. Data b => t b -> r)
-> (a -> r)

gshow :: Data a => a -> String
gshow = gshow_help ‘ext1Q‘ gshowList

‘extQ‘ showString

Here,ext1Q is quantified over a typeconstructort of kind *->* ,
and hence we need a new type classTypeable1 : Haskell sadly
lacks kind polymorphism! (This would require a non-triviallan-
guage extension.) We discussTypeable1 in Section 7.4.

To defineext1Q we can follow exactly the same pattern as forextQ ,
above, but using a differentcast operator:

ext1Q fn spec_fn arg
= case dataCast1 (Q spec_fn) of

Just (Q spec_fn’) -> spec_fn’ arg
Nothing -> fn arg

newtype Q r a = Q (a -> r)

Here, we need (another) newcast operator,dataCast1 . Its type is
practically forced by the definition ofext1Q :

dataCast1 :: (Typeable1 s, Data a)
=> (forall b. Data b => c (s b))
-> Maybe (c a)

It is absolutely necessary to have theData constraint in the argu-
ment todataCast1 . For example, this will not work at all:

bogusDataCast1 :: (Typeable1 s, Typeable a)
=> (forall b. c (s b))
-> Maybe (c a)

It will not work because the argument is required to be completely
polymorphic inb, and our desired arguments, such asshowList are
not; they need theData constraint. That is why the “Data ” appears
in the namedataCast1 .

How, then are we to implementdataCast1 ? We split the imple-
mentation into two parts. The first part performs the type test (Sec-
tion 7.4), while the second instantiates the argument todataCast1
(Section 7.5).

7.4 Generalisingcast again
First, the type test. We need a primitivecast operator,gcast1 , that
matches thetype constructorof the argument, rather than thetype.
Here is its type along with that ofgcast for comparison:

gcast1 :: (Typeable1 s, Typeable1 t) -- New
=> c (s a) -> Maybe (c (t a))

gcast :: (Typeable a, Typeable b) -- For comparison
=> c a -> Maybe (c b)

The role ofc is unchanged. The difference is thatgcast1 com-
pares the type constructorss and t , instead of the typesa and



b. As with our previous generalisation, fromcast to gcast , the
Typeable constraints concern only the differences between the two
types whose common shape is(c ( • a)) . The implementation of
gcast1 follows the same trivial scheme as before [16, 17].

The new classTypeable1 is parameterised over type constructors,
and allows us to extract a representation of the type constructor:

class Typeable1 s where
typeOf1 :: s a -> TypeRep

instance Typeable1 [] where
typeOf1 _ = mkTyConApp (mkTyCon "Prelude.List") []

instance Typeable1 Maybe where
typeOf1 _ = mkTyConApp (mkTyCon "Prelude.Maybe") []

The operationmkTyCon constructs type-constructor representations.
The operationmkTyConApp turns the latter into potentially in-
complete type representations subject to further type applications.
There is a singleTypeable instance for all types with an outermost
type constructors of kind*->* :

instance (Typeable1 s, Typeable a)
=> Typeable (s a) where

typeOf x = typeOf1 x ‘mkAppTy‘ typeOf (undefined :: a)

(Notice the use of a scoped type variable here. Also, genericin-
stances are not Haskell 98 compliant. One could instead use one
instance per type constructor of kind*->* .) The functionmkAppTy
applies a type-constructor representation to an argument-type rep-
resentation. In the absence of kind polymorphism, we sadly need
a distinctTypeable class for each kind of type constructor. For
example, for binary type constructors we have:

class Typeable2 s where
typeOf2 :: s a b -> TypeRep

instance (Typeable2 s, Typeable a)
=> Typeable1 (s a) where

typeOf1 x = typeOf2 x ‘mkAppTy‘ typeOf (undefined :: a)

One might worry about the proliferation ofTypeable classes, but
in practice this is not a problem. First, we are primarily interested
in type constructors whose arguments are themselves of kind* , be-
cause theData class only makes sense fortypes. Second, the arity
of type constructors is seldom large.

7.5 ImplementingdataCast1
Our goal is to implementdataCast1 usinggcast1 :

dataCast1 :: (Typeable1 s, Data a)
=> (forall b. Data b => c (s b))
-> Maybe (c a)

gcast1 :: (Typeable1 s, Typeable1 t)
=> c (s a) -> Maybe (c (t a))

There appear to be two difficulties. First,dataCast1 must work
over any type (c a) , whereasgcast1 is restricted to types of
form (c (t a)) . Second,dataCast1 is given a polymorphic ar-
gument which it must instantiate by applying it to a dictionary for
Data a . Both these difficulties can, indeed must, be met by making
dataCast1 into a member of theData class itself:

class Typeable a => Data a where
...
dataCast1 :: Typeable1 s

=> (forall a. Data a => c (s b))
-> Maybe (c a)

Now in each instance declaration we have available precisely
the necessaryData dictionary to instantiate the argument. All
dataCast1 has to do is to instantiatef , and pass the instantiated
version on togcast1 to perform the type test, yielding the follow-
ing, mysteriously simple implementation:

instance Data a => Data [a] where
...
dataCast1 f = gcast1 f

The instances ofdataCast1 for type constructors of kind other than
*->* returnsNothing , because the type is not of the required form.

instance Data Int where
...
dataCast1 f = Nothing

Just as we need a family ofTypeable classes, so we need a family
of dataCast operators with an annoying but unavoidable limit.

7.6 Generic function extension — summary
Although this section has been long and rather abstract, thecon-
crete results are simple to use. We have been able to generalise
extQ , extT , extM (and any other variants you care to think of) so
that they handlepolymorphicas well as monomorphic cases. The
new operators are easy to use — see the definition ofgshow in Sec-
tion 7.3 — and are built on an interesting and independently-useful
generalisation of theTypeable class. All the instances forData and
Typeable are generated automatically by the compiler, and need
never be seen by the user.

8 Related work
The position of theScrap your boilerplateapproach within the
generic programming field was described in the original paper.
Hence, we will focus on related work regarding the new contribu-
tions of the present paper: type reflection (Section 5), zipping com-
binators (Section 6), and generic function extension (Section 7).

Our type reflection is a form of introspection, i.e., the structure of
types can be observed, including names of constructors, fields, and
types. In addition, terms can be constructed. This is similar to the
reflection API of a language like Java, where attributes and method
signatures can be observed, and objects can be constructed from
class names. The sum-of-products approach to generic program-
ming abstracts from everything except type structure. In the pure
sum-of-products setup, one cannot define generic read and show
functions. There are non-trivial refinements, which enrichinduc-
tion on type structure with cases for constructor applications and
labelled components [7, 4, 8]. In our approach, reflective infor-
mation travels silently with theData dictionaries that go with any
data value. This is consistent with the aspiration of our approach
to define generic functions without reference to a universalrepre-
sentation, and without compile-time specialisation. Altenkirch and
McBride’s generic programming with dependent types [1] suggests
that reflective data can also be represented as types, which is more
typeful than our approach.

Zipping is a well-known generic operation [12, 4, 13]. Our de-
velopment shows that zippers can be defined generically as cur-
ried folds, while taking advantage of higher-order genericfunc-
tions. Defining zippers by pattern matching on two parameters in-
stead, would require a non-trivial language extension. In the sum-
of-product approach, zippers perform polymorphic patternmatch-
ing on the two incoming data structures simultaneously. To this
end, the generic function is driven by the type structure of ashared
type constructor, which implies dependently polymorphic argument
types [12, 4]. Altenkirch and McBride’s generic programming with
dependent types [1] indicates that argument type dependencies as
in zipping can be captured accordingly with dependent typesif
this is intended. Their approach also employs a highly paramet-
ric fold operator that is readily general for multi-parameter traver-
sal. The pattern calculus (formerly called constructor calculus) by
Barry Jay [13], defines zipping-like operations by simultaneous pat-
tern matching on two arbitraryconstructor applications. Like in our



zippers, the argument types are independently polymorphic.

Customisation of generic functions for specific types is an obvious
desideratum. In Generic Haskell, generic function definitions can
involve some sort of ad-hoc or default cases [7, 5, 4, 19]. Ourap-
proach narrows down generic function extension to the very simple
construct of a nominal type cast [16]. However, our originalpaper
facilitated generic function extension with only monomorphic cases
as a heritage of our focus on term traversal. The new development
of Section 7 generalised from monomorphic to polymorphic cases
in generic function extension. This generality of generic function
extension is also accommodated by Generic Haskell, but rather at
a static level relying on a dedicated top-level declarationform for
generic functions. By contrast, our generic function extension fa-
cilitateshigher-ordergeneric functions.

In a very recent paper [8], Hinze captures essential idioms of
Generic Haskell in a Haskell 98-based model, which requiresab-
solutely no extensions. Nevertheless, the approach is quite gen-
eral. For instance, it allows one to define generic functionsthat are
indexed by type constructors. This work shares our aspiration of
lightweightness as opposed to the substantial language extension of
Generic Haskell [7, 5, 4, 19]. Hinze’s lightweight approachdoes
not support some aspects of our system. Notably, Hinze’s generic
functions are not higher-order; and generic functions operate on a
representation type. Furthermore, the approach exhibits alimita-
tion related to generic function extension: theclass for generics
would need to be adapted for each new type or type constructorthat
requires a specific case.

9 Conclusion
We have completed theScrap your boilerplateapproach to generic
programming in Haskell, which combines the following attributes:

Lightweight: the approach requires two independently-useful lan-
guage extensions to Haskell 98 (higher-rank types and type-
safe cast), after which everything can be implemented as a
library. A third extension, extending thederiving clause to
handleData andTypeable is more specific to our approach,
but this code-generation feature is very non-invasive.

General: the approach handles regular data types, nested data
types, mutually-recursive data types, type constructor param-
eterised in additional types; and it handles single and multi-
parameter term traversal, as well as term building.

Versatile: the approach supports higher-order generic program-
ming, reusable definitions of traversal strategies, and over-
riding of generic functions at specified types. There is no
closed world assumption regarding user-defined data types.

Direct: generic functions are directly defined on Haskell data
types without detouring to a uniform representation type such
as sums-of-products. Also, Haskell’s nominal type equiva-
lence is faithfully supported, as opposed to more structurally-
defined generic functions.

Well integrated and supported: everything we describe is imple-
mented in GHC and supported by a Haskell generics library.
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