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Abstract

Writing boilerplate code is a royal pain. Generic programni
promises to alleviate this pain by allowing the programmestite
a generic “recipe” for boilerplate code, and use that reripaany
places. In earlier work we introduced the “Scrap your bpike”
approach to generic programming, which exploits Haskelist-
ing type-class mechanism to support generic transformstiond
queries.

This paper completes the picture. We add a few extra “ingosp
tive” or “reflective” facilities, that together support achi variety
of serialisation and de-serialisation. We also show howetdgom
generic “zips”, which at first appear to be somewhat trickypim
framework. Lastly, we generalise the ability to over-ridgeseric
function with a type-specific one.

All of this can be supported in Haskell with independentbeful
extensions: higher-rank types and type-safe cast. The Ghiei
mentation of Haskell readily derives the required type sgasfor
user-defined data types.
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1 Introduction

It is common to find that large slabs of a program consist ofl“bo
erplate” code, which conceals by its bulk a smaller amouritref
teresting” code. So-callegeneric programmindechniques allow
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programmers to automate this “boilerplate”, allowing effm be
focused on the interesting parts of the program.

In our earlier paper, Scrap your boilerplate[16], we described
a new technique for generic programming, building on theetyp
class facilities in Haskell, together with two fairly modesten-
sions (Section 2). Our approach has several attractiveeptiop:

it allows the programmer to over-ride the generic algoritnex-
actly the desired places; it supports arbitrary, mutuedlgdrsive
data types; it is an “open-world” approach, in which it is\e&s
add new data types; it works without inefficient conversiosdme
intermediate universal data type; and it does not requirepie-
time specialisation of boilerplate code.

The main application in our earlier paper was traversalsjamties
over rich data structures, such as syntax trees or termeefhrasent
XML documents. However, that paper did not show how to imple-
ment some of the best-known applications of generic progriaug,
such as printing and serialisation, reading and de-sgai#in, and
generic equality. These functions all require a certain gbtype
introspection or reflection

In this paper we extend our earlier work, making the follagvirew
contributions:

e We show how to support a general form of type reflection,
which allows us to define generic “show” and “read” functions
as well as similar functions (Sections 3 and 4).

e These classical generic functions rely on a new reflectioh AP
supported on a per-data-type basis (Section 5). Once defined
this API allows other generic reflective functions to be de-
fined, such as test-data generators (Section 5.4).

e Functions like generic equality require us to “zip together
two data structures, rather than simply to traverse one. We
describe how zipping can be accommodated in the existing
framework (Section 6).

e A strength of theScrap your boilerplateapproach is that it

it easy to extend a generic function to behave differently on

particular, specified types. So far it has not been clear loow t

extend a generic function for particular typenstructors In

Section 7 we explain why this ability is very useful, and show

how to generalise our existing type-saést operator so that

we can indeed express such generic function extension.
Everything we describe has been implemented in GHC, and many
examples are available online at the boilerplate web sitg [No
new extensions to Haskell 98 are required, beyond the tveaayr
described inScrap your boilerplatenamely (a) rank-2 types, and
(b) type-safe cast. The latter is generalised, howeverai& 7.2.



2 Background

To set the scene for this paper, we begin with a brief ovengéw
the Scrap your boilerplat@pproach to generic programming. Sup-
pose that we want to write a function that computes the siznof
arbitrary data structure. The basic algorithm is “for eacHen add
the sizes of the children, and add 1 for the node itself”. Hethe
entire code fogsize :

gsize :: Data a => a -> Int

gsize t = 1 + sum (gmapQ gsize t)
The type forgsize says that it works over any tyge provideda
is adatatype — that is, that it is an instance of the cldxsa !
The definition ofgsize refers to the operatiogmapQ which is a
method of theéData class:

class Typeable a => Data a where

...other methods of class Data...

gmapQ :: (forall b. Data b => b -> 1) -> a -> [1]
(The classTypeable serves for nominal type cast as needed for
the accommodation of type-specific cases in generic funstid/e
will discuss this class in Section 7, but it can be ignorednio.)
The idea is thafgmapQ f t) applies the polymorphic functioh
to each of the immediate children of the data structur&ach of
these applications yields a result of typeandgmapQreturns a list
of all these results. Here are the concrete definitiongnapQ at
typesMaybe, list, andint respectively:

instance Data a => Data (Maybe a) where
gmapQ f Nothing = ]
gmapQ f (Just v) = [f V]

instance Data a => Data [a] where

gmapQ f ]
gmapQ f (xxs) = [f x, f xs]

instance Data Int where
gmapQ fi =1 -- An Int has no children!

Notice thatgmapQappliesf only to theimmediatechildren of its
argument. In the second instance declaration aldoiseapplied to

x andxs, resulting in a list of exactly two elements, regardless of
how long the tailks is. Notice too that, in this same declaratién,

is applied to arguments of different typesHas a different type to
xs), and that is why the argument gmapQmust be golymorphic
function. SogmapQmust have a higher-rank type — that is, one with
aforall  tothe left of a function arrow — an independently-useful
extension to Haskell [20].

It should now be clear hogsize works for termt whose type is
an instance of the clagiata. The call(gmapQ gsize t) applies
gsize to each oft’'s immediate children, yielding a list of sizes.
The standard functiosum :: [Int] -> Int sums this list, and
then we add 1.

The clasdata plays a central role in this paper. Our earlier paper
placed three generic mapping operations in clzaa : the opera-
tion gmapQfor generic queries, as illustrated above, and the opera-
tions gmapT for transformations, angmapMfor monadic transfor-
mations. In fact, all such forms of mapping can be derivednfro
a single operatogfoldl  for generic folding, as we also described
in the earlier paper. The instanceslifta are easy to define, as
we saw for the operatiogmapQabove. The definition affoldl is
equally simple. In fact, the instances a@easy and regular that a
compiler can do the job, and GHC indeed does so, when insttuct
by a so-called deriving " clause. For example

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving( Eq, Typeable, Data )

INote: in our earlier paper [16] the class now call&dta ” was
called “Term”.

The “deriving( Eq ) " part is standard Haskell 98, and in-
structs the compiler to generate an instance declaration fo
instance Eq a => Eq (Tree a) . GHC extends this by support-
ing deriving  for the classe3ypeable andData as well.

While the operatiorgfoldl  is sufficient for transformations and
queries, it is not enough for other applications of generagpam-
ming, as we shall shortly see. Much of the rest of the papsrdiit
theData class with a few further, carefully-chosen operations.

3 Generic “show” and friends

We will now consider generic functions that take any dataieal
whatsoever, and render it in some way. For instance, a gesteoiv
operation is a generic function that renders terms as tedthance
it is of the following type:

gshow :: Data a => a -> String
That is,gshow is supposed to take any data value (i.e. any instance
of classData ), and to display it as a string. The generic function
gshow has many variants. For example, we might want to perform
binary serialisation witldata2bits , where we turn a datum into
a string ofZero s andOnes (Sections 3.2 and 3.3). We might also
want to translate a datum into a rose tree viddta2tree , where
the nodes store constructor names (Section 3.4).

data2hits .. Data a => a -> [Bif]

data2tree :: Data a => a -> Tree String
A generalisation oflata2tree  can perform type erasure for XML.

3.1 Datato text

We can almost dgshow already, because it is very lilgsize 2:
gshow t = "("
++ concat (intersperse "
++ )"
Of course, this function only outputs parentheses!
gshow [True,False] = "(() (0 O)"
We need to provide a way to get the name of the constructor used
to build a data value. It is natural to make this into a new afyen
of the clasPata :

class Typeable a => Data a where

" (gmapQ gshow t)

toConstr :: a -> Constr
Rather than delivering the constructor name as a stri@gnstr
returns a value of an abstract data tyqmmstr , which offers the
functionshowConstr (among others — Section 5):
showConstr :: Constr -> String
Given this extra function we can write a working versiorgstiow:
gshow :: Data a => a -> String
gshow t
"(* ++ showConstr (toConstr t)
++ concat (intersperse "
++ )"
We have made use of an intermediate data etr so that, as
well as supportinghowConstr , we can also offer straightforward
extensions such as fixity:
constrFixity :: Constr -> Fixity
The typeFixity encodes the fixity and precedence of the construc-
tor, and we can use that to write a more sophisticated version
gshow that displays constructors in infix position, with minimum
parenthesisation.

" (gmapQ gshow t))

2The standard functiorzoncat :: [[a]] -> [a] concate-
nates the elements of a list of lists, whihgersperse :: a ->
[ -> [a] inserts its first argument between each pair of ele-
ments in its second argument.



Built-in data types, such a& , are also instances of thata class, return a list of functions of typgState -> (State,[Bit])]

so (toConstr (3:Int)) is a value of typeConstr . Applying ) ,
showConstr  to this value yields the string representation of the in- ~ data2bits - Data a => a -> [Bif
teger value. data2hits t = snd (show_bin t initState)

; fali ; show_bin :: Data a => a -> State -> (State, [Bit
3.2 Blnary serialisation show:bin t st = (st2, con_bits ++ args(_bits) B
Our next application is binary serialisation, in which wenv#o where
encode a data value as a bit-string of minimum length: (stl, con_bits) = encodeCon (dataTypeOf t)

(toConstr t) st

data Bit = Zero | One (st2, args_hits) = foldr do_arg (st1,[])

data2bits :: Data a => a -> [Bif]

enc_args
Rather than outputting the constructor name as a wastefogst -1
the obvious thing to do is to output a binary representatibitso enc_args :: [State -> (State,[Bit])]
constructor indexso we need another function ov@snstr : enc_args = gmapQ show_bin t
constrindex :: Constr -> Conlindex do_arg fn (stbits) = (st, bits’ ++ bits)
type Conindex = Int -- Starts at 1; 0 for undefined where
But how many bits should be output, to distinguish the carmstr (st bits) = f st

tor from other constructors of the same data type? To angvier t
question requires information about the entire data type hence dren of the constructor, returning a list of state transtmsnThese
a new functiongdataTypeOf are composed together by tfoddr do_arg . Of course, the ap-
class Typeable a => Data a where pending of bit-strings is not efficient, but that is easilpiaed by
using any O(1)-append representation of bit-strings (spd9]).

A more elegant approach would instead present the encoder in
monadic way:

data EncM a -~ The encoder monad

instance Monad EncM where ...

runEnc @ EncM () -> [Bif]

emitCon :: DataType -> Constr -> EncM ()
The monadEncM carries (a) the sequence of bits produced so far
and (b) any accumulating state required by the encodinghtéch

Notice that the call tgmapQpartially applieshow_bin to the chil-

toConstr = a -> Constr

dataTypeOf :: a -> DataType
We note thatdataTypeOf never ever examines its argument; it
only uses its argument as a proxy to look-up information &alisu
data type® The abstract data typ@ataType offers the operation
maxConstrindex  (among others):

maxConstrindex :: DataType -> Conindex

Using these functions, we are in a position to wdaéa2bits

data2bits :: Data a => a -> [Bif] ogy, such astate above. The functioemitCon adds a suitable
data2bits t = encodeCon (dataTypeOf t) (toConstr t) encoding of the constructor to the accumulating output \gutkhtes
++ concat (gmapQ data2bits 1) the state. The functiominEnc runs its argument computation start-
-- The encoder for constructors ing with a suitable initial state, and returns the accunadaiutput
encodeCon :: DataType -> Constr -> [Bit] at the end. All the plumbing is now abstracted, leaving aemath
encodeCon ty con = r:1atToBin (max-1) (idx-1) compact definition:
wnere

data2bits :; Data a => a -> [Bif]

max = maxConstrindex t . .
y data2bits t = runEnc (emit t)

idx = constrindex con

Here we have assumed a simple encoder for natural numbers emit :: Data a => a -> EncM ()

natToBin :: Int -> Int -> [Bif] where (natToBin m x) emit t = do { emitCon (dataTypeOf t) (toConstr t)
returns a binary representationyofn the narrowest field that can ; sequence_ (gmapQ emit t) }
representn )
o Here, the standard monad function
3.3 Fancy serialisation sequence_ :: Monad m => [m a] -> m ()
One could easily imagine more sophisticated serialisersifda is used to compose the list computations produceghiapQ emit.

values. For example, one might want to use adaptive ariibmet
coding to reduce the number of bits required for common coost 3.4 Type erasure
tors [23, 18]. To do this requires the serialiser to carrynglthe
encoder stateand to update this state whenever emitting a new
constructor. So the fancy encoder will have this signatwt@ch
simply adds a state &ncodeCon s signature:

data State  -- Abstract
initState :: State

The rendering operations so far are all forms of seriabsatiVe
can also render terms &rees where we preserve the overall shape
of the terms, but erase the heterogeneous types. For iestaec
can easily turn a datum into a rose tree of the following kind:

data Tree a = Tree a [Tree a]

encodeCon :: DataType -> Constr The rendering operation is easily defined as follows:
-> State -> (State, [Bit]) data2tree :: Data a => a -> Tree String
Now we just need to modify the plumbing #ata2bits . At first data2tree x = Tree (showConstr (toConstr X))
blush, doing so looks tricky, becaugmapQknows nothing about (gmapQ data2tree x)
passing a state, but we can use a standard trick by makiapQ Rendering data values as rose trees is the essence of tgpessiar

XML. Dually, producing data values from rose trees is theeaes
30ne could instead use a ‘phantom type’ for proxies, to make of type validation for XML. Generic functions for XML type ar

explicit thatdataTypeOf does not care about values of tygpd.e.: sure and type validation would necessarily reflect varieabnical-
data Proxy a = Proxy ities of an XML binding for Haskell [21, 2]. So we omit the tedis
dataTypeOf :: Proxy a —> DataType XML-line of scenarios here.




4 Generic “read” and friends The functionrunDec runs the decoder on a particular input, discard-
ing the final state and unconsumed input, and returning thdtre
In case the monadic presentation seems rather abstractjefly b
sketch one possible implementation of D&M monad. A parser
of typeDecM ais represented by a function that takes a string and
returns a depleted string together with the parsed valuespped in
aMaybe to express the possibility of a parse error:

newtype DecM a = D (String -> Maybe (String, a))
The typeDecM can be made an instance ldbnad in the standard
way (see [10], for example). It remains to define the parser fo
constructors. We employ a new functiafataTypeConstrs , that
returns a list of all the constructors of a data type. We trgntich
each constructor with the beginning of the input, where wmig
the issue of constructors with overlapping prefixes:

Our rendering functions are all genedonsumersthey consume

a data structure and produce a fixed ty®riflg or [Bit] ).
(Generic traversals that query a term, are also consum@iise)
inverse task, of parsing or de-serialisation, requireggeproduc-
ers that consume a fixed type and produce a data structure alt is f
from obvious how to achieve this goal.

The nub of the problem is this. We are sure to need a new mem-
ber of theData class,fromConstr , that is a kind of inverse of
toConstr . But what is its type? The obvious thing to try is to
reverse the argument and resultafonstr

class Typeable a => Data a where

toConstr  :: a -> Constr

fromConstr :: Constr -> a -~ NB: not yet correct! parseConstr :: DataType -> DecM Constr
. . . parseConstr ty = D (\s -> match s (dataTypeConstrs ty))
But simply knowing theconstructoralone does not give enough where
information to build a value: we need to know what the chitdoé match :: String -> [Constr] -> Maybe (String, Constr)
the constructor are, too. But we can’t pass the childrengsaents match _ [] = Nothing
to fromConstr , because then the type fodmConstr  would vary, match input (con:cons)
just as constructor types vary. | take (length s) input == s
L = Just (d length s) input,
We note that the typeConstr -> a could be usedas is if | otherwigz (drop-(fength s) input, con)
fromConstr  returned a term constructor filled by bottomsL (). = match input cons
A subsequent application gfapT could still fill in the sub-terms where
properly. However, this is something of a hack. Firstly, bue- s = showConstr con

toms imply dependence on laziness. Secondly, the appradsh f

completely for strict data types. So we seek another salutio The same code fagread , with a different implementation diecM

and a different type forunDec , would serve equally well to read
The solution we adopt is to pass a generic functioficrmConstr the binary structures produced tata2bits

that generates the children. To this end, we employ a monad to .

provide input for generation of children: 4.2 Definingf r omConst r M

fromConstrM :: (Monad m, Data a) The functionfromConstrM  can be easily defined as a new mem-
=> (forall b. Data b => m b) ber of theData class, with the type given above. Its instances are
-> Constr -> m a extremely simple; for example:
We will first demonstratéromConstrM , and then define it. instance Data a => Data [a] where
fromConstrM f con
4.1 Textto data = case constrindex con of
. . . 1 -> return []
Here is the code for a generic read, where we ignore the need to 2 >do{ax<f as<f retun (a:as) }
consume spaces and mgtch parentheses: However, just asgmapQ gmapT and gmapM are all instances
gread = Data a => String -> Maybe a of the highly parametricgfoldl  operation, so we can define
gread input = runDec input readM fromConstrM ~ as an instance of the dualgfbldl — a highly para-
readM * Data a => DecM a metric operation for unfolding. This operatiogynfold needs to
readM = be added to thBata class:
do { constr <- parseConstr ??? -- to be completed class Typeable a => Data a where

; fromConstrM readM constr }
gunfold :: (forall b r. Data b

The two lines offeadM carry out the following steps: =>cb->r->cr
1. Parse &onstr from the front of the input. This time we > (forall r. 1 > c 1)
employ a parser monaBecM with the following signature: i 50:5"
data DecM a  -- The decoder monad
instance Monad DecM where ... The two polymorphically typed arguments serve for buildium-
runDec : String -> DecM a -> a empty vs. empty constructor applications. In this mangerold
parseConstr :: DataType -> DecM Constr really dualisegjfoldl , which takes two similar arguments for the

The monad carries (a) the as-yet-unconsumed input, and (b)traversal of constructor applications. The operatigmgold and
any state needed by the decoding technology. The function 9foldl also share the use of a type constructor paranusitetheir
parseConstr  parses a constructor from the front of the input, esult types, which is key to their highly parametric qualit
updates the state, and returns the parsed constructoedsne The instances ofgunfold are even simpler than those for

the DataType argument so that it knows how many bits to  fromConstrM , as we shall see in Section 5.1. The operation
parse, or what the valid constructor names are. (This argume fromConstrM  is easily derived as follows:

still needs to be filled in for “???” above.) fromConstrM f = gunfold k z
2. UsefromConstrM to call readM successively to parse each where
child of the constructor, and construct the results intolaeva kc=do{c<¢c b<-fretun (c b)}

built with the constructor identified in step 1. z = return



Here, the argumentin (gunfold k z)  turns the empty construc-
tor application into a monadic computation, whKeunfolds one
child, and combines it with the rest.

4.3 Getting hold of the data type

In the generic parser we have thus-far shown, we left opequbs-
tion of how to get theDataType corresponding to the result type,
to pass tgparseConstr , the “???” in readM. The difficulty is that

class Typeable a => Data a where

d“ataTypeOf :a -> DataType

toConstr @1 a -> Constr

gunfold o (forall br. Data b =>c (b > 1) ->c 1)
> (forall . r > cr)
-> Constr
>ca

dataTypeOf needs an argument of the result type, but we have not Every instance oflataTypeOf is expected to be non-strict — i.e.

yet built the result value.

This problem is easily solved, by a technique that we fretiyen
encounter in type-class-based generic programming. Hetiei
code forreadM without “???":

readM :: Data a => DecM a
readM = read_help
where
read_help
=do { let ty = dataTypeOf (unDec read_help)
; constr <- parseConstr ty
; fromConstrM readM constr }

unDec :: DecM a -> a
unDec = undefined

Here, unDec’s type signature maps the tyf®ecM ato a as de-
sired. Notice the recursion here, wheead_help is used in its
own right-hand side. But recall thdataTypeOf is not interested
in thevalueof its argument, but only in its/pe the lazy argument
(unDec read_help)  simply explains to the compiler whatata
dictionary to pass tdataTypeOf .

Rather than using an auxiliampDec function, there is a more direct
way to express the type aftaTypeOf 's argument. That is, we
can use lexically-scoped type variables, which is an inddeetly
useful Haskell extension. We rewriteadM as follows:

readM :: Data a => DecM a
readM = read_help
where
read_help :: DecM a
= do { let ty = dataTypeOf (undefined::a)
; constr <- parseConstr ty
; fromConstrM readM constr }

The definition

read_help :: DecM a = ...
states thatread_help  should have the (monomorphic) type
DecM @ for some type, and furthermore brings the type variable
a into scope, with the same scoperead_help itself. The argu-
ment todataTypeOf , namely(undefined::a) , Is constrained to
have the same typ® because the type varialdeis in scope. A
scoped type variable is only introduced by a type signatireety
attached to a pattern (e.gead_help :: DecM a ). In contrast, a
separate type signature, such as

read_help :: Data a => DecM a
is short for

read_help :: forall a. Data a => DecM a
and does not introduce any scoping of type variables. Homveve
we stress that, although convenient, lexically-scoped tygriables
are not required to support ti&erap your boilerplat@pproach to
generic programming, as we illustrated with the initial di¢tion of
read_help

5 Type reflection — the full story

The previous two sections have introduced, in a piecemshlda,
three new operations in thgata class. In this section we sum-
marise these extensions. The three new operations are these

does not evaluate its argument. By contragfonstr must be
strict — at least for multi-constructor types — since it givaeresult
that depends on the constructor with which the argumentiis bu

The functiondataTypeOf offers a facility commonly known as “re-
flection”. Given a type — or rather a lazy value that serves as
a proxy for a type — it returns a data structuBataType ) that
describes the structure of the type. The data typmaType and
Constr are abstract:

data DataType -- Abstract, instance of Eq

data Constr - Abstract, instance of Eq
The following sections give the observers and constructors
DataType andConstr .

5.1 Algebraic data types

We will first consider algebraic data types, although the iRle-
fined such that it readily covers primitive types as well, &swill
explain in the next section. These are the observerBdaype :

dataTypeName :: DataType -> String
dataTypeConstrs :: DataType -> [Constr]
maxConstrindex :: DataType -> ConlIndex
indexConstr :: DataType -> Conindex -> Constr
type Conindex = Int - Starts at 1

These functions should be suggestive, just by their namds an
types. For examplandexConstr  takes a constructor index and
aDataType , and returns the correspondifgnstr . These are the
observers foConstr :

constrType = Constr -> DataType
showConstr  :: Constr -> String
constrindex :: Constr -> Conlndex
constrFixity :: Constr -> Fixity
constrFields :: Constr -> [String]

data Fixity = -- Details omitted

(The name ofhowConstr is chosen for its allusion to Haskell’s
well-knownshow function.) We have already mentioned all of these
observers in earlier sections, excemtstrType  which returns the
constructor'sDataType , andconstrFields ~ which returns the list
of the constructor’s field labels (¢} if it has none). Values of
typesDataType andConstr are constructed as follows:

mkDataType :: String -> [Constr] -> DataType
mkConstr  :: DataType -> String -> [String]
-> Fixity -> Constr
The functionreadConstr  parses a given string into a constructor;
it returnsNothing  if the string does not refer to a valid constructor:

readConstr :: DataType -> String -> Maybe Constr

When the programmer defines a new data type, and wants to use it
in generic programs, it must be made an instancBatd . GHC

will derive these instance if deriving  clause is used, but there

is no magic here — the instances are easy to define manually if
desired. For example, here is the instanceVfaybe:

instance Data a => Data (Maybe a) where
... - gfoldl as before
dataTypeOf _ = maybeType
toConstr (Just _) = justCon
toConstr Nothing = nothingCon



gunfold k z con =
case constrindex con of
1 -> z Nothing -- no children
2 -> k (z Just) -- one child, hence one k

justCon, nothingCon :: Constr

nothingCon = mkConstr maybeType "Nothing" [] NoFixity
justCon = mkConstr maybeType "Just" I NoFixity
maybeType :: DataType

maybeType = mkDataType “Prelude.Maybe"

[nothingCon, justCon]

Notice that the constructors mention the data type and \dcsay so
that starting from either one can get to the other. Furthesnthis
mutual recursion allowskDataType to perform the assignment of
constructor indices: the fact thibthing has index 1 is specified
by its position in the list passed takDataType .

5.2 Primitive types

Some of Haskell's built-in types need special treatment. njla
built-in types are explicitly specified by the language toabge-

braic data types, and these cause no problem. For example, th

boolean type is specified like this:
data Bool = False | True

There are a few types, howevewimitive types that cannot be
described in this wayint , Integer , Float , Double , andChar .
(GHC happens tamplementsome of these as algebraic data types,
some with unboxed components, but that should not be revéale
the programmer.) Furthermore, GHC adds several otherh, a&sic
Word8, Word16, and so on.

How should the “reflection” functionsjataTypeOf , toConstr
and so on, behave on primitive types? One possibility woed b
to supportdataTypeOf for primitive types, but notoConstr and
fromConstr
would need to define special cases for all primitive types.il&/h
there are only a fixed number of such types, it would still lbe-ti
some, so we offer a little additional support.

We elaborateConstr so that it can represent a value of primitive
types. ThentoConstr constructs such specific representations.
While Constr is opaque, we provide an obsereenstrRep to get
access to constructor representations:

constrRep :: Constr -> ConstrRep
data ConstrRep

= AlgConstr ConIndex -- Algebraic data type
| IntConstr Integer -- Primitive type (ints)
| FloatConstr Double -- Primitive type (floats)

| StringConstr String -- Primitive type (strings)

The constructors from an algebraic data type havélg@onstr
representation, whos@onindex distinguishes the constructors of
the type. AConstr resulting from arint or Integer  value will
have anintConstr  representation, e.g.:

constrRep (toConstr (1:Int)) IntConstr 1

The samdntConstr  representation is used for GHC’s data types
Word8, Int8 , Word16, Intl6 , and others. Thé&loatConstr  rep-
resentation is used féioat andDouble , while StringConstr is
used for anything else that does not fit one of these moreesftici
representations. We note thGlar s are represented &geger s,
andString s are represented as listslateger s.

There is a parallel refinement D&taType :

dataTypeRep :: DataType -> DataRep
data DataRep
= AlgRep [Constr]
| IntRep
| FloatRep
| StringRep

-- Algebraic data type
-- Primitive type (ints)
-- Primitive type (floats)
-- Primitive type (strings)

. That has the disadvantage that every generic function

There are dedicated constructors as well:

mkintType i String -> DataType
mkFloatType ;. String -> DataType
mkStringType @ String -> DataType
mkintConstr .. DataType -> Integer -> Constr
mkFloatConstr :: DataType -> Double -> Constr
mkStringConstr :: DataType -> String -> Constr
The observersonstrType , showConstr andreadConstr  all work

for primitive-type Constr s. All that said, theData instance for a
primitive type, such aBit , looks like this:

instance Data Int where
giold k zc=1zc
gunfold k z ¢ = case constrRep ¢ of
IntConstr x -> z (fromIntegral x)
_ -> error "gunfold"
toConstr x = mkintConstr intType (fromintegral x)

intType = mkintType "Prelude.Int"

5.3 Non-representable data types

Lastly, itis convenient to givBata instances even for types that are
not strictlydatatypes, such as function types or monadictypes.
Otherwisederiving ( Data ) would fail for a data type that had
even one constructor with a functional argument type, saites
would instead have to write thRata instance by hand. Instead,
we make all such types into vacuous instanceBaté . Traversal
will safely cease for values of such types. However, valdésase
types can not be read and shown.

For example, the instance f6r) is defined as follows:
instance (Data a, Data b) => Data (a -> b) where

gloldl k zc =zc

gunfold _ _ _ = error "gunfold"

toConstr _ = error "toConstr"

dataTypeOf _ = mkNoRepType "Prelude.(->)"

Here we assume a trivial constructor for non-representgples:
mkNoRepType :: String -> DataType
To this end, the data tydgataRep provides a dedicated alternative:
data DataRep = ... -- As before
| NoRep  -- Non-representable types
Some of GHC's extended repertoire of types, notadty, fall into
this group of non-representable types.

5.4 Application: test-data generation

As a further illustration of the usefulness détaTypeOf , we
present a simple generic function that enumerates the thaiz s
tures of any user defined type. (The utility of generic pragrang
for test-data generation has also been observed elsewtéf¢ [
Such test-data generation is useful for stress testinggreiftial
testing, behavioural testing, and so on. For instance, weusa
systematic test-data generation as a plug-in for QuickiCfgic

Suppose we start with the following data types, which coumsti
the abstract syntax for a small language:

data Prog = Prog Dec Stat

data Dec = Nodec | Ondec Id Type | Manydecs Dec Dec
datald =A|B

data Type = Int | Bool

data Stat = Noop | Assign Id Exp | Seq Stat Stat

data Exp = Zero | Succ Exp

We want to define a generic function that generates all teffnas o
given finite depth. For instance:
> genUpTo 3 :: [Prog]
[Prog Nodec Noop, Prog Nodec (Assign A Zero),
Prog Nodec (Assign B Zero), Prog Nodec (Seq Noop



Noop), Prog (Ondec A Int) Noop, Prog (Ondec A Int)
(Assign A Zero), Prog (Ondec A Int) (Assign B Zero),
Prog (Ondec A Int) (Seq Noop Noop), ... ]

Here is the code fogenUpTo:

genUpTo :: Data a => Int -> [a]
genUpTo 0 =

genUpTo d = result

where

-- Recurse per possible constructor
result = concat (map recurse cons)

-- Retrieve constructors of the requested type
cons :: [Constr]
cons = dataTypeConstrs (dataTypeOf (head result))

-- Find all terms headed by a specific Constr
recurse :: Data a => Constr -> [a]
recurse = fromConstrM (genUpTo (d-1))

The non-trivial cased > 0) begins by findingons, the list of all
the constructors of the result type. Then it megosrse overcons

to generate, for eac@onstr , the list of all terms of given depth
with that constructor at the root. In turrecurse  works by using
fromConstrM  to rungenUpTo for each child. Here we take advan-
tage of the fact that Haskell's list type is a monad, to predac
result list that consists of all combinations of the listaireed by
the recursive calls.

The reason that we bim@sult  in the where-clause is so that we
can mention it in the type-proxy argumentdataTypeOf , namely
(head result) — see Section 4.3.

Notice that we have not taken account of the possibility ahpr
tive types in the data type — indeedhtaTypeConstrs  will fail

if given a primitive DataType . There is a genuine question here:
what value should we return for (say) lmh node? One very sim-
ple possibility is to return zero, and this is readily accondated
by usingdataRep instead ofdataTypeConstrs

cons = case dataTypeRep ty of
AlgRep cons -> cons

IntRep -> [mkintConstr ty 0]
FloatRep -> [mkintConstr ty 0]
StringRep  -> [mkStringConstr ty "foo"]

where
ty = dataTypeOf (head result)

gmapQ . Data a
=> (forall b. Data b => b ->r)
>a > []

gzipWithQ :: (Data al, Data a2)

=> (forall bl b2. (Data bl, Data b2)
=> bl ->b2 ->71)
> al > a2 >

The original function(gmapQ f t) , takes a polymorphic function
f that it applies to each immediate child bf and returns a list
of the results. The new functiofgzipWithQ f t1 t2) takes a
polymorphic functionf that it applies tocorresponding pairs of
the immediate children L andt2 , again returning a list of the
results. For generality, we do not constrainanda2 to have the
same outermost type constructor, an issue to which we réturn
Section 6.5.

We can gain extra insight into these types by using some thpe a
breviations. We define the type synonanericQ as follows:

type GenericQ r = forall a. Data a => a > r
That is, a value of typ&enericQ r is a generic query function that
takes a value of any type in claBata and returns a value of type
Haskell 98 does not support type synonyms that corftedti s,
but GHC does as part of the higher-rank types extension. 8xch
tended type synonyms are entirely optional: they make typa®
perspicuous, but play no fundamental role.

Now we can write the type afmapQas follows:
gmapQ :: GenericQ r -> GenericQ [r]
We have taken advantage of the type-isomorphisno, — 6, =
01 — Va.0, (Wherea ¢ 01) to rewritegmapQs type as follows:
gmapQ :: (forall b. Data b => b -> 1)
-> (forall a. Data a => a -> [1])
Applying GenericQ , we obtainGenericQ r -> GenericQ [r]
SogmapQthereby stands revealed ageneric-query transformer
The type ofgzipWithQ is even more interesting:
gzipWithQ :: GenericQ (GenericQ )
-> GenericQ (GenericQ [r])
The argument tgzipWithQ is a generic query that returns a generic
query. This is ordinary currying: when the function is apglto the
first data structure, it returns a function that should bdiagjpo the
second data structure. ThgripWithQ is a transformer for such

We might also pass around a random-number generator ta seleccurried queries. Its implementation will be given in Sect&®3.

primitive values from a finite list of candidates. We can alse
fine the illustrated approach to accommodate other covendige

ria [15]. We can also incorporate predicates into term garmr

so that only terms are built that meet some side conditiorthén
sense of attribute grammars [6]. Type reflection makes atimea
of clever test-data generators possible.

6 Generic zippers

In our earlier paper, all our generic functions consumegingle
data structure. Some generic functions, such as equalitpror
parison, consuméwo data structures at once. In this section we
discuss how to program such zip-like functions. The ovédaia is

to define such functions as curried higher-order generictians
that consume position after position.

6.1 Curried queries

Consider first the standard functiomap andzipWith

map : (b->c) > [b] -> [c]

zipWith 2 (a->b->c) -> [a] -> [b] -> [c]
By analogy, we can attempt to defingipWithQ — a two-
argument version ajmapQthus. The types compare as follows:

6.2 Generic comparison

GivengzipWithQ , it is easy to define a generic equality function:

geq’ i GenericQ (GenericQ Bool)

geq x y = toConstr x == toConstr y

&& and (gzipWithQ geq' x )

Thatis,geq’ x y checks thak andy are built with the same con-
structor and, if so, zips together the childrerxadindy with geq’
to give a list of Booleans, and takes the conjunction of thiesalts
with and :: [Bool] -> Bool . That is the entire code for generic
equality. Generic comparison (returnib@, EQ or GT) is equally
easy to define.

We have called the functiogeq’ , rather thargeq, because it has a
type that is more polymorphic than we really want. If we sjoei
theGenericQ synonyms we obtain:

geq' : (Data al, Data a2) => al -> a2 -> Bool
But we do not expect to take equality between values of differ
types,al anda2, even if both do lie in clasBata ! The real function
we want is this:

geq :: Data a => a -> a -> Bool

geq = geq’



Why can’t we give this signature to the original definitiorgef| ?
Because if we did, the callgzipWithQ geq’ x y) would be
ill-typed, becaus@zipWithQ requires a function that is indepen-
dently polymorphic in its two arguments. That, of courset joegs
the question of whethagzipWithQ could be less polymorphic, to
which we return in Section 6.5. First, however, we descrhme t
implementation ofjzipWithQ .

6.3 Implementinggzi pWt hQ

How can we implemengzipWithQ ? At first it seems difficult, be-
cause we must simultaneously traverse two unknown data-stru
tures, but thegmap combinators are parametric in just one type.
The solution lies in the type dajzipWithQ , however: we seek a
generic query that returns a generic quengo we can evaluate
(gzipWithQ f t1 t2) in two steps, thus:

gzipWwithQ f t1 2 -- NB: not yet correct!
= gApplyQ (gmapQ f t1) t2
Step 1: use the ordinargmapQto applyf to all the children of1 ,
yielding a list of generic queries.

Step 2: use an operatiopApplyQ to apply the queries in the pro-
duced list to the corresponding childrentdf.

Each of these steps requires a little work. First, in step Hatvis
the type of the lis{gmapQ f t1) ? It should be a list of generic
queries, each of which isgolymorphicfunction. But GHC'’s sup-
port for higher-rank type still maintaingredicativity What this
means is that while we can pass a polymorphic function asgan ar
ment, we cannot make a list of polymorphic functions. Sire t
really is what we want to do here, we can achieve the desisedtre
by wrapping the queries in a data type, thus:

newtype GQ r = GQ (GenericQ 1)

gzipWithQ f t1 t2
= gApplyQ (gmapQ (X -> GQ (f X)) t1) t2

Now the call togmapQhas the result typéGQ 1] , which is fine.
The use of the construct@Qserves as a hint to the type inference
engine to perform generalisation at this point; there isuretime
cost to its use.

Step 2 is a little harder. A brutal approach would be to gé&lablyQ
directly to the clas®ata. As usual, the instances would be very
simple, as we illustrate for lists:

class Typeable a => Data a where

gApplyQ 1 [GQ 1] -> a > [1]
instance Typeable a => Data [a] where

oApPYQ [GQ g1, GQ 2] (xxs) = gL X, G2 xs]
oAppYQ [ I =

But we can't goon adding new functions t®ata, and this one
seems very specific to queries, so we might anticipate treeth
will be others yet to come.

Fortunately,gApplyQ can be defined in terms of the generic fold-
ing operatiorgfoldl  from our original paper, as we now show. To
implementgApplyQ , we want to perform a fold on immediate sub-
terms while using aaccumulatorof type ([GQ 1], [r]) . Again,
for lists, the combination of such accumulation and foldingnap-
ping is a common idiom (cfmapAccumL in moduleData.List ).
For each child weonsumen element from the list of queries (com-
ponent[GQ 1] ), while producingan element of the list of results
(componenfr] ). So we want a combining functidalike this:

k :: Data c => ([GQ 1], [r]) -> ¢ -> ([GQ 1], [1])

k (GQ g : gs, rs) child = (gs, g child : rs)

Herec is the type of the child. The functiok simply takes the
accumulator, and a child, and produces a new accumulatdre (T
results accumulate in reverse order, but we can fix that upeat t
end usingreverse , or we use the normal higher-order trick for
accumulation.) We can perform this fold usigfgldl , or rather a
trivial instance thereof —gfoldlQ

gApplyQ :: Data a => [GQ 1] -> a -> [1]

gApplyQ gs t = reverse (snd (gfoldlQ k z t)

where
k (GQ g : gs, rs) child = (gs, g child : rs)
z = (s, [l)

The folding functiongfoldiQ  has this typ&:

gfoldlQ = (r -> GenericQ 1) -> r -> GenericQ r
The definition ofgfoldlQ  employs a type construct®to mediate
between the highly parametric typegfldl and the more specific
type ofgfoldlQ

newtype Rrx = R {unR :r}

gfoldiQ k z t = unR (gfoldl k' Z' t)

where
Z _ = R z -- replacement of constructor
K (Rrnc=R(krc)-- fold step for child c

6.4 Generic zipped transformations

We have focused our attention on generic zipgeeries but all the
same ideas work for generic zippgdnsformationsboth monadic
and non-monadic. For example, we can proceed for the laiter a
follows. We introduce a type synonyr@gnericT , to encapsulate
the idea of a generic transformer:

type GenericT = forall a. Data a => a -> a
Then gmapT, from our earlier paper, appears as a generic trans-
former transformer; its natural generalisatiggzipWithT , is a
curried-transformer transformer:

gmapT .. GenericT -> GenericT

gzipWithT :: GenericQ GenericT -> GenericQ GenericT
The typeGenericQ GenericT is a curried two-argument generic
transformation: it takes a data structure and returns aifumthat
takes a data structure and returns a data structure. Weiteane
plementation as an exercise for the reader, along with airndde
for gzipWithM . Programmers find these operations in the generics
library [17] that comes with GHC.

6.5 Mis-matched types or constructors

At the end of Section 6.2, we raised the question of whether
gzipWithQ could not have the less-polymorphic type:
gzipWithQ' :: (Data a)
=> (forall b. (Data b) => b -> b -> 1)
> a->a-> ]
Then we could defingeq directly in terms ofgzipWithQ' , rather
than detouring vigeq' . One difficulty is thagzipWithQ" is now
not polymorphicenoughfor some purposes: for example, it would
not allow us to zip together a list of booleans with a list demers.
But beyond that, an implementationgzipWithQ'  is problematic.
Let us try to use the same definition as feipWithQ :
gzipWwithQ' f t1 t2 -- Not right yet!
= gApplyQ (gmapQ (x -> GQ (f x)) t1) t2
The trouble is thagApplyQ requires a list opolymorphicqueries
as its argument, and for good reason: there is no way to ensure
statically that each query in the list givengdpplyQ is applied to an
argument that has the same type as the child from which ther que
was built. Alas, ingzipWithQ'  the query(f x) is monomorphic,

4Exercise for the reader: defigmapQusinggfoldQ . Hint: use
the same technique as you use to defilapin terms offold!



becausd 's two arguments have the same type. However, we can
turn the monomorphic quer§ x) into a polymorphic one, albeit
inelegantly, by using a dynamic type test: we simply repldee
call (f x) by the following expression:

(error "gzipWithQ' failure" ‘extQ' f x)
The functionextQ (described in our earlier paper, and reviewed
here in Section 7.1) over-rides a polymorphic query (thatags
fails) with the monomorphic query x)

Returning to the operatiogzipWithQ , we can easily specialise
gzipWithQ at more specific types, just as we specialigegl to
geq. For example, here is how to specialise it to list arguments:
gzipWithQL :: (Data al, Data a2)
=> (forall bl,b2. (Data bl, Data b2) => bl -> b2 -> 1)
-> [al] -> [a2] -> []
gzipWithQL = gzipWithQ
A related question is this: what dogapWithQ do when the con-
structors of the two structures do not match? Most of the time
question does not arise. For instance, in the generic eygdiatic-
tion of Section 6.2 we ensured that the structures had the sam
structor before zipping them together. But tepWithQ imple-
mentation of Section 6.3 is perfectly willing to zip togethuiffer-
ent constructors: it gives a pattern-match failure if theosel argu-
ment has more children than the first, and ignores excesdrehil
of the second argument. We could also defiripWithQ such that
it gives a pattern-match failure if the two constructorsedifEither
way, it is no big deal.

7 Generic function extension

One of the strengths of th8crap your boilerplate approacto
generic programming, is that it is very easy to extend, or-oide,
the behaviour of a generic function at particular types.his énd,
we employ nominal type-safe cast, as opposed to more stalictu
notions in other approaches. For example, recall the fangshow
from Section 3:

gshow :: Data a => a -> String
Whengshow is applied to a value of typ8tring we would like
to over-ride its default behaviour. For examp{gshow "foo")
should return the string'\"foo\" rather than the string
"G G G D))" , which is whatgshow will give
by default, since &tring is just a list of characters.

The key idea is to provide a type-saf&st operation, whose real-
isation formed a key part of our earlier paper; we review iBgc-
tion 7.1. However, further experience with generic prograny
reveals two distinct shortcomings, which we tackle in tldston:

e The type of type-safeast is not general enough for some
situations. We show why it should be generalised, and how,
in Section 7.2.

e Type-safecast works ontypesbut not ontype constructors
This limitation is important as we show in Section 7.3, where
we also describe how the restriction can be lifted.

We use the term generic function “extension” for the accommo
dation of type-specific cases. We do not use the term “spsaial
tion” to avoid any confusion with compile-time specialisat of
generic functions in other approaches. Our approach useg fix
code and run-time type tests. As a separate matter, howawer,
dynamic code can, if desired, be specialised like any otyyee-t
class-overloaded function, to produce type-test-freielves code.

7.1 Monomorphic function extension

In our earlier paper [16], we described a functet) that can ex-
tend (or, over-ride) a fully-generic query with a type-sfieguery.
This allows us to refingshow as follows:

gshow :: Data a => a -> String
gshow = gshow_help ‘extQ‘ showString
gshow_help :: Data a => a -> String
gshow_help t
++ showConstr (toConstr t)
++ concat (intersperse " " (gmapQ gshow t))
+=+ )
showString :: String -> String
showString s = "\"" ++ concat (map escape s) ++ "\"
where
escape '\n’ =
..etc...
escape other_char = [other_char]

Here, the type-specifishowString  over-rides the fully-generic
gshow_help to make the combined functiogshow. Notice the
mutual recursion betweegshow andgshow_help . The function
extQ is defined in the generics library as follows:
extQ :: (Typeable a, Typeable b)
>@a->n->b>n->@->r
extQ fn spec_fn arg
= case cast arg of
Just arg' -> spec_fn arg’
Nothing -> fn arg

The function (gshow_help ‘extQ‘ showString) behaves like
the monomorphishowString  if given aString , and like the poly-
morphic functiongshow_help otherwise. To this enaxtQ uses a
type-safecast operator, which is regarded as a primitive of the fol-
lowing type:

cast :: (Typeable a, Typeable b) => a -> Maybe b
If the cast froma to b succeeds, one obtains a datum of the form
Just ... , andNothing otherwise. The constraints on the argu-
ment and result type afst highlight thatcast is not a parametri-
cally polymorphic function. We rather require the tyeandb to
be instances of the cla¥gpeable , a superclass d¥ata :°

class Typeable a where
typeOf :: a -> TypeRep

Given a typeable valug, the expressioritypeOf v)  computes
the type representatioiypeRep) of v. Like dataTypeOf , typeOf
never inspects its argument. Type representations admilieg
which is required to coincide with nominal type equivalen@ne
specific implementation of type-safast is then to trivially guard
an unsafe coercion by type equivalence. This and other appes
to casting are discussed at length in [16]. In what follows, axe
merely interested in generalising ttypeof cast .

7.2 Generalisingcast

The scheme that we used for extending geneuieriesis specific
to queries. It cannot be reused as is for genteainsformations

extT i (Typeable a, Typeable b)
=>@->a->({b->b->@->a)
extT fn spec_fn arg
= case cast arg of -- WRONG
Just arg' -> spec_fn arg’
Nothing  -> fn arg

The trouble is that the result spec_fn arg’ has a different type
than the calfn arg . Hence,extT must be defined in a different
style thanextQ . One option is to cast thieinctionspec_fn rather
than theargumentarg :

"\n"

5We use two separate clas$isa andTypeable to encourage
well-bounded polymorphism. That is, the claypeable supports
nominal type representations, just enough to do cast anaiaigs.
The clas®ata is about structure of terms and data types.



extT fn spec_fn arg
= case cast spec_fn of - RIGHT
Just spec_fn' -> spec_fn’ arg
Nothing -> fn
This time, thecast compares the type apec_fn  with that offn ,
and uses the former when the type matches. The only infeliit
that we thereby compare the representations of the @spasand
b->b , when all wereally want to do is compare the representations
of the typesa andb. This infelicity becomes more serious when we
move tomonadictransforms:
extM = (???)=>(@->ma)->((->mb) > (a->ma)
extM fn spec_fn arg
= case cast spec_fn of
Just spec_fn' -> spec_fn’ arg
Nothing -> fn
Now, we need to construct the representatiorack m a, and
hencem amust beTypeable too! So the(...???2..) must be
filled in thus:
extM :: (Typeable a, Typeable b,
Typeable (m a), Typeable (m b))
=>@->ma->0bO->mb)>(@->ma)
Notice the Typeable constraints on(m a) and (m b), which
should not be required. The typeaist is too specific. The prim-
itive that wereally want isgcast — generalisedast :

gcast :: (Typeable a, Typeable b) => ¢ a -> Maybe (c b)
Herec is an arbitrary type constructor. By replacicagt by gcast

in extT andextM, and instantiating to Aa.a-> a, andAa.a-> ma
respectively, we can achieve the desired effect.

arg

arg

But wait! Haskell does not support higher-order unificatemhow
can we instantiate to these type-level functions? We resort to the
standard technique, which usesi@vtype to explain to the type
engine which instantiation is required. HerextV :
extM :: (Typeable a, Typeable b)
=>@->ma->b->mb) >@->ma)
extM fn spec_fn arg
= case gcast (M spec_fn) of
Just (M spec_fn") -> spec_fn’ arg
Nothing -> fn
newtype M ma =M (@a -> m a)

Here, (M spec_fn) has type(M m a), and that fits the type of
gcast by instantiatingc to M m We can rewriteextQ and extT
to usegcast , in exactly the same way:
extQ fn spec_fn arg
= case gcast (Q spec_fn) of
Just (Q spec_fn’) -> spec_fn’ arg

arg

Nothing -> fn arg
newtype Qra=Q (@ ->1r)
extT fn spec_fn arg
= case gcast (T spec_fn) of
Just (T spec_fn") -> spec_fn’ arg
Nothing -> fn arg

newtype Ta =T (a -> a)
As with cast beforegcast is best regarded as a built-in primitive,
but in factgcast replacesast . Our implementation ofast , dis-
cussed at length in [16], can be adopted directlygmast . The
only difference is thagcast neglects the type constructoiin the
test for type equivalence [17].

This generalisation, frorcast togcast , is not a new idea. Weirich
[22] uses the same generalisation, froamst tocast' in her case,

albeit using structural rather than nominal type equaNtie used

a very similar pattern in our earlier paper, when we gerszdli
gmapQ gmapT andgmapMto produce the functiopfoldl  [16].

7.3 Polymorphic function extension

The function extQ allows us to extend a generic function at
a particularmonomorphictype, but not at gpolymorphictype.
For example, as it standgshow will print lists in prefix form
"Crc2:D . How could we print lists in distfix nota-
tion, thus"[1,2]" ?

Our raw material must be lst-specifi¢ but still element-generic
function that prints lists in distfix notation:
gshowList :: Data b => [b] -> String
gshowlList xs
= "[" ++ concat (intersperse "," (map gshow xs)) ++ "I

Now we need to extengshow_help with gshowList — butextQ
has the wrong type. Instead, we need a higher-kinded vergion
extQ , which we callext1Q :

extlQ :: (Typeable a, Typeablel t)
= (a->17)
-> (forall b. Data b =>t b -> 1)
> (a->1)
gshow :: Data a => a -> String
gshow = gshow_help ‘ext1Q‘ gshowList
‘extQ*  showString

Here,ext1Q is quantified over a typeonstructort of kind *->* |
and hence we need a new type clagpeablel : Haskell sadly
lacks kind polymorphism! (This would require a non-triviah-
guage extension.) We discuBgpeablel in Section 7.4.

To defineextlQ we can follow exactly the same pattern asdxn) ,
above, but using a differentst operator:

extlQ fn spec_fn arg

= case dataCastl (Q spec_fn) of
Just (Q spec_fn’) -> spec_fn’ arg
Nothing > fn

newtype Qra=Q (@ -> 1)
Here, we need (another) n@ast operatorgdataCastl . Its type is
practically forced by the definition @xt1Q :

dataCastl :: (Typeablel s, Data a)

=> (forall b. Data b => ¢ (s b))
-> Maybe (c a)

It is absolutely necessary to have tbata constraint in the argu-
ment todataCastl . For example, this will not work at all:

bogusDataCastl :: (Typeablel s, Typeable a)

=> (forall b. ¢ (s b))
-> Maybe (c a)

It will not work because the argument is required to be cotepte
polymorphic inb, and our desired arguments, suclsfasvList are
not; they need thBata constraint. That is why theData ” appears
in the namelataCastl .

arg

How, then are we to implemengtaCastl ? We split the imple-
mentation into two parts. The first part performs the typé(®sc-
tion 7.4), while the second instantiates the argumedataCastl
(Section 7.5).

7.4 Generalisingcast again

First, the type test. We need a primitieast operatorgcastl , that
matches theéype constructoof the argument, rather than thge
Here is its type along with that g@tast for comparison:
gcastl :: (Typeablel s, Typeablel t) -- New
=> ¢ (s a) -> Maybe (c (t a))
gcast :: (Typeable a, Typeable b)
=> c a -> Maybe (c b)
The role ofc is unchanged. The difference is thgglstl com-
pares the type constructossandt, instead of the typea and

-- For comparison



b. As with our previous generalisation, frocast to gcast , the

Typeable constraints concern only the differences between the two

types whose common shapegds( e a)) . The implementation of
gcastl follows the same trivial scheme as before [16, 17].

The new clas3ypeablel is parameterised over type constructors,
and allows us to extract a representation of the type cartsiru

class Typeablel s where
typeOfl :: s a -> TypeRep

instance Typeablel [] where
typeOfl _ = mkTyConApp (mkTyCon "Prelude.List") []

instance Typeablel Maybe where
typeOfl _ = mkTyConApp (mkTyCon “Prelude.Maybe") []

The operatiomkTyCon constructs type-constructor representations.
The operationmkTyConApp turns the latter into potentially in-
complete type representations subject to further typeicatfons.
There is a singl&ypeable instance for all types with an outermost
type constructors of king>* :

instance (Typeablel s, Typeable a)
=> Typeable (s a) where
typeOf x = typeOfl x ‘mkAppTy' typeOf (undefined :: a)

(Notice the use of a scoped type variable here. Also, gefric
stances are not Haskell 98 compliant. One could instead nse o
instance per type constructor of kifd* .) The functionmkAppTy
applies a type-constructor representation to an argutypstrep-
resentation. In the absence of kind polymorphism, we saegdn
a distinctTypeable class for each kind of type constructor. For
example, for binary type constructors we have:

class Typeable2 s where
typeOf2 :: s a b -> TypeRep
instance (Typeable2 s, Typeable a)

=> Typeablel (s a) where
typeOfl x = typeOf2 x ‘mkAppTy' typeOf (undefined :: a)

One might worry about the proliferation dfjpeable classes, but
in practice this is not a problem. First, we are primarilyeieisted
in type constructors whose arguments are themselves of kine-
cause thdata class only makes sense fiypes Second, the arity
of type constructors is seldom large.

7.5 Implementingdat aCast 1
Our goal is to implemerdataCastl usinggcastl :

dataCastl :: (Typeablel s, Data a)
=> (forall b. Data b => ¢ (s b))
-> Maybe (c a)
gcastl :: (Typeablel s, Typeablel t)
=> ¢ (s a) -> Maybe (c (t a))

There appear to be two difficulties. FirslgtaCastl must work
over any type (c a) , whereasgcastl is restricted to types of
form (c (t a)) . SeconddataCastl is given a polymorphic ar-
gument which it must instantiate by applying it to a dictipnéor
Data a . Both these difficulties can, indeed must, be met by making
dataCastl into a member of th®ata class itself:

class Typeable a => Data a where

aétaCastl :: Typeablel s
=> (forall a. Data a => ¢ (s b))
-> Maybe (c a)

Now in each instance declaration we have available precisel
the necessarpata dictionary to instantiate the argument. All
dataCastl has to do is to instantiate, and pass the instantiated
version on tagcastl to perform the type test, yielding the follow-
ing, mysteriously simple implementation:

instance Data a => Data [a] where

aétaCastl f = geastl f

The instances afataCastl for type constructors of kind other than
*>* returnsNothing , because the type is not of the required form.

instance Data Int where

éétaCastl f = Nothing

Just as we need a family @fpeable classes, so we need a family
of dataCast operators with an annoying but unavoidable limit.

7.6 Generic function extension — summary

Although this section has been long and rather abstractcdhe
crete results are simple to use. We have been able to gesgerali
extQ , extT , extM (and any other variants you care to think of) so
that they handlg@olymorphicas well as monomorphic cases. The
new operators are easy to use — see the definitigahofv in Sec-

tion 7.3 — and are built on an interesting and independeargbful
generalisation of th&peable class. All the instances f@rata and
Typeable are generated automatically by the compiler, and need
never be seen by the user.

8 Related work

The position of theScrap your boilerplateapproach within the
generic programming field was described in the original pape
Hence, we will focus on related work regarding the new countri
tions of the present paper: type reflection (Section 5),imgppom-
binators (Section 6), and generic function extension {Sed?).

Our type reflection is a form of introspection, i.e., the stawe of
types can be observed, including names of constructordsfiahd
types. In addition, terms can be constructed. This is simtldahe
reflection API of a language like Java, where attributes aathod
signatures can be observed, and objects can be construotad f
class names. The sum-of-products approach to genericgmegr
ming abstracts from everything except type structure. &ghre
sum-of-products setup, one cannot define generic read awd sh
functions. There are non-trivial refinements, which enitiuduc-
tion on type structure with cases for constructor apploeatiand
labelled components [7, 4, 8]. In our approach, reflectierin
mation travels silently with th®ata dictionaries that go with any
data value. This is consistent with the aspiration of oureggh
to define generic functions without reference to a universpte-
sentation, and without compile-time specialisation. Alkiech and
McBride’s generic programming with dependent types [1jgasgs
that reflective data can also be represented as types, vehinbre
typeful than our approach.

Zipping is a well-known generic operation [12, 4, 13]. Our de
velopment shows that zippers can be defined generically s cu
ried folds, while taking advantage of higher-order genéuicc-
tions. Defining zippers by pattern matching on two paransater
stead, would require a non-trivial language extensionhésum-
of-product approach, zippers perform polymorphic patteatch-
ing on the two incoming data structures simultaneously. his t
end, the generic function is driven by the type structure stiaed
type constructor, which implies dependently polymorphguaent
types [12, 4]. Altenkirch and McBride’s generic programmimith
dependent types [1] indicates that argument type depeieteas
in zipping can be captured accordingly with dependent tyipes
this is intended. Their approach also employs a highly patam
ric fold operator that is readily general for multi-paraeretraver-
sal. The pattern calculus (formerly called constructocaiais) by
Barry Jay [13], defines zipping-like operations by simuitans pat-
tern matching on two arbitraigonstructor applicationsLike in our



zippers, the argument types are independently polymarphic

Customisation of generic functions for specific types is bviaus
desideratum. In Generic Haskell, generic function defingi can
involve some sort of ad-hoc or default cases [7, 5, 4, 19]. &pr
proach narrows down generic function extension to the vienple
construct of a nominal type cast [16]. However, our origisaper
facilitated generic function extension with only monomurpcases
as a heritage of our focus on term traversal. The new developm
of Section 7 generalised from monomorphic to polymorphiesa
in generic function extension. This generality of genetindtion
extension is also accommodated by Generic Haskell, bueraih
a static level relying on a dedicated top-level declarat@m for
generic functions. By contrast, our generic function egiem fa-
cilitateshigher-ordergeneric functions.

[2]

(6]
[7]

In a very recent paper [8], Hinze captures essential idiofns o
Generic Haskell in a Haskell 98-based model, which requates
solutely no extensions. Nevertheless, the approach ie geib-
eral. For instance, it allows one to define generic functibas are
indexed by type constructors. This work shares our aspiraif
lightweightness as opposed to the substantial languagesgh of
Generic Haskell [7, 5, 4, 19]. Hinze’s lightweight approaties
not support some aspects of our system. Notably, Hinze'srgen
functions are not higher-order; and generic functions ajgeon a
representation type. Furthermore, the approach exhilitsita-
tion related to generic function extension: ttlassfor generics
would need to be adapted for each new type or type constrihabr
requires a specific case.

(8]
9]

[10]

(11]

(12]

9 Conclusion

We have completed th&crap your boilerplat@pproach to generic
programming in Haskell, which combines the following dittities:

(13]

Lightweight: the approach requires two independently-useful lan- [14]

guage extensions to Haskell 98 (higher-rank types and type-
safe cast), after which everything can be implemented as a
library. A third extension, extending thderiving  clause to
handleData andTypeable is more specific to our approach,

but this code-generation feature is very non-invasive. [15]

General: the approach handles regular data types, nested data
types, mutually-recursive data types, type constructearpa
eterised in additional types; and it handles single andimult
parameter term traversal, as well as term building.

Versatile: the approach supports higher-order generic program-
ming, reusable definitions of traversal strategies, ana-ove
riding of generic functions at specified types. There is no [17]
closed world assumption regarding user-defined data types.

Direct: generic functions are directly defined on Haskell data
types without detouring to a uniform representation typshsu
as sums-of-products. Also, Haskell's nominal type equiva-
lence is faithfully supported, as opposed to more struttjura
defined generic functions.

Well integrated and supported: everything we describe is imple-
mented in GHC and supported by a Haskell generics library.

[16]

(18]

[19]
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