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Abstract

The ‘Scrap your boilerplate’ approach to generic prograngnal-
lows the programmer to write generic functions that canerse
arbitrary data structures, and yet have type-specific caées-
ever, the original approach required all the type-specises to be
supplied at once, when the recursive knot of generic funatlief-
inition is tied. Hence, generic functions wecsed In contrast,
Haskell's type classes supparpen or extensible, functions that
can be extended with new type-specific cases as new dataagpes
defined. In this paper, we extend the ‘Scrap your boilerpkgpe
proach to support this open style. On the way, we demonstrate
desirability of abstraction over type classes, and theulise$s of
recursive dictionaries.

Categories and Subject Descriptors  D.1.m [Programming Tech-
nigue$: Generic Programming; D.3.®Pfogramming Languagés
Language Constructs and Features; D.238ftware Engineer-
ing]: Reusable Software

Keywords Generic programming, type classes, extensibility, type-
case, recursive dictionaries

1. Introduction

In the so-called “scrap your boilerplate” approach to genpro-
gramming, we exploit Haskell’s rich type system to allow pro
grammers to write “generic” functions [LP03, LP04]. The eggrh
works very well for constructinglosedgeneric functions; that is,
ones whose special cases are all known in advance. Howexir, u
now, the approach did not work well fopen or extensible, generic
functions.

We consider a generic programming example to illustrate the
open/closed dichotomy. The QuickCheck library [CHOOQ] ives
the following function:

shrink :: Shrink a => a -> [a]

Shrinking a data structure returns a list of smaller datzcstres of
the same type. QuickCheck runs the user’s function on rahydom
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chosen inputs. When it finds a value that fails a test, it rieuiha
usesshrink to try to find a smaller example that also fails.

Shrinking is clearly a generic programming problem. For ynan
data structures, a boilerplate definition will do, e.g.uretthe
largest (immediate or deeply nested) subterms of the sapeeaty
the failing term. But some data structures require spe@atment.

For example, we must not shrink a syntax tree representing a
program in such a way that variables become unbound.

Each user of the QuickCheck library defines new data types. So
QuickCheck cannot define, once and for all, all the types tuictv
shrink behaves speciallyghrink absolutely must be extensible.
That is not possible using the existing “scrap your boiletgsl
approach, as Koen Claessen carefully explained tolngeneral
terms, lack of open, generic functions effectively bansegien
programming from use in libraries.

Thus motivated, this paper describes a variant of “scrap you
boilerplate” (henceforth SYB) that directly supports opgeneric
functions. We make the following contributions:

e We describe how to program extensible generic functions in
Haskell (Section 3). It was entirely non-obvious (at leastis)
that SYB could be enhanced in a such a manner.

Our initial presentation assumes that Haskell allows abstn
overtype classes addition to normal abstraction ovispes In
particular, we need to parameterise a class by its supsretes
feature somewhat reminiscent of mixins. In Section 4 wedbuil
on work by Hughes to show that this extension is not necessary
[Hug99]. However, we argue that abstraction over type ekass
is a natural and desirable extension — after all, Haskedljtet
abstract over practically anything else.

e While our new approach builds on Haskell's type-class sys-
tem — hence the title — it requires one fundamental extension
which we deliver in this paper: the ability to construct necu
sive dictionaries (Section 5). This extension is both ppled
and independently useful. It has been requested many tiynes b
(hard-core) Haskell users, and was already part of GHC &efor
we began work on this paper.

We give a case study of the approach applied to QuickCheck in
Section 6, and discuss related work in Section 8. Everythirg
describe has been implemented, as Haskell code that rund@ G
and is available ahttp://www.cs.vu.nl/boilerplate/. The
extended SYB is finding its way into new applications of gemer
programming such as Foster’s HAIFA (“Haskell Applicationdr-
operation Framework Architecture”) [Fos05].

1personal communication, October 2004.



2. The problem we tackle

Let’s consider a very simple generic function that compthesize
of a data structure:

Data a => a -> Int
1 + sum (gmapQ gsize t)

gsize ::
gsize t =

Here we use the SYB combinatghapQ, a method of théata
class, defined thus:

class Typeable a => Data a where
gmapQ :: (forall b. Data b => b -> r)
->a > [r]

The idea is thal(gmapQ gsize t) appliesgsize to each of the
immediate children of, and returns a list of these sizes; tham
adds up this list, and we conclude by adding 1 (for the rooehtal
the total. Instances of tiata class can be derived automatically,
but we give two sample instances as an illustration:

instance Data Char where
gmapQ f ¢ = []
-- no immediate subterms to be queried

instance Data a => Data [a] where
gmapQ £ [] =[]
-- no immediate subterms to be queried
gmapQ f (x:xs) = [f x, f xs]
-- head and tail are queried

TheData class has several other methods, but for much of this pa-

per we will pretend that it has just one methgalapQ. Everything
we say extends to generic function types other than justegiés.f.
HQH In g[napQ).

2.1 Classic customisation

extQ :: (Typeable a, Typeable b)
=> (a->r) -> (b->r) -> (a->r)

Here,Typeable is a superclass dfata. In the call(extQ £ g t),
ext(Q attempts a cast to decide whether to agply t, or to use the
generic method. SinceextQ is left-associative, one can compose
together a whole string of calls #xtQ to give the function many
type-specific cases.

2.2 The shortcomings ofxtQ

However, this way of specialising, or customising, a genfmc-
tion suffers from several shortcomings:

e The cast operation afxtQ boils down to a run-time type test.
When a customised generic function is applied to a datum, the
type tests are performed in linear sequence for the typeifgpe
cases, at every node of a traversed data structure. These typ
tests can outweigh other computations by a factor.

e There is no static check for overlap; in a long sequence of
extQ calls one could mistakenly add two cases lfame, one
of which would silently override the other.

The use of cast operations becomes fiddly when we want to
specialise the generic function for typenstructorsas well as
types[LP04]. A good example is when we want to specialise
gsize for polymorphic lists, as suggested above.

But these problems pale into insignificance beside the maén o

e Once the “knot” is tied, via the mutual recursion between
gsize and gsize_default, one can no longer add type-
specific cases tgsize. Notice the way thagsize contains
a list of all its type-specific cases.

In short, the technique is fundamentally non-modular. $8ppa
programmer adds a new tyBeo, and wants to extengsize to

Almost always, however, one wants to define special cases of ahandle it. The only way to do so is to tie the knot afresh:

generic function at specific types. For example, supposetiiea
datumt contained nodes of typéame:

data Name = N String deriving( Typeable )

Then we might want to count judtfor a Name node, rather than
count up the size of the string inside it. As another examplet
would you expect the callgsize [4,1]) to return? In fact it
returnss, one for each cons cell, one for the nil at the end of the
list, and one for eaclint; but we might prefer to givgsize list-
specific behaviour, so that it returned (say) the length efist.

The original SYB paper [LP03] described how to achieve type-
specific behaviour, using type-safe cast and operationsedkfi
on top of it. The main functiongsize, is obtained by combin-
ing a generic functiogsize_default with a type-specific case,
name_size, written by the programmer:

Int
‘extQ‘ name_size
‘extQ‘ phone_size

Data a => a ->
gsize_default

gsize ::
gsize t =

Data a => a -> Int
1 + sum (gmapQ gsize t)

gsize_default ::
gsize_default t =

name_size :: Name -> Int
name_size (N _) =1

phone_size :: PhoneNumber -> Int
-- Another special case

The type of the combinatarxtQ? is the following:

2«ext” hints at generic functiorexiension — another term for customisa-
tion.

my_gsize :: Data a => a -> Int

my_gsize t = gsize_default ‘extQ‘ name_size
‘extQ‘ phone_size
‘extQ‘ boo_size

Data a => a -> Int
1 + sum (gmapQ my_gsize t)

gsize_default ::
gsize_default t =

boo_size :: Boo -> Int

The amount of new code can be reduced in obvious ways — for
example, pass the recursive function ggize_default as an
argument, rather than calling it by name — but it still for¢ke
programmer to explicitly gather together all the type-s$ii@cases,

and then tie the knot.

2.3 What we want

What makes the situation particularly tantalising is thetcast
with type classes. In Haskell, if we declare a new tjlage, we
can extend equality to work oviame simply by giving an instance
declaration:

instance Eq Name where
(N s1) == (N s2) = sl==s2

The type system checks that there is only one instand&fdfame.

There is no run-time type test; instead, the correct ingtéauto-
matically selected based on static type information. Ifrecfion is
polymorphic in a type with equality, then the correct instwcan-
not be selected statically, so it is passed as a run-timerzdea
instead. For example:



isRev :: Eq a => [a] -> [a] -> Bool
isRev xs ys = (xs == reverse ys)

We know statically that the equality test is performed on tists,
but the element type of the lists is not known statically —deen
the (Eq a) constraint in the type. At run-timeg,sRev is passed
a “dictionary” that gives the equality method for values yjje a,
and from which it can construct the equality method for listy/pe
[al (again by plain dictionary passing).

Most importantly, though, the programmer never has to gathe
together all the instances and define a recursiwvéhat takes all
these instances into account. The result is modular: eahytou
define a new type, you also define its overloaded operations.

Unfortunately, overloaded operations (in the Haskell epase
not generic; you have to define an instance dégery type. We
want the best of both worlds: generic functions (in the sraur-
boilerplate sense) together with modular customisatiameasdata
types are added.

3. Theidea

Our goal is to combine SYB with the modular extension offdrgd
type classes. The pattern we hope to use is this:

e Each time we need a new generic function, suchsise, we
define a new type clasSize, with gsize as a method.

e At the same time, we provide a generic implementation of
gsize, in the form of an instance fo¢Size t). (Section 3.5

discusses an alternative.)

e When we later introduce a new data type, suciias: in the
example above, we can also addiatstance declaration for
Size that gives the type-specific behaviour gfize for that
type. If we omit such as specific instance, we simply inhést t
generic behaviour.

It is helpful to identify three separate protagonists. B8 au-
thors(i.e., ourselves) write SYB library code, including the défi
tion of theData class and its supporting libraries. Tgeneric func-
tion authorwrites another library that gives the class and generic
definitions; in the case ofsize, this means the classize and
the generic definition ogsize. Finally theclient imports this li-
brary, defines new types, and perhaps adds instance damslarat
that makegsize behave differently on these new types.

3.1 Afailed attempt
Here is a first attempt:

class Size a where
gsize :: a -> Int
instance Size Name where
gsize (N _) =1

where
sum (gmapQ gsize t)

instance Size t
gsize t = 1 +

The idea is that th€ize Name instance gives th#ame-specific
behaviour while thesize t instance gives the default, generic be-
haviour on all types that do not matdiame. The reader will no-
tice right away that this assumes that the compiler accetdap-
ping instances, a non-standard extension to Haskell. Gueirig
instances are very convenient here, but they are not abgohsgc-
essary, as we discuss in Section 3.5. For now, however, las-us
sume that overlapping instances are allowed.

Overlap is not the big problem here. The problem is that the
Size t instance does not type-check! Recall the typenefpQ:

gmapQ :: Data a => (forall b. Data b => b -> r)

-> a > [r]

There are two issues. First, the calgimapQ in theSize t instance
leads to @ata t constraint. So we must adéta t to the context
of the instance declaration:

instance Data t => Size t where
gsize t = 1 + sum (gmapQ gsize t)

The second issue is not so easily solved. In any@albpQ £ t),
the functionf has access to the operations of theta class (and its
superclasses), but no more just look at the type ofmapQ. Sadly,
in the Size t instance declaration we pagsize to gmapQ, and
gsize now has this type:

gsize :: Size a => a -> Int

The only obvious way out of this difficulty is to arrange tisate
is a superclass dfata:

class (Typeable a, Size a) => Data a where ...

We have thus defined a single, extensible generic funittion

3.2 Abstraction over a class

Problem solved? By no means. Theta class is defined in the
SYB library, and we cannot extend it with a new superclassyeve
time we want a new generic function! That would be a new (and
even more pernicious) form of non-modularity. Howevere#ds

us in an interesting new direction. Since we do not know wlsatc
should be a superclassidta, let us parameterise over that class

-- Pseudo-code
class (Typeable a, cxt a) => Data cxt a where
gmapQ :: (forall b. Data cxt b => b -> r)
-> a > [r]

instance Data Size t => Size t where
gsize t = 1 + sum (gmapQ gsize t)

Here the variablext ranges ovetype classesnot overtypes In
the class declaration f@ata, the superclass is not fixed, but rather
is specified byxt. In the generic instance declaration firze t
we specify which particular superclass we want, narsebe.

We note that Haskell does not offer variables that range over
type classes, but we will assume for now that it does. In Seetil
we will show how class parameters can be encoded straightfor
wardly in standard Haskell.

We are nearly home, but not quite. Let us recall again the
types forgmapQ and gsize, which we write with fully-explicit
quantification:

gmapQ :: forall cxt, a. Data cxt a
=> (forall b. Data cxt b => b -> r)
-> a -> [r]

gsize :: forall a. Size a => a -> Int

So in the call (gmapQ gsize t), the functionf can use any
operations accessible froMata cxt b. In this case we want
cxt to beSize, but there is no way to say sdhe universally-
quantifiedcxt type parameter igmapQ’s type is mentioneanly

in constraints it is ambiguous. However, if we could specify the
type arguments to use, we would be fine:

-- Pseudo-code
instance Data Size t => Size t where
gsize x = 1 + sum (gmapQ {|Size,t|} gsize x)

3This solution suffers from a difficulty discussed and solire&ection 5,
but we pass lightly on since this is a failed attempt anyway.
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Here, we imagine another non-standard extension to Haskell Notice the => Size t”, which makes this instance overlap with

namely the ability to specify the types at which a polymoeghic-
tion is called. The notatiogmapQ {|Size,t|} means gmapQ
called withcxt = Size anda = t” (refer to the type ofgmapQ
given immediately above). We pass two type arguments, Ilsecau
gmapQ is quantified over two type parameters, but only the first is
really interesting. Again, we will discuss how to encodes tsten-
sion in standard Haskell, in Section 4.2, but the essemitaht is
simply to fix the type arguments fgmapQ.

3.3 TheData instances

As in our earlier work, every data type must be made an instahc
classData, either manually or with compiler support. For example,
here are the instance declarations for integers and lists:

instance (cxt Int) => Data cxt Int where
gmapQ £ n = []

instance (cxt [a], Data cxt a)
=> Data cxt [a] where

gmapQ £ [] =[]
gmapQ f (x:xs) = [f x, f xs]

Compared to our earlier work, the only change is an extrassbnt
for each instance declaration «€ext Int) and (cxt [a]) re-
spectively — to provide the necessary superclass. Here,e@d n
an instance declaration context that contains structyyest(e.g.,
(cxt [al)), so one might worry about the termination of con-
straint solving, a point we return to in Section 5.

3.4 Using the new customisation

In the type-class framework, new instances can be addechéy t
client of thegsize library) in an extremely straightforward manner.
For example:

instance Size Name where
gsize n = 1

instance Size a => Size [a] where
gsize [] =0
gsize (x:xs) = gsize x + gsize xs

The first instance declaration says thatame always has size 1,
regardless of the size of tlsering inside it (c.f. Section 2.1). The
second instance defines the size of a list to be the sum ofzbs si
of its components, without counting the cons cells theneslthe
[1 at the end. (Both would be counted by the generic definition.)
One can make new generic functions by combining existing
ones, just as you always can with type classes. For examjpe, s
pose we have a generic depth-finding functigiepth, defined
similarly to gsize. Then we can combine them to find the “den-
sity” of a data structure:

density :: (Size a, Depth a) => a -> Int
density t = gsize t / gdepth t

Notice that the context is explicit about all the genericdiions
that are called in the body. Again, this is just standard glpss
behaviour, and we could easily have a single class comblmitig
gsize andgdepth.

3.5 Overlapping instances and default methods

So far we have given thgenericdefinition of gsize — the one to
use if not overridden — using anstancedeclaration thus:

instance Data Size t => Size t where
gsize x = 1 + sum (gmapQ {|Size,tl} gsize x)

every other instance @&fize. Hence, this approach relies on over-
lapping instances, a non-Haskell 98 feature.

We can avoid overlapping instances, using Haskell @8fault
methoddeclarations instead. We briefly review default methods,
using a trivial example:

class Num a where
M+, (=) :ta->a->a
negate :: a -> a
(-) x y = x + negate y

The definition of(-) in the class declaration is the default method
for (-); if an instance declaration defines only) andnegate,
the method for(-) is filled in from the default method in the
class declaration. A default method has the same “use théssin
overridden” flavour as do our generic functions.

Consider our clasSize:

class Size a where
gsize :: a -> Int
gsize x = 7777

The default method fagsize can assume absolutely nothing about
the typea, so itis hard for it to do anything useful. The obvious way
to fix this is to addata as a superclass &fize, thus:

class Data Size a => Size a where
gsize :: a -> Int
gsize x = 1 + sum (gmapQ {|Size,al} gsize x)

Now, for every type for which we want to use the generic deénit
we must add a boilerplate instance declaration. For instanc

instance Size a => Size [a]
instance (Size a, Size b) => Size (a,b)

These instances omit the code frize, so that it is filled in by
the default-method code from the class declaration. Tyeeific
instances, such as that fBtze Name, are written just as before,
with explicit type-specific code fagsize.

Compared to the previous approach, using the default method
has the the advantage that it does not require overlappstgrices.
There seem to be two disadvantages. First, Siage is now a su-
perclass oBize, every type that is an instancesifze must also be
an instance obata, even though the methods bdta may be en-
tirely unused for that type; this seems inelegant. Secomel naust
give an explicit (albeit briefgize instance declaration for every
type for whichgsize is to be callable, including ones for which the
generic behaviour is wanted (e.g., lists and pairs aboveyeder,
in some applications this “disadvantage” might be considean
advantage, because it forces the library client to make acions
decision about whether to use a type-specific implememidtio
gsize (by supplying code in the instance declaration), or to use
the generic method (by omitting the code).

3.6 Intermediate summary

We have now concluded our overview of the key new idea in this
paper: if we can abstract over type classes, then we cangarran
for modular customisation of generic functions, the chrajiewe
posed in Section 2. Apart from modular extensibility, theraach
has several other benefits, compared to the cast-baseddeetui

our earlier work:

e There are no run-time type tests. Instead, execution pdscee
using the existing Haskell type-class mechanism: the ozt
ing is resolved either statically, or by dictionary passing

e There is no danger of accidentally extending a generic fonct
in incompatible ways for the same data type. Any attempt to do
so will be reported as an overlapping-instance error.



¢ No extra complexity is associated with customising the gene
function at type constructors — for example, see the ingtanc
for Size on pairs in the previous sub-section. By contrast, in
our earlier work [LP04], it required distinct generic fuiet
combinators for each new kind of type constructor.

We have assumed a number of extensions to Haskell 98:
e Multi-parameter type classes, a very well-establishedresion.

¢ Overlapping instance declarations are required in oneftam
tion, but are entirely avoidable (Section 3.5).

¢ The ability to abstract over type classes. This extensionbea
encoded in ordinary Haskell (Section 4.1).

o Explicit type application; again this is readily encodedli-
nary Haskell (Section 4.2).

e The ability to declare an instance fg8ize t), wheret is
a type variable; and the possibility of non-type-variabta-c
straints in the context of an instance declaration. Bothelex-
tensions are used in the instance declaration(fdze t) in
Section 3.2, for example. They are both illegal in Haske]lia8
order to guarantee decidability of type inference.

Of these, the last is the only extension that is both unabbéda
and not already widely available. Decidability of type irgface
is indeed threatened. In Section 5, we describe a corresppnd
Haskell extension that is based on building recursive alitries.

4. Encoding in Haskell

In this section we show how to encode the technique discuissed
Section 3 in Haskell with common extensions.

4.1 Encoding abstraction over classes

The biggest apparent difficulty is the question of abstomctiver
type classes. John Hughes encountered a very similar pnadile
years ago, in the context of a language concept for algedei
types with attached restrictions, and he described a wapdods
abstraction over type classes without extending Haskalgp9].
We can adopt Hughes'’ techniques for our purposes.

We begin by defining, once and for all, a cl&ss, with a single
method dict*:

class Sat a where dict :: a

This class becomes a superclasd®fa, thus:

class (Typeable a, Sat (cxt a)) => Data cxt a where
gmapQ :: (forall b. Data cxt b => b -> r)
-> a -> [r]

Now, whenever a generic-library author defines a new class fo
a generic function, such &ize, she additionally defines a new
record typeSizeD, which corresponds to thdictionary typefor

the envisaged class. The fields of the record type correspoed
to-one to the methods of the class:

data SizeD a = Size { gsizeD :: a -> Int }

This type automatically gives us a record selector with thie-
ing parametrically polymorphic type:

gsizeD :: SizeD a -> a -> Int

It happens in this case that there is only one method, but the
encoding works equally well when there are many. Along whih t
new record type, we also give a new instance declaratiofaor

4Short for “Satisfies” and class “dictionary”, respectively

instance Size t => Sat (SizeD t) where
dict = SizeD { gsizeD = gsize }

As you can see, both the record type and the instance decfarat
are trivially derived from the class declaration sifze. Now the
library author can give the generic definition fgsize, via an
instance declaration f&ize t, justas in Section 3.2:

instance Data SizeD t => Size t where
gsize t = 1 + sum (gmapQ {|SizeD,t|}
(gsizeD dict) t)

Here comes the crucial poirthe recursive call tgsize is made
by calling (gsizeD dict), instead ogsize, because the function
passed t@mapQ only has access tbata SizeD t, and hence to
Sat (SizeD t), but not toSize t. Accidentally callinggsize
instead of(gsizeD dict) would yield a type error.

It is only when one wants to cafisize inside an argument
passed to a rank-2 polymorphic SYB combinator (suchresQ)
that one has to cagsizeD dict. Type-specific code never has
to do this. For example, the instances given in Section 3.4k wo
unchanged; no encoding is needed:

instance Size Name where
gsize n = 1

instance Size a => Size [a] where
gsize [] =0
gsize (x:xs) = gsize x + gsize xs

In practise this means that the encoding effort for typessclab-
straction is limited to generic function libraries; clisrdf such li-
braries will not be concerned with the encoding.

4.2 Explicit type application

In Section 3.2 we found that we needed to specify the type ar-
guments for a call tegmapQ, which we did using the notation
gmapQ {lSize,t|}. Thereis a standard way to treat this difficulty
in standard Haskell, by usingtgpe-proxy parametefSuppose that
we givegmapQ the following type:

gmapQ :: forall cxt, a. Data cxt a => Proxy cxt
-> (forall b. Data cxt b => b -> r)
->a -> [r]

The functiongmap gets a new formal parameter, of typeoxy cxt,
so that the type of an actual parameter will fix the type. The
typeProxy does not need to define any constructor, as it is used for

carrying around type information only:
data Proxy (cxt :: * —-> %)

The actual type-proxy parameter for tiséze context is con-
structed as follows:
sizeProxy ::
sizeProxy

Proxy Size
error "urk"

As a result, we can now callgmapQ sizeProxy) to fix the cxt
type argument ogmapQ to beSize:

instance Data SizeD t => Size t where
gsize t 1 + sum (gmapQ sizeProxy
(gsizeD dict) t)

We definesizeProxy to beerror "urk", to emphasise that it is
only used as &peproxy; itsvalueis never examined. The defini-
tions ofgmapQq, in instance declarations foata simply ignore the
type-proxy argument. For example (notice the underbars):

instance (Sat (cxt [a]), Data cxt a)
=> Data cxt [a] where



gmapQ _ £ [] =[]
gmapQ _ (x:xs) = [f x, f xs]

In defining the typeroxy above, we took advantage of two GHC
extensions. First, we omitted all the constructors, sineenaver
build a concrete value of this type. Second, the type pammet
cxt of Proxy has kind(x -> *), which we indicated with a kind
signature. If we wanted to stick to vanilla Haskell 98, we Idou
instead write:

data Proxy cxt = P (cxt Int)
-- Any type other than Int would also be fine

The constructoP will never be used, but it specifies the kind of
cxt via its use in the componeriext Int).

Although we describe type-proxy arguments as an encoding of
“proper” type arguments, they are in some ways superiorhén t
hypothetical extension of Section 3.2, allowing type argats, we
had to pass two type argumenitsSize, t |}, even though only one
was of interest. With type proxies we can identify exactlyicth
type arguments must be passed. Furthermore, omitting ditiexp
type-proxy argument will lead to a somewhat-compreheashbior
message, whereas omitting a genuine type argument mightdea
a less-comprehensible ambiguity error.

4.3

The encoding we describe is not heavy. Hag class and®roxy
types are defined in the SYB library, along wilhta, Typeable
and much else; and the derivationdafta andTypeable instances
is automated in GHZ In addition to defining a class for the
generic function, the author of a generic library must alsfing a
corresponding (a) record type, @t instance, and (c) type proxy.
These definitions are pure boilerplate, and take only a limsvo
each. One could employ Template Haskell [SP02] to elimittate
need to define (a)—(c) explicitly.

The only tricky points arise in writing the generic code fhet
function: the provision of type-proxy parameters, and theassity
of calling (gizeD dict) instead ofgsize in SYB combinator ar-
guments. The client of a generic library sees no encodingseha
ever. However, like any encoding, type errors are likely éddss
perspicuous than if type-class abstraction were direcibperted.

For completeness, Figure 1 gives a small but complete exampl
which executes in GHC. It is partitioned into the code that ta
be written by the three protagonists.

Intermediate summary

4.4 Related work

Hughes encountered the need for abstraction over typeeslass
the context of restricting type parameters of abstract tgia
constructors [Hug99]. For instance, an operation for a nersiip
test could be of potentially different types, dependinglanactual
data type constructors:

-- An Eq constraint would be fine
-- for a simple set data type
member :: Eq a => a -> PlainSet a -> Bool

-— An Ord constraint would be more efficient
-- for binary trees
member :: Ord a => a -> BinTree a -> Bool

Hence, the type could not be defined once and for all in a type
class. Hughes therefore proposed to enable restrictebdraigelata
types, wherePlainSet and BinTree will be constrained.and
these constraints amnplied by any use of the restricted data types

5 As of writing this paper, compiler support is limited to thepious form of
Data instances, but the source distribution for this paper ohefutemplates
(in the sense of Template Haskell) for the new fornbata instances.

module Example where
import Data.Typeable

SYB library code
* => %)

data Proxy (a ::

class Sat a where { dict :: a }
class (Typeable a, Sat (ctx a))
=> Data ctx a where
gmapQ :: Proxy ctx
-> (forall b. Data ctx b => b -> r)
-> a -> [r]

instance Sat (cxt Char) => Data cxt Char where
gmapQ _ £ n = []

instance (Sat (cxt [a]), Data cxt a)
=> Data cxt [a] where
gmapQ _ f [] 1
gmapQ _ f (x:xs) [f x, f xs]

gsize library code

class Size a where gsize :: a

data SizeD a = SizeD { gsizeD :: a -> Int }
sizeProxy :: Proxy SizeD

sizeProxy = error "urk"

instance Size t => Sat (SizeD t) where
dict = SizeD { gsizeD = gsize }

instance Data SizeD t => Size t where
gsize t 1 + sum (gmapQ sizeProxy
(gsizeD dict) t)

gsize client code
instance Size a => Size [a] where
gsize [] 0
gsize (x:xs) = gsize x + gsize xs

test (gsize [’a’, ’b’], gsize ’x’)

-- Result = (2,1)

Figure 1. Self-contained sample code for generic size

in type signatures or otherwise. Hughes proposed abstractier
type classes as an aid for the simulation of restricted gtptst For
instance, a collection class would be parameterised asfsil

class Collection c cxt where
member :: cxt a => a -> ¢ a -> Bool

Hughes made the point that restricted data types shouli/ecexe-

tra language support, since the simulation based on “dasae
rameterised in classes” would require that the programmicia
pates extra parameters for constraints when designingesasich
asCollection. In our case, the parametrisation in a superclass of
Data is intuitive, which makes “classes parameterised in ckisse
an appropriate technique for SYB.

Hughes’ encodingof abstraction over type classes comprised
the Sat class, but the assumption was made #hdstingclasses
should readily serve as parameters of other classes. InBe S
context, we need abstraction over type classes for the gioovof
newclasses that implement generic functions. In fact, theudefa



instance of such a new class (or the default method of ths)dsis
the one and only client of the explicit dictionary.

5. Recursive dictionaries

Suppose we try to evaluate the expressigsize ’x’) for the
program of Figure 1. The call tgsize gives rise to the constraint

Size Char, which the type checker must discharge. Let us see how

the constraint can be satisfied:
Size Char

— Data SizeD Char

— Sat (SizeD Char)
— Size Char

Instance headdize t
Instance headbata cxt Char
Instance headat (SizeD t)
... etc. ...

To satisfy the constrairfize Char we select the generic instance
with the headSize t (because there is i®ize instance that is
specific toChar). Using that instance declaration means that we
must now satisfyData SizeD Char. We use the instance dec-
laration for (Data cxt Char), also given in Figure 1, which in
turn means that we must satisfyt (SizeD Char). Using the in-
stance declaration f(tat (SizeD t) means that we need to sat-
isfy Size Char — but this is the very constraint from which we
started dictionary constructioriThere is a danger that constraint
solving will fail to terminate.

Indeed, the instance declaration f(@ata cxt Char) is not
legal Haskell 98:

instance Sat (cxt Char) => Data cxt Char where
gmapQ _ f n = []

The instance is illegal because the context (before &) “does
not consist of simple constraints; that is, constraintshef form

C a1...amn, Where they; are just type variables. Haskell 98 imposes
this restriction on instance constraints precisely in ptdesnsure
that constraint-solving always terminates. GHC requites ftag
-fallow-undecidable-instances t0o accept the instance decla-
ration, to highlight the danger of non-termination. (Hu¢soasup-
ports such a flag.) Incidentally, this problem is not causgdhie
Sat encoding; it would arise, in the same way, if parametesati
over type classes were directly supported. (The problesesgven
for a hard-coded superclass, as discussed in Section 3.1.)

5.1 Cycle-aware constraint resolution

For the present scenario, however, there is a simple solttio
the non-termination problentiuild a recursive dictionaryTo this
end, a Haskell type checker must detect and discharge ciytles
constraint resolution. We will now specify and assess tipeaach
taken in GHC.

We presume that constraint resolution is modelled by a fonct
solve(S, C') that solves a constraift, by deducing it from a set of
“given” constraintsS. Recursive dictionaries require the following
behaviour:

solve(S,C)
= succeedif C € S
= solve(SUC,(Dy,...,Dy))
if there is a unique instance declaration
that can be instantiated to the for®,, . . .
= falil, otherwise

7Dn) =>C

The key point is that in the recursive call tolve, we addC to
the “given” constraintsS before trying to solve the sub-problems
(D1, ..., Dy). Dictionary construction is merely an elaboration of
this scheme for constraint resolution. In each step, theritgn
needs to construct a dictionary to witness the solution, thed
effect of “addingC to S before the recursive call” is to build a
recursive dictionary.

This technique does not guarantee thdwve will terminate, of
course. Consider the following declaration:

instance Foo [[a]l]l => Foo [a] where ...

Using this declaration to satisfy constrafftto [Char], say, sim-
ply yields a more complicated constraifto [[Char]], and so
on. AddingC to S before the recursive call does not solve the halt-
ing problem! It just makesolve terminate more often.

This technique does not guarantee either that the reciysive
dictionary is useful. Consider the following declaration:

instance Foo [a] => Foo [a] where ...

The type checker will terminate all right, but only by buildi a
dictionary that is defined to be equal to itself; any attenoptige
methods from the dictionary will loop at run-time. One midfgt
able to impose useful restrictions on the form of instan@dbeso
that well-founded recursion is enforced. This refinemelikéy to

require a global analysis of the program in question. Wedehis
as a topic for future work.

5.2 Related work

The general idea of adding a goal to the set of known factsreefo
attempting to prove its sub-goals is, of course, far from rew
it amounts to a co-inductive proof rather than an inductine.o
In the programming-language area it crops up when one atseemp
to decide the subtyping relation on recursive types [CaB3®7,
Pie02, LS04]. Our application is unusual in that we deriveea r
cursive proof term from the co-inductive proof, namely aurseo/e
definition of the dictionary we seek. Our approach also shsire-
ilarities with tabling and other attempts in logic programgthat
improve the termination behaviour of depth-first search &h®
resolution [SSWOQ].

Hughes'’s paper [Hug99] also mentioned the desirabilityesf d
tecting loops in context reduction, but for a different m@asand
with a different (and less satisfying solution). His prohleon-
cerned instance declarations that looked like

instance Sat (EqD a) => Eq a
instance Eq a => Sat (EgD a)

His proposal was that when an infinite loop like this was detic
the context-reduction search should back-track, and seckter-
native way to satisfy the constraints.

Our proposal is quite different. Looping context reducsisnic-
ceed, and build a recursive dictionary, rather than faiiisgdughes
suggests. This extension to Haskell's context-reductientranism
has been suggested several times. Here is a recent exampie: A
grammer wanted to define and use Fe data type:

data Fix f = In (f (Fix f))

data List a x = Nil | Cons a x

instance (Eq a, Eq x) => Eq (List a x) where
Nil == Nil = True
(Cons a b) == (Cons c d) =a ==c¢ && b ==
otherl == other2 = False

Subject to an instance fedx, we would like to test for equality
of lists like the following:

testl, test2 :: Fix (List Char)
testl = In Nil

test2 = In (Cons ’x’ (In Nil))

The expressiorftest1 == test2) should evaluate tBalse!
Equality on such lists ought to work because data structares
finite, and so are the types. But how can we give the equality



instance forFix? Here is the obvious attempt; the instance head generic instance above), or give an explicit instance datitan to

paraphrases the data type declaratiorFfor:

instance Eq (f (Fix f)) => Eq (Fix f) where
(Ina) == (Inb) = a

Now, the expressiofitest1 == test2) gives rise to the constraint
Eq (Fix (List Char)), whose simplification resembles unfold-
ing steps of a recursive data type constructor:

Eq (Fix (List Char))
— Eq (List (Fix (List Char))) InstanceEq (Fix f)
— Eq (Fix (List Char)) InstanceEq (List a x)

— Eq (List (Fix (List Char))) ...etc...

In this case, too, building a recursive dictionary is prelgighe
right thing to do. Ofcoursewe need a recursive function, if we are
to compute equality on a recursive type, &iet (List Char) is
indeed a recursive type, albeit indirectly.

6. Case study: QuickCheck

As a real-life illustration of the ideas of this paper, we misscribe
the shrink function from the QuickCheck library, referred to in
the Introduction. For the sake of a concise notation, weprdtend
that Haskell supports abstraction over classes, but eviagyin this
section is readily encoded using Section 4; the actual coufethe
source distribution that comes with the paper.

The Haskell library QuickCheck makes it easy to test fumsio
It generates random data of the appropriate type, feedstheto
function, and checks that the result satisfies a progransungptied
criterion. QuickCheck is described by a fascinating sesfgmpers

[CHOO, CHO2b], but we concentrate here on a more recent devel

opment: its ability to refine failing cases. When QuickChénkls
inputs that make the function under test fail, these inpttsod
ten not thesmallestones that make it fail. So it makes sense to
successively “shrink” the failing input, until it no longgils. This
technique turns out to work surprisingly well in practise.

What is needed, then, is an overloaded funciamink that
takes a value and returns a list of values of the same typehia
been shrunk by one “step™:

class Shrink a where
shrink :: a -> [a]

shrinkProxy :: Proxy Shrink
shrinkProxy = error "urk"

We return a list, because there is often more than one wayrittksh

a value, and there may be none (e.g., an integer cannot bek$hru
A “step” is the smallest shrinkage we can do to the value; by
applyingshrink many times, we can shrink a value by more than
one step.

There are two obvious generic strategies for shrinking aeval

1. Choose one af's sub-components, where that sub-component
is of the same type as For example, one way to shrink a list
(x:xs) is to return justxs, becausexs has the same type as
(x:xs).

2. Shrink one (and only one) afs (immediate) sub-components
by one step. For example, to shrink a péir,b) we can either
shrinka or shrinkb.

These strategies suggest the following genghicink instance:

instance Data Shrink a => Shrink a where
shrink t = children t ++ shrinkOne t

In the next two sections, we will write the helper functions
children andshrinkOne. Meanwhile, whenever the user intro-
duces a new data tyf®o, she can either do nothing (and get the

override it. The user may want to provide a data type-speiific
stance in order to ensure invariants during shrinking. kan®le:

data ListWithLength a = LWL [a] Int
-- Invariant:

the Int is the length of the list

instance Data Shrink a
=> Shrink (ListWithLength a) where
shrink (LWL [] n) = []
shrink (LWL (x:xs) n)
= LWL xs (n-1)
[ LWL xs’ n
| xs’ <- shrinkOne xs]

6.1 Finding compatibly-typed children

Let's write children first.
It is a generic function with the following type:

children :: Data Shrink a => a -> [a]

Its business is to look at each of the sub-components of gts-ar
ment, and return the “largest” subcomponents that haveame s
type as the argument. (For simplicity, we will limit ourse$/toim-
mediatesubcomponents here.) The definitionodfildren makes
use of the type-safe cast operation:

children :: Data Shrink a => a -> [a]
children t

= [c | Just c <- gmapQ shrinkProxy cast t]
Recall the type otast:

cast :: (Typeable a, Typeable b) => a -> Maybe b

whereTypeable is a superclass diata. The call (cast x) re-
turns Just x if the context needs a value of the same typexas
(that is,a=b), andNothing otherwise. The generic map function,
gmapQ appliescast to each oft’s immediate children, in a context
that requires the result to have the tygerbe 7, wheret has type
7, so0 all we need do is to collect tdiast members of this list. Note
that we passhrinkProxy to gmapQ, even thoughcast does no
shrinking; it needs onlfypeable. We need to choossmeproxy
to comply withgmapQ's type, and we have &ata Shrink a)
dictionary to hand.

6.2 Shrinking sub-components

Writing shrinkOne generically is a little harder. Recall that
(shrinkOne t) should applyshrink to all the immediate sub-
components of, and construct shrunken versionstofrom the
result. For example, suppose that:

[x1]
[y1,y2]

then the result of shrinking the paik,y) is this:

shrinkOne x =
shrinkOne y =

shrinkOne (x,y) = [(x1,y), (x,y1), (x,y2)]

Notice that each result has just one shrunken componenbr&ef
thinking about implementing genericshrinkOne, let us write a
particular case. Here ishrinkOne for pairs:

shrinkOnePr :: (Shrink a, Shrink b)
=> (a,b) -> [(a,b)]
shrinkOnePr (x,y) = [(x’,y) | x’ <- shrink x]
++ [(x,y’) | y’ <= shrink y]

The more components, the more similar-looking list compre-
hensions we have to write. It would be nicer — and we are antici
pating our needs for generic programming — to dsenotation:



shrinkOnePr :: (Shrink a, Shrink b) Although gmapM is, in reality, defined using the yet-more-general
=> (a,b) -> [(a,b)] combinatorgfoldl, it can best be understood through its instances.

shrinkOnePr (x,y) = do { x’ <- shrink x For example, here is the instance for pairs:
; ¥y <- shrink y

; return (x’, y’) } instance (cxt (a,b), Data cxt a, Data cxt b)
) 3

=> Data cxt (a,b) where

This would not work, partly because the list monad forafis gmapM _ £ (x,y)
combinationsof the results as opposed to combinations with one =do {x* <~ fx
shrunk position only, and partly because thererereombinations Yy <ty
that include the originat andy. We can solve both problems with ; return (x’,y’) }

a single blow, by using a different monad, like this: Comparing this definition gfmapM for pairs withshrinkOnePr

data S a =S a [a] above, it should be clear that the generic codesiarinkOne is

simply this:
shrinkS :: Shrink a => a -> S a shrinkOne :: Data Shrink a => a -> [a]
shrinkS t = S t (shrink t) shrinkOne t = ts
where

The idea is that(shrinkS t) returns a pair(S t ts), con-
taining the original argumentand a list of one-step shrunken ver-
sions oft. Then we give aninstance declaration that makes 6.3 Summary
into a monad, in a different way to lists, with a more selectivay
of combining its components. For example:

S _ ts = gmapM shrinkProxy shrinkS t

This example shows nicely how important it is to haensible
generic functions. QuickCheck islibrary and cannot, of course,
do { x’ <= S x [x1] anticipate all the data types that its clients will definertRermore,
iy’ <= Sy [yt,y2] the clients must be able to override the generic definitiasthefink
; return (x’,y’) } at will, because the generic method of shrinking might biewadri-
ants of the data structure.

returns the list[(x1,y), (x,y1), (x,y2)]. Furthermore, the Shrinking is just one example of the need for extensible gene
same pattern works no matter how many components are imolve  functions, but QuickCheck has many others. For exampleutae o
Here is how we maksg into a monad: loaded functionarbitrary supports the generation of random
data; just likeshrink, there is a sensible generic definition, but
instance Monad S where the client must be able to override it. Incidentally, our ickeocof
return x = S x [] shrink happens to illustrate the continuing usefulness of the-type

safecast function.
(S x xs) >>=k

=hS r (rsl ++ rs2) 7. Discussion and variations

wnere . . . . . . .

Srorsl=kx In this section we discuss various alternative design @spiand
rs2 = [r | x <- xs, let ST _ = k x] contrast the approach described here with our earlier work.

The case foreturn is easy. Now recall that>>=) has type: /-1 Run-time type tests

Does this paper render obsolete our earlier work on “scrap yo
(>>=) :: Monad m =>ma -> (a >mb) ->mb boilerplate” [LP03, LP04], which relied on run-time typets? No,
The un-shrunk result is obtained by passing the un-shrunk part it does not, for several reasons. First, run-time type testsain
x of the first arguments x xs) to the rest of the computation ~ €xtremely useful, as we saw in tSarink example in Section 6.
k, and taking the un-shrunk part of the result. The shrunkspart In Section 7.2, we will also employast to model twin traversal.
(x x), namelyrs1 are useful too, because they are shrunk by one S€cond, the extra clutter of the context parameters (in typtés
step, and so form part of the result. The other one-step karun ~ @nd terms) is areal disadvantage, especially when genetions

results,rs2, are obtained by taking the shrunken parisof the are used in a first-class way, as we will illustrate in Sectidh
first argument, passing them to the rest of the computatjand Third, one sometimes positivelyants to enumerate type-
taking the un-shrunken part of its result. specific cases expllc_ltly! This issue arises \_Nlth Hasketype
Now we can indeed writehrinkOnePr with do-notation, us- classes today. Sometimes you have a list of (first-namentasie)
ing S as its result type: pairs: you might want to sort it lexicographically by lastnme
then by first name. But the built-iard instance for pairs works
shrinkOnePr :: (Shrink a, Shrink b) the other way round, and Haskell gives no way to use different
=> (a,b) > S (a,b) instances at different places in the program [WB89]. Thiemf
shrinkOnePr (x,y) = do { x’ <- shrinkS x prompts programmers to define new data types, but that ddes no
; ¥’ <- shrinkS y work when you want to sort a single type in more than one way.
; return (x’, y’) } Indeed, Haskell's Prelude has a functigsrtBy that takes an ex-

plicit function to use as the ordering. In short, the wholprapch
of using instance declarations to incrementally extendtions
(whether generic or not) is rather “global”; if you want mdoeal
behaviour then the classic SYB approach might be better.

All that remains is to do this generically. Since we want tmbine
results monadically, the combinator we need is ienadicmap
gmap}, a cousin ogmapQ [LPO3]:

gmapM :: (Monad m, Data cxt a) Lastly, just as dynamic types support run-time compositibn
=> Proxy cxt values that cannot be statically type-checkedestq and friends
-> (forall b. Data cxt b => b -> m b) allow the special cases of a generic function to be compoged d

->a->ma namically.



7.2 Twin traversal

We may wonder about the generality of the new SYB style. Can
we rephrase all classical generic programming examplesstasl |

in [LP0O3, LP04] so that the generic functions are open ratin
closed? There is one challenge: multi-parameter traversah
particular, twin traversal as in generic equality. In oidetwe had
proposed the following definition of generic equality [LF04

geq :: Data a => a -> a -> Bool

geq X y = geq’ Xy

where
geq’ :: forall a b. (Data a,Data b)

=>a -> b -> Bool

geq’ x y = (toConstr x == toConstr y)

&& and (gzipWithQ geq’ x y)

HeregzipWithQ iS a generic variation on the standaricbwith
operation. It zips two lists of immediate subterms (“kidSAfhen
recursing into kids withgzipwithQ, we use an independently
polymorphic generic equality; c.f.f6rall a b” in the type of
geq’. Clearly, if we wanted to rephrase this approach directly to
the new style “with class”, we will naturally end up requiitype-
class parameterisation for classes witlo parameters. Alas, our
parameterisation dfata is restricted to classes with a single type
parameter.

Why do we need independent polymorphism? The recursion
into kids, (gzipWithQ geq’ x y) usescurried generic maps
such that one generic map processes the kids tf compute a
list of partial applications ogeq’ that are used in an accumulator
position when processing the kids pfwith another generic (and
accumulating) map. In order to model the list of partial &zilons
as a normahomogeneousist, each partial application must be a
generic function. (That is, we cannot record the types okitie of
x in the types of the partial applications.) This forced garisgrof
partial applications implies independent polymorphism.

Existential quantification combined wittast comes to our res-
cue. We can eliminate the heterogeneity of kid types, anctkye
use a dependently polymorphgeq in recursive calls. This new
technique works equally well for both old and new SYB style.

We start with an envelope that wraps castable values.

The only way to access such an envelope is indeed by casting:

data Pack = forall x. Typeable x => Pack x
unpack :: Typeable a => Pack -> Maybe a
unpack (Pack x) = cast x

Processing the kids of andy is organised as an accumulating
generic map over the kids gf where the kids ok contribute the
initial accumulator value in the form of a list 8kcked kids.

geq :: Data a => a -> a -> Bool
geq x y
= let ([], bools) = gmapAccumQ geq’ x’ y
in and ((toConstr x == toConstr y) : bools)
where
x’ = gmapQ Pack x
geq’ :: Data y => [Pack] -> y -> ([Pack],Bool)
geq’ (x:xs) y

= (xs, maybe False (geq y) (unpack x))

Note that the single-type-parametric polymorphic operageq
is used for the recursive calls that compare pairs of kids.cdewe
can readily movegeq to a generic-function class with a single type
parameter. (This is not demonstrated here.) It is a nuistrateve
need to perforntasts for the kids ofk. One can easily see that the
casts will succeed for the case thatindy use the same outermost
term constructor. Alas, the type system cannot infer thit fa

7.3 First class generic functions

An attractive feature of our earlier paper [LP03] is that g
functions are first class: in particular, they can be passedra
guments to other Haskell functions, and they can be retuased
results. Our new scheme shares this advantage, but théoaddlit
static checks make it somewhat less convenient, as we diggus
the rest of this section.

A potent application of first-class status is the ability todu-
larise algorithms into tree traversal and node proces§iogexam-
ple, here is the definition cfverywhere, taken from the original
SYB paper:

-- 01d type

everywhere :: Data a
=> (forall b. Data b => b -> b)
-> a -> a

The call (everywhere f t) takes a generic functiofiand a
data structure, and applie< to every node irt. Indeed, by writing
a type synonym we can make the type even more perspicuous:

type GenericT = forall a. Data a => a -> a
everywhere :: GenericT -> GenericT

A generic transformegenericT has typea->a, for any typea that
is traversable (lies in clas®ata). The everywhere combinator
takes a generic transformer that works on individual nodes,
returns a transformer that works on the entire tree.

Matters are not so easy now thatta has an extra parameter.
To begin with,everywhere's type must look more like this:

type GenericT cxt = forall b. Data cxt b =>b -> b
everywhere :: GenericT cxt -> GenericT cxt

In addition, everywhere needs a proxy type parameter, just like
gmapQ and its cousins (Section 4.2). Swerywhere's type is
actually this one:

everywhere :: Proxy cxt

-> GenericT cxt -> GenericT cxt

(For the record, we can eliminasemeproxy arguments in nested
compositions of generic functions by means of implicit paea
ters [LLMSO00].) Now suppose we want to make an actual traver-
sal (everywhere pickyCtx pickyInc t) where the node-
processing functiopickyInc is defined like this:

pickyInc :: ( Data IncEligible t

, Data IncSalary t
) =>t >t
pickyInc t | incEligible t = incSalary t
| otherwise =t

The details of this restricted function for salary incredeenot
matter; what is important is thatickyInc's context hagwo con-
straints. Alas, that makes it incompatible wétherywhere, which
passes exactly one dictionary to its argument (Seerywere’s
type above). Hence, there is no straightforward way to pietihe
needed type-proxy argumept ckyCtx.

Assuming that Haskell provides proper abstraction ovee typ
classes, one option is to combifiecEligible and IncSalary
into a single class, thus:

class (IncEligible a, IncSalary a) => PickyInc a
-- no methods needed



We instantiate this class as follows:

instance (IncEligible a, IncSalary a)
=> PickyInc a

Clearly, we prefer a (non-Haskell 98) generic instance here
because we do not want to re-enumerate all types covered by

IncEligible andIncSalary. The adapted definition @fickyInc
is constrained by the new helper class:

pickyInc :: Data PickyInc t => t -> t
pickyInc = ... as before ...

One could imagine a more sophisticated form of abstraction

over classes, that automates this clutter, so that a sitglepa-
rameter may transport several constraints instead of juest Dhis
is a topic for future work.

When we consider thencoding for abstraction over type
classes, as defined in Section 4.1, we may avoid the defirafian
helper class, but we must provide a composed dictionary-tyze
product of the dictionary types f@mcEligible andIncSalary:

data PickyIncD a
= PickyIncD { dictE ::
dictI ::

IncEligibleD a,
IncSalaryD a }

The correspondingat instance will simply construct a pair
of dictionaries taking advantage of preexisti®gt instances for
IncEligibleD and IncSalaryD. Now, to call incSalary we
need to extract it from two layers of wrapping:

incSalary’ :: Data PickyIncD a => a -> Int
incSalary’ = incSalaryD (dictI dict)

This proliferation of different versions of the same geoéuinction
is tiresome.

8. More related work

The overall ‘Scrap your boilerplate’ approach has been @et
to other work on generic programming in detail in [LP03, LP04
Likewise, we discussed work related to type-class paraisat&on
and recursive dictionaries in the respective sectionstefbee, we

over the structure of the type. For each instance declaraiiat
does not give an explicit method definition, such as the codssts
and pairs here, the compiler generates a method from thdatmp
by converting the instance type to a sum-of-products fomad a
passing it to the generic code. It can be tricky to get the gene
code right; in this case, there is a buggitize because it counts
only for nullary constructors! Fixing this requires a sedonethod
in the class, which is quite annoying.

Derivable type classes require considerable compiler atipp
The mechanism we propose here requires much less, and what we
do need is useful for other purposes.

8.2 Generic Haskell specifically

In more recent versions of Generic Haskell [CLO3, LCJO3haye
function definitions can involve some sort of default caséss
allows the programmer to fabricate customised generictioms
while reusing fully generic functions as a kind of defaulhi§is

a major improvement over earlier polytypic programmingcpra
tise, where types-specific cases (if any) had to form an iateg
part of the polytypic function declaration. Generic Hatkeale-
fault cases properly support capture of recursion. That@ursive
occurrences of the reused generic function are properiyectdd
to the reusing (i.e., customised) generic function.

Our development shows that Haskell's existing type-classhm
anism can be readily leveraged for open, generic functioitis w
appropriate capture of recursion. Generic Haskell (incdgdts
support for customisation) requires very considerable piten
support, in fact, a new compiler.

8.3 Generics for the masses

Hinze’s recent “generics for the masses” approach [Hin§4]m-
ilarly lightweight as ‘Scrap your boilerplate’. The disguishing
feature of Hinze's new proposal is that it captures essedt@ms
of Generic Haskell in a Haskell 98-based model, which reuir
absolutely no extensions.

are going to focus here on the new enhancement: open, generic

functions.

8.1 Derivable type classes

The “derivable type classes” approach to generic programgmi
[HPOO] is closely related to the work we describe here. Bgth a
proaches assume that a generic function is defined as a nathod
type class, and that the programmer writes type-specifiescsim-
ply by giving an ordinary instance declaration. The bigefiénce is
that in the derivable-type-class approach, the class tefirgpec-
ifies a kind of template that can be used to generate the plater
for example:

class Size a where

gsize :: a -> Int -- Code not correct
gsize {| Unit |} Unit =1
gsize {| a :*: b |} (a :*: b) = gsize a + gsize b

gsize {| a :+: b |} (Inl a) = gsize a
gsize {| a :+: b |} (Inr b) = gsize b

instance Size [a]
instance Size (a,b)

The definition ofgsize in the class declaration is a kind of
generalised default method. The argument in the funny letack

The “generics for the masses” approach exhibits an impbrtan
limitation in the view of generic function customisationhat is,
the class for generics would need to be adapted for each new
type or type constructor that requires a specific case. B i
pernicious form of non-modularity. Hinze has identifiedstiisue
and its consequences: the approach is not useful for a generi
programming library.

8.4 Intensional type analysis

Intensional type analysis [HM95] has made major contrimgito
the notions typecase and induction on type structure. THeea
work favours structural type equivalence, where the notiba
nominal branch in a typecase does not occur. An exceptibwe iset
cent lambda calculus . [VWWO0S5], where the typecase construct
can involve branches for user-defined types. This calcuitsan-
dresses another limitation of early work on intensionaktgmal-
ysis: it allows one to compute the branches in a typecasessxpr
sion by a join operation. So one can parameterise in branélzes
rameterisation in classic SYB functions is similar in effédence,
Az does not yet support modular customisation. Likewise,thko
techniques that aim at enabling type-safe cast as an apeiata
functional language, e.g., [Wei00, BS02, CH02a], do notpsup

{l..1}isatype argument, and the function is defined by induction modular customisation.



9. Conclusions and further work

We have used type-class abstraction and recursive typs-dia-

tionaries to support open, generic functions in an enhat®ewp

your hoilerplate’ approach (aka SYB). This makes SYB usfeiua

new range of generic programming applications, namely tmegs
require generic functions that can later be customised asdaéa

types are added. QuickCheck is a good example, but otherdecl
provision of system-wide generic equality, read, show, faietids;

serialisation libraries in the XML context; extensible daage im-
plementation frameworks; and refinement of generic funsti&ven
on fixed data types.

The first SYB paper focused on traversal problems (“generic

consumers”) for complex data structures, such as thosespwnd-

ing to data models or language syntaxes. The second paped add

support for generic builders (the opposite of generic coress or
traversals), and it described a number of specific techsigueh
as type case for type constructors and multi-parameteersal/
The present, third paper complements cast-based custamisy
type-class-based customisation, which we had until récédra-
lieved to be impossible.

There is plenty left to do. The new proposed extensions for re

cursive dictionaries and type-class abstraction deseedicdted
study of their own: termination conditions for generalisestance
heads, well-foundedness conditions for the constructedrseve

dictionaries, type system formalisation for type-clasgpeeterisa-
tion and context composition. In addition, some correspood re-
sults for different styles of generic programming need tdiseov-

ered. For instance, can we encode all of derivable typeed&dsi-

nally, new application domains of generic programming aay

to be explored: we have argued that first-class genericifursfa-

cilitate computation of generic functions. This calls fesearch on
generic function memoisation and adaptive generic algost
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