
Scrap your boilerplate with class:
extensible generic functions

Ralf Lämmel
Microsoft Corp.

ralfla@microsoft.com

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Abstract
The ‘Scrap your boilerplate’ approach to generic programming al-
lows the programmer to write generic functions that can traverse
arbitrary data structures, and yet have type-specific cases. How-
ever, the original approach required all the type-specific cases to be
supplied at once, when the recursive knot of generic function def-
inition is tied. Hence, generic functions wereclosed. In contrast,
Haskell’s type classes supportopen, or extensible, functions that
can be extended with new type-specific cases as new data typesare
defined. In this paper, we extend the ‘Scrap your boilerplate’ ap-
proach to support this open style. On the way, we demonstratethe
desirability of abstraction over type classes, and the usefulness of
recursive dictionaries.

Categories and Subject Descriptors D.1.m [Programming Tech-
niques]: Generic Programming; D.3.3 [Programming Languages]:
Language Constructs and Features; D.2.13 [Software Engineer-
ing]: Reusable Software

Keywords Generic programming, type classes, extensibility, type-
case, recursive dictionaries

1. Introduction
In the so-called “scrap your boilerplate” approach to generic pro-
gramming, we exploit Haskell’s rich type system to allow pro-
grammers to write “generic” functions [LP03, LP04]. The approach
works very well for constructingclosedgeneric functions; that is,
ones whose special cases are all known in advance. However, until
now, the approach did not work well foropen, or extensible, generic
functions.

We consider a generic programming example to illustrate the
open/closed dichotomy. The QuickCheck library [CH00] involves
the following function:

shrink :: Shrink a => a -> [a]

Shrinking a data structure returns a list of smaller data structures of
the same type. QuickCheck runs the user’s function on randomly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

chosen inputs. When it finds a value that fails a test, it repeatedly
usesshrink to try to find a smaller example that also fails.

Shrinking is clearly a generic programming problem. For many
data structures, a boilerplate definition will do, e.g., return the
largest (immediate or deeply nested) subterms of the same type as
the failing term. But some data structures require special treatment.
For example, we must not shrink a syntax tree representing a
program in such a way that variables become unbound.

Each user of the QuickCheck library defines new data types. So
QuickCheck cannot define, once and for all, all the types for which
shrink behaves specially;shrink absolutely must be extensible.
That is not possible using the existing “scrap your boilerplate”
approach, as Koen Claessen carefully explained to us1. In general
terms, lack of open, generic functions effectively bans generic
programming from use in libraries.

Thus motivated, this paper describes a variant of “scrap your
boilerplate” (henceforth SYB) that directly supports open, generic
functions. We make the following contributions:

• We describe how to program extensible generic functions in
Haskell (Section 3). It was entirely non-obvious (at least to us)
that SYB could be enhanced in a such a manner.

• Our initial presentation assumes that Haskell allows abstraction
overtype classesin addition to normal abstraction overtypes. In
particular, we need to parameterise a class by its superclass — a
feature somewhat reminiscent of mixins. In Section 4 we build
on work by Hughes to show that this extension is not necessary
[Hug99]. However, we argue that abstraction over type classes
is a natural and desirable extension — after all, Haskell lets you
abstract over practically anything else.

• While our new approach builds on Haskell’s type-class sys-
tem — hence the title — it requires one fundamental extension,
which we deliver in this paper: the ability to construct recur-
sive dictionaries (Section 5). This extension is both principled
and independently useful. It has been requested many times by
(hard-core) Haskell users, and was already part of GHC before
we began work on this paper.

We give a case study of the approach applied to QuickCheck in
Section 6, and discuss related work in Section 8. Everythingwe
describe has been implemented, as Haskell code that runs in GHC,
and is available athttp://www.cs.vu.nl/boilerplate/. The
extended SYB is finding its way into new applications of generic
programming such as Foster’s HAIFA (“Haskell Application Inter-
operation Framework Architecture”) [Fos05].

1 Personal communication, October 2004.

2. The problem we tackle
Let’s consider a very simple generic function that computesthe size
of a data structure:

gsize :: Data a => a -> Int
gsize t = 1 + sum (gmapQ gsize t)

Here we use the SYB combinatorgmapQ, a method of theData
class, defined thus:

class Typeable a => Data a where
gmapQ :: (forall b. Data b => b -> r)

-> a -> [r]

The idea is that(gmapQ gsize t) appliesgsize to each of the
immediate children oft, and returns a list of these sizes; thensum
adds up this list, and we conclude by adding 1 (for the root node) to
the total. Instances of theData class can be derived automatically,
but we give two sample instances as an illustration:

instance Data Char where
gmapQ f c = []
-- no immediate subterms to be queried

instance Data a => Data [a] where
gmapQ f [] = []
-- no immediate subterms to be queried
gmapQ f (x:xs) = [f x, f xs]
-- head and tail are queried

TheData class has several other methods, but for much of this pa-
per we will pretend that it has just one method,gmapQ. Everything
we say extends to generic function types other than just queries (c.f.
“Q” in gmapQ).

2.1 Classic customisation

Almost always, however, one wants to define special cases of a
generic function at specific types. For example, suppose that the
datumt contained nodes of typeName:

data Name = N String deriving(Typeable)

Then we might want to count just1 for a Name node, rather than
count up the size of the string inside it. As another example,what
would you expect the call(gsize [4,1]) to return? In fact it
returns5, one for each cons cell, one for the nil at the end of the
list, and one for eachInt; but we might prefer to givegsize list-
specific behaviour, so that it returned (say) the length of the list.

The original SYB paper [LP03] described how to achieve type-
specific behaviour, using type-safe cast and operations defined
on top of it. The main function,gsize, is obtained by combin-
ing a generic functiongsize_default with a type-specific case,
name_size, written by the programmer:

gsize :: Data a => a -> Int
gsize t = gsize_default ‘extQ‘ name_size

‘extQ‘ phone_size

gsize_default :: Data a => a -> Int
gsize_default t = 1 + sum (gmapQ gsize t)

name_size :: Name -> Int
name_size (N _) = 1

phone_size :: PhoneNumber -> Int
-- Another special case

The type of the combinatorextQ2 is the following:

2 “ext” hints at generic functionextension — another term for customisa-
tion.

extQ :: (Typeable a, Typeable b)
=> (a->r) -> (b->r) -> (a->r)

Here,Typeable is a superclass ofData. In the call(extQ f g t),
extQ attempts a cast to decide whether to applyg to t, or to use the
generic methodf. SinceextQ is left-associative, one can compose
together a whole string of calls toextQ to give the function many
type-specific cases.

2.2 The shortcomings ofextQ

However, this way of specialising, or customising, a generic func-
tion suffers from several shortcomings:

• The cast operation ofextQ boils down to a run-time type test.
When a customised generic function is applied to a datum, then
type tests are performed in linear sequence for the type-specific
cases, at every node of a traversed data structure. These type
tests can outweigh other computations by a factor.

• There is no static check for overlap; in a long sequence of
extQ calls one could mistakenly add two cases forName, one
of which would silently override the other.

• The use of cast operations becomes fiddly when we want to
specialise the generic function for typeconstructorsas well as
types[LP04]. A good example is when we want to specialise
gsize for polymorphic lists, as suggested above.

But these problems pale into insignificance beside the main one:

• Once the “knot” is tied, via the mutual recursion between
gsize and gsize default, one can no longer add type-
specific cases togsize. Notice the way thatgsize contains
a list of all its type-specific cases.

In short, the technique is fundamentally non-modular. Suppose a
programmer adds a new typeBoo, and wants to extendgsize to
handle it. The only way to do so is to tie the knot afresh:

my_gsize :: Data a => a -> Int
my_gsize t = gsize_default ‘extQ‘ name_size

‘extQ‘ phone_size
‘extQ‘ boo_size

gsize_default :: Data a => a -> Int
gsize_default t = 1 + sum (gmapQ my_gsize t)

boo_size :: Boo -> Int
...

The amount of new code can be reduced in obvious ways — for
example, pass the recursive function togsize_default as an
argument, rather than calling it by name — but it still forcesthe
programmer to explicitly gather together all the type-specific cases,
and then tie the knot.

2.3 What we want

What makes the situation particularly tantalising is the contrast
with type classes. In Haskell, if we declare a new typeName, we
can extend equality to work overName simply by giving an instance
declaration:

instance Eq Name where
(N s1) == (N s2) = s1==s2

The type system checks that there is only one instance forEq Name.
There is no run-time type test; instead, the correct instance is auto-
matically selected based on static type information. If a function is
polymorphic in a type with equality, then the correct instance can-
not be selected statically, so it is passed as a run-time parameter
instead. For example:

isRev :: Eq a => [a] -> [a] -> Bool
isRev xs ys = (xs == reverse ys)

We know statically that the equality test is performed on twolists,
but the element type of the lists is not known statically — hence
the (Eq a) constraint in the type. At run-time,isRev is passed
a “dictionary” that gives the equality method for values of typea,
and from which it can construct the equality method for listsof type
[a] (again by plain dictionary passing).

Most importantly, though, the programmer never has to gather
together all the instances and define a recursive== that takes all
these instances into account. The result is modular: each time you
define a new type, you also define its overloaded operations.

Unfortunately, overloaded operations (in the Haskell sense) are
not generic; you have to define an instance forevery type. We
want the best of both worlds: generic functions (in the scrap-your-
boilerplate sense) together with modular customisation asnew data
types are added.

3. The idea
Our goal is to combine SYB with the modular extension offeredby
type classes. The pattern we hope to use is this:

• Each time we need a new generic function, such asgsize, we
define a new type class,Size, with gsize as a method.

• At the same time, we provide a generic implementation of
gsize, in the form of an instance for(Size t). (Section 3.5
discusses an alternative.)

• When we later introduce a new data type, such asName in the
example above, we can also add aninstance declaration for
Size that gives the type-specific behaviour ofgsize for that
type. If we omit such as specific instance, we simply inherit the
generic behaviour.

It is helpful to identify three separate protagonists. TheSYB au-
thors(i.e., ourselves) write SYB library code, including the defini-
tion of theData class and its supporting libraries. Thegeneric func-
tion authorwrites another library that gives the class and generic
definitions; in the case ofgsize, this means the classSize and
the generic definition ofgsize. Finally theclient imports this li-
brary, defines new types, and perhaps adds instance declarations
that makegsize behave differently on these new types.

3.1 A failed attempt

Here is a first attempt:

class Size a where
gsize :: a -> Int

instance Size Name where
gsize (N _) = 1

instance Size t where
gsize t = 1 + sum (gmapQ gsize t)

The idea is that theSize Name instance gives theName-specific
behaviour while theSize t instance gives the default, generic be-
haviour on all types that do not matchName. The reader will no-
tice right away that this assumes that the compiler accepts overlap-
ping instances, a non-standard extension to Haskell. Overlapping
instances are very convenient here, but they are not absolutely nec-
essary, as we discuss in Section 3.5. For now, however, let usas-
sume that overlapping instances are allowed.

Overlap is not the big problem here. The problem is that the
Size t instance does not type-check! Recall the type ofgmapQ:

gmapQ :: Data a => (forall b. Data b => b -> r)
-> a -> [r]

There are two issues. First, the call togmapQ in theSize t instance
leads to aData t constraint. So we must addData t to the context
of the instance declaration:

instance Data t => Size t where
gsize t = 1 + sum (gmapQ gsize t)

The second issue is not so easily solved. In any call(gmapQ f t),
the functionf has access to the operations of theData class (and its
superclasses), but no more— just look at the type ofgmapQ. Sadly,
in theSize t instance declaration we passgsize to gmapQ, and
gsize now has this type:

gsize :: Size a => a -> Int

The only obvious way out of this difficulty is to arrange thatSize
is a superclass ofData:

class (Typeable a, Size a) => Data a where ...

We have thus defined a single, extensible generic function3.

3.2 Abstraction over a class

Problem solved? By no means. TheData class is defined in the
SYB library, and we cannot extend it with a new superclass every
time we want a new generic function! That would be a new (and
even more pernicious) form of non-modularity. However, it leads
us in an interesting new direction. Since we do not know what class
should be a superclass ofData, let us parameterise over that class:

-- Pseudo-code
class (Typeable a, cxt a) => Data cxt a where

gmapQ :: (forall b. Data cxt b => b -> r)
-> a -> [r]

instance Data Size t => Size t where
gsize t = 1 + sum (gmapQ gsize t)

Here the variablecxt ranges overtype classes, not overtypes. In
the class declaration forData, the superclass is not fixed, but rather
is specified bycxt. In the generic instance declaration forSize t
we specify which particular superclass we want, namelySize.

We note that Haskell does not offer variables that range over
type classes, but we will assume for now that it does. In Section 4.1
we will show how class parameters can be encoded straightfor-
wardly in standard Haskell.

We are nearly home, but not quite. Let us recall again the
types forgmapQ and gsize, which we write with fully-explicit
quantification:

gmapQ :: forall cxt, a. Data cxt a
=> (forall b. Data cxt b => b -> r)
-> a -> [r]

gsize :: forall a. Size a => a -> Int

So in the call(gmapQ gsize t), the functionf can use any
operations accessible fromData cxt b. In this case we want
cxt to be Size, but there is no way to say so. The universally-
quantifiedcxt type parameter ingmapQ’s type is mentionedonly
in constraints: it is ambiguous. However, if we could specify the
type arguments to use, we would be fine:

-- Pseudo-code
instance Data Size t => Size t where

gsize x = 1 + sum (gmapQ {|Size,t|} gsize x)

3 This solution suffers from a difficulty discussed and solvedin Section 5,
but we pass lightly on since this is a failed attempt anyway.

Here, we imagine another non-standard extension to Haskell,
namely the ability to specify the types at which a polymorphic func-
tion is called. The notationgmapQ {|Size,t|} means “gmapQ
called withcxt = Size and a = t” (refer to the type ofgmapQ
given immediately above). We pass two type arguments, because
gmapQ is quantified over two type parameters, but only the first is
really interesting. Again, we will discuss how to encode this exten-
sion in standard Haskell, in Section 4.2, but the essential intent is
simply to fix the type arguments forgmapQ.

3.3 TheData instances

As in our earlier work, every data type must be made an instance of
classData, either manually or with compiler support. For example,
here are the instance declarations for integers and lists:

instance (cxt Int) => Data cxt Int where
gmapQ f n = []

instance (cxt [a], Data cxt a)
=> Data cxt [a] where

gmapQ f [] = []
gmapQ f (x:xs) = [f x, f xs]

Compared to our earlier work, the only change is an extra context
for each instance declaration —(cxt Int) and(cxt [a]) re-
spectively — to provide the necessary superclass. Here, we need
an instance declaration context that contains structured types (e.g.,
(cxt [a])), so one might worry about the termination of con-
straint solving, a point we return to in Section 5.

3.4 Using the new customisation

In the type-class framework, new instances can be added (by the
client of thegsize library) in an extremely straightforward manner.
For example:

instance Size Name where
gsize n = 1

instance Size a => Size [a] where
gsize [] = 0
gsize (x:xs) = gsize x + gsize xs

The first instance declaration says that aName always has size 1,
regardless of the size of theString inside it (c.f. Section 2.1). The
second instance defines the size of a list to be the sum of the sizes
of its components, without counting the cons cells themselves, the
[] at the end. (Both would be counted by the generic definition.)

One can make new generic functions by combining existing
ones, just as you always can with type classes. For example, sup-
pose we have a generic depth-finding functiongdepth, defined
similarly to gsize. Then we can combine them to find the “den-
sity” of a data structure:

density :: (Size a, Depth a) => a -> Int
density t = gsize t / gdepth t

Notice that the context is explicit about all the generic functions
that are called in the body. Again, this is just standard type-class
behaviour, and we could easily have a single class combiningboth
gsize andgdepth.

3.5 Overlapping instances and default methods

So far we have given thegenericdefinition ofgsize – the one to
use if not overridden – using aninstancedeclaration thus:

instance Data Size t => Size t where
gsize x = 1 + sum (gmapQ {|Size,t|} gsize x)

Notice the “=> Size t”, which makes this instance overlap with
every other instance ofSize. Hence, this approach relies on over-
lapping instances, a non-Haskell 98 feature.

We can avoid overlapping instances, using Haskell 98’sdefault
methoddeclarations instead. We briefly review default methods,
using a trivial example:

class Num a where
(+), (-) :: a -> a -> a
negate :: a -> a
(-) x y = x + negate y

The definition of(-) in the class declaration is the default method
for (-); if an instance declaration defines only(+) andnegate,
the method for(-) is filled in from the default method in the
class declaration. A default method has the same “use this unless
overridden” flavour as do our generic functions.

Consider our classSize:

class Size a where
gsize :: a -> Int
gsize x = ????

The default method forgsize can assume absolutely nothing about
the typea, so it is hard for it to do anything useful. The obvious way
to fix this is to addData as a superclass ofSize, thus:

class Data Size a => Size a where
gsize :: a -> Int
gsize x = 1 + sum (gmapQ {|Size,a|} gsize x)

Now, for every type for which we want to use the generic definition,
we must add a boilerplate instance declaration. For instance:

instance Size a => Size [a]
instance (Size a, Size b) => Size (a,b)

These instances omit the code forgsize, so that it is filled in by
the default-method code from the class declaration. Type-specific
instances, such as that forSize Name, are written just as before,
with explicit type-specific code forgsize.

Compared to the previous approach, using the default method
has the the advantage that it does not require overlapping instances.
There seem to be two disadvantages. First, sinceData is now a su-
perclass ofSize, every type that is an instance ofSize must also be
an instance ofData, even though the methods ofData may be en-
tirely unused for that type; this seems inelegant. Second, one must
give an explicit (albeit brief)Size instance declaration for every
type for whichgsize is to be callable, including ones for which the
generic behaviour is wanted (e.g., lists and pairs above). However,
in some applications this “disadvantage” might be considered an
advantage, because it forces the library client to make a conscious
decision about whether to use a type-specific implementation for
gsize (by supplying code in the instance declaration), or to use
the generic method (by omitting the code).

3.6 Intermediate summary

We have now concluded our overview of the key new idea in this
paper: if we can abstract over type classes, then we can arrange
for modular customisation of generic functions, the challenge we
posed in Section 2. Apart from modular extensibility, the approach
has several other benefits, compared to the cast-based technique of
our earlier work:

• There are no run-time type tests. Instead, execution proceeds
using the existing Haskell type-class mechanism: the overload-
ing is resolved either statically, or by dictionary passing.

• There is no danger of accidentally extending a generic function
in incompatible ways for the same data type. Any attempt to do
so will be reported as an overlapping-instance error.

• No extra complexity is associated with customising the generic
function at type constructors — for example, see the instance
for Size on pairs in the previous sub-section. By contrast, in
our earlier work [LP04], it required distinct generic function
combinators for each new kind of type constructor.

We have assumed a number of extensions to Haskell 98:

• Multi-parameter type classes, a very well-established extension.

• Overlapping instance declarations are required in one formula-
tion, but are entirely avoidable (Section 3.5).

• The ability to abstract over type classes. This extension can be
encoded in ordinary Haskell (Section 4.1).

• Explicit type application; again this is readily encoded inordi-
nary Haskell (Section 4.2).

• The ability to declare an instance for(Size t), wheret is
a type variable; and the possibility of non-type-variable con-
straints in the context of an instance declaration. Both these ex-
tensions are used in the instance declaration for(Size t) in
Section 3.2, for example. They are both illegal in Haskell 98, in
order to guarantee decidability of type inference.

Of these, the last is the only extension that is both unavoidable
and not already widely available. Decidability of type inference
is indeed threatened. In Section 5, we describe a corresponding
Haskell extension that is based on building recursive dictionaries.

4. Encoding in Haskell
In this section we show how to encode the technique discussedin
Section 3 in Haskell with common extensions.

4.1 Encoding abstraction over classes

The biggest apparent difficulty is the question of abstraction over
type classes. John Hughes encountered a very similar problem six
years ago, in the context of a language concept for algebraicdata
types with attached restrictions, and he described a way to encode
abstraction over type classes without extending Haskell [Hug99].
We can adopt Hughes’ techniques for our purposes.

We begin by defining, once and for all, a classSat, with a single
method,dict4:

class Sat a where dict :: a

This class becomes a superclass ofData, thus:

class (Typeable a, Sat (cxt a)) => Data cxt a where
gmapQ :: (forall b. Data cxt b => b -> r)

-> a -> [r]

Now, whenever a generic-library author defines a new class for
a generic function, such asSize, she additionally defines a new
record typeSizeD, which corresponds to thedictionary typefor
the envisaged class. The fields of the record type correspondone-
to-one to the methods of the class:

data SizeD a = Size { gsizeD :: a -> Int }

This type automatically gives us a record selector with the follow-
ing parametrically polymorphic type:

gsizeD :: SizeD a -> a -> Int

It happens in this case that there is only one method, but the
encoding works equally well when there are many. Along with the
new record type, we also give a new instance declaration forSat:

4 Short for “Satisfies” and class “dictionary”, respectively.

instance Size t => Sat (SizeD t) where
dict = SizeD { gsizeD = gsize }

As you can see, both the record type and the instance declaration
are trivially derived from the class declaration ofSize. Now the
library author can give the generic definition forgsize, via an
instance declaration forSize t, just as in Section 3.2:

instance Data SizeD t => Size t where
gsize t = 1 + sum (gmapQ {|SizeD,t|}

(gsizeD dict) t)

Here comes the crucial point:the recursive call togsize is made
by calling(gsizeD dict), instead ofgsize, because the function
passed togmapQ only has access toData SizeD t, and hence to
Sat (SizeD t), but not toSize t. Accidentally callinggsize
instead of(gsizeD dict) would yield a type error.

It is only when one wants to callgsize inside an argument
passed to a rank-2 polymorphic SYB combinator (such asgmapQ)
that one has to callgsizeD dict. Type-specific code never has
to do this. For example, the instances given in Section 3.4 work
unchanged; no encoding is needed:

instance Size Name where
gsize n = 1

instance Size a => Size [a] where
gsize [] = 0
gsize (x:xs) = gsize x + gsize xs

In practise this means that the encoding effort for type-class ab-
straction is limited to generic function libraries; clients of such li-
braries will not be concerned with the encoding.

4.2 Explicit type application

In Section 3.2 we found that we needed to specify the type ar-
guments for a call togmapQ, which we did using the notation
gmapQ {|Size,t|}. There is a standard way to treat this difficulty
in standard Haskell, by using atype-proxy parameter. Suppose that
we givegmapQ the following type:

gmapQ :: forall cxt, a. Data cxt a => Proxy cxt

-> (forall b. Data cxt b => b -> r)
-> a -> [r]

The functiongmap gets a new formal parameter, of typeProxy cxt,
so that the type of an actual parameter will fix the typecxt. The
typeProxy does not need to define any constructor, as it is used for
carrying around type information only:

data Proxy (cxt :: * -> *)

The actual type-proxy parameter for theSize context is con-
structed as follows:

sizeProxy :: Proxy Size
sizeProxy = error "urk"

As a result, we can now call(gmapQ sizeProxy) to fix the cxt
type argument ofgmapQ to beSize:

instance Data SizeD t => Size t where
gsize t = 1 + sum (gmapQ sizeProxy

(gsizeD dict) t)

We definesizeProxy to beerror "urk", to emphasise that it is
only used as atypeproxy; itsvalueis never examined. The defini-
tions ofgmapQ, in instance declarations forData simply ignore the
type-proxy argument. For example (notice the underbars):

instance (Sat (cxt [a]), Data cxt a)
=> Data cxt [a] where

gmapQ _ f [] = []
gmapQ _ (x:xs) = [f x, f xs]

In defining the typeProxy above, we took advantage of two GHC
extensions. First, we omitted all the constructors, since we never
build a concrete value of this type. Second, the type parameter
cxt of Proxy has kind(* -> *), which we indicated with a kind
signature. If we wanted to stick to vanilla Haskell 98, we could
instead write:

data Proxy cxt = P (cxt Int)
-- Any type other than Int would also be fine

The constructorP will never be used, but it specifies the kind of
cxt via its use in the component(cxt Int).

Although we describe type-proxy arguments as an encoding of
“proper” type arguments, they are in some ways superior. In the
hypothetical extension of Section 3.2, allowing type arguments, we
had to pass two type arguments{|Size,t|}, even though only one
was of interest. With type proxies we can identify exactly which
type arguments must be passed. Furthermore, omitting an explicit
type-proxy argument will lead to a somewhat-comprehensible error
message, whereas omitting a genuine type argument might lead to
a less-comprehensible ambiguity error.

4.3 Intermediate summary

The encoding we describe is not heavy. TheSat class andProxy
types are defined in the SYB library, along withData, Typeable
and much else; and the derivation ofData andTypeable instances
is automated in GHC5. In addition to defining a class for the
generic function, the author of a generic library must also define a
corresponding (a) record type, (b)Sat instance, and (c) type proxy.
These definitions are pure boilerplate, and take only a line or two
each. One could employ Template Haskell [SP02] to eliminatethe
need to define (a)–(c) explicitly.

The only tricky points arise in writing the generic code for the
function: the provision of type-proxy parameters, and the necessity
of calling(gizeD dict) instead ofgsize in SYB combinator ar-
guments. The client of a generic library sees no encoding whatso-
ever. However, like any encoding, type errors are likely to be less
perspicuous than if type-class abstraction were directly supported.

For completeness, Figure 1 gives a small but complete example,
which executes in GHC. It is partitioned into the code that has to
be written by the three protagonists.

4.4 Related work

Hughes encountered the need for abstraction over type classes in
the context of restricting type parameters of abstract datatype
constructors [Hug99]. For instance, an operation for a membership
test could be of potentially different types, depending on the actual
data type constructors:

-- An Eq constraint would be fine
-- for a simple set data type
member :: Eq a => a -> PlainSet a -> Bool

-- An Ord constraint would be more efficient
-- for binary trees
member :: Ord a => a -> BinTree a -> Bool

Hence, the type could not be defined once and for all in a type
class. Hughes therefore proposed to enable restricted algebraic data
types, wherePlainSet and BinTree will be constrained,and
these constraints areimpliedby any use of the restricted data types

5 As of writing this paper, compiler support is limited to the previous form of
Data instances, but the source distribution for this paper includes templates
(in the sense of Template Haskell) for the new form ofData instances.

module Example where

import Data.Typeable

--------- SYB library code -----------
data Proxy (a :: * -> *)

class Sat a where { dict :: a }

class (Typeable a, Sat (ctx a))
=> Data ctx a where

gmapQ :: Proxy ctx
-> (forall b. Data ctx b => b -> r)
-> a -> [r]

instance Sat (cxt Char) => Data cxt Char where
gmapQ _ f n = []

instance (Sat (cxt [a]), Data cxt a)
=> Data cxt [a] where

gmapQ _ f [] = []
gmapQ _ f (x:xs) = [f x, f xs]

--------- gsize library code -----------
class Size a where gsize :: a -> Int

data SizeD a = SizeD { gsizeD :: a -> Int }

sizeProxy :: Proxy SizeD
sizeProxy = error "urk"

instance Size t => Sat (SizeD t) where
dict = SizeD { gsizeD = gsize }

instance Data SizeD t => Size t where
gsize t = 1 + sum (gmapQ sizeProxy

(gsizeD dict) t)

--------- gsize client code -----------
instance Size a => Size [a] where
gsize [] = 0
gsize (x:xs) = gsize x + gsize xs

test = (gsize [’a’, ’b’], gsize ’x’)
-- Result = (2,1)

Figure 1. Self-contained sample code for generic size

in type signatures or otherwise. Hughes proposed abstraction over
type classes as an aid for the simulation of restricted data types. For
instance, a collection class would be parameterised as follows:

class Collection c cxt where
member :: cxt a => a -> c a -> Bool

Hughes made the point that restricted data types should receive ex-
tra language support, since the simulation based on “classes pa-
rameterised in classes” would require that the programmer antici-
pates extra parameters for constraints when designing classes such
asCollection. In our case, the parametrisation in a superclass of
Data is intuitive, which makes “classes parameterised in classes”
an appropriate technique for SYB.

Hughes’encodingof abstraction over type classes comprised
the Sat class, but the assumption was made thatexistingclasses
should readily serve as parameters of other classes. In the SYB
context, we need abstraction over type classes for the provision of
newclasses that implement generic functions. In fact, the default

instance of such a new class (or the default method of the class) is
the one and only client of the explicit dictionary.

5. Recursive dictionaries
Suppose we try to evaluate the expression(gsize ’x’) for the
program of Figure 1. The call togsize gives rise to the constraint
Size Char, which the type checker must discharge. Let us see how
the constraint can be satisfied:

Size Char
→ Data SizeD Char Instance headSize t
→ Sat (SizeD Char) Instance headData cxt Char
→ Size Char Instance headSat (SizeD t)

... etc. ...

To satisfy the constraintSize Char we select the generic instance
with the headSize t (because there is noSize instance that is
specific toChar). Using that instance declaration means that we
must now satisfyData SizeD Char. We use the instance dec-
laration for (Data cxt Char), also given in Figure 1, which in
turn means that we must satisfySat (SizeD Char). Using the in-
stance declaration forSat (SizeD t) means that we need to sat-
isfy Size Char — but this is the very constraint from which we
started dictionary construction. There is a danger that constraint
solving will fail to terminate.

Indeed, the instance declaration for(Data cxt Char) is not
legal Haskell 98:

instance Sat (cxt Char) => Data cxt Char where
gmapQ _ f n = []

The instance is illegal because the context (before the “=>”) does
not consist of simple constraints; that is, constraints of the form
C α1...αn, where theαi are just type variables. Haskell 98 imposes
this restriction on instance constraints precisely in order to ensure
that constraint-solving always terminates. GHC requires the flag
-fallow-undecidable-instances to accept the instance decla-
ration, to highlight the danger of non-termination. (Hugs also sup-
ports such a flag.) Incidentally, this problem is not caused by the
Sat encoding; it would arise, in the same way, if parameterisation
over type classes were directly supported. (The problem arises even
for a hard-coded superclass, as discussed in Section 3.1.)

5.1 Cycle-aware constraint resolution

For the present scenario, however, there is a simple solution to
the non-termination problem:build a recursive dictionary. To this
end, a Haskell type checker must detect and discharge cyclesin
constraint resolution. We will now specify and assess the approach
taken in GHC.

We presume that constraint resolution is modelled by a function
solve(S, C) that solves a constraintC, by deducing it from a set of
“given” constraintsS. Recursive dictionaries require the following
behaviour:

solve(S,C)
= succeed, if C ∈ S
= solve(S ∪ C, (D1, . . . , Dn))

if there is a unique instance declaration
that can be instantiated to the form(D1, . . . , Dn) => C

= fail , otherwise

The key point is that in the recursive call tosolve, we addC to
the “given” constraintsS before trying to solve the sub-problems
(D1, . . . , Dn). Dictionary construction is merely an elaboration of
this scheme for constraint resolution. In each step, the algorithm
needs to construct a dictionary to witness the solution, andthe
effect of “addingC to S before the recursive call” is to build a
recursive dictionary.

This technique does not guarantee thatsolve will terminate, of
course. Consider the following declaration:

instance Foo [[a]] => Foo [a] where ...

Using this declaration to satisfy constraintFoo [Char], say, sim-
ply yields a more complicated constraintFoo [[Char]], and so
on. AddingC to S before the recursive call does not solve the halt-
ing problem! It just makessolve terminate more often.

This technique does not guarantee either that the recursively
dictionary is useful. Consider the following declaration:

instance Foo [a] => Foo [a] where ...

The type checker will terminate all right, but only by building a
dictionary that is defined to be equal to itself; any attempt to use
methods from the dictionary will loop at run-time. One mightbe
able to impose useful restrictions on the form of instance heads so
that well-founded recursion is enforced. This refinement islikely to
require a global analysis of the program in question. We leave this
as a topic for future work.

5.2 Related work

The general idea of adding a goal to the set of known facts before
attempting to prove its sub-goals is, of course, far from new—
it amounts to a co-inductive proof rather than an inductive one.
In the programming-language area it crops up when one attempts
to decide the subtyping relation on recursive types [Car86,BH97,
Pie02, LS04]. Our application is unusual in that we derive a re-
cursive proof term from the co-inductive proof, namely a recursive
definition of the dictionary we seek. Our approach also shares sim-
ilarities with tabling and other attempts in logic programming that
improve the termination behaviour of depth-first search andSLD
resolution [SSW00].

Hughes’s paper [Hug99] also mentioned the desirability of de-
tecting loops in context reduction, but for a different reason, and
with a different (and less satisfying solution). His problem con-
cerned instance declarations that looked like

instance Sat (EqD a) => Eq a
instance Eq a => Sat (EqD a)

His proposal was that when an infinite loop like this was detected,
the context-reduction search should back-track, and seek an alter-
native way to satisfy the constraints.

Our proposal is quite different. Looping context reductions suc-
ceed, and build a recursive dictionary, rather than failingas Hughes
suggests. This extension to Haskell’s context-reduction mechanism
has been suggested several times. Here is a recent example. Apro-
grammer wanted to define and use theFix data type:

data Fix f = In (f (Fix f))

data List a x = Nil | Cons a x

instance (Eq a, Eq x) => Eq (List a x) where
Nil == Nil = True
(Cons a b) == (Cons c d) = a == c && b == d
other1 == other2 = False

Subject to an instance forFix, we would like to test for equality
of lists like the following:

test1, test2 :: Fix (List Char)
test1 = In Nil
test2 = In (Cons ’x’ (In Nil))

The expression(test1 == test2) should evaluate toFalse!
Equality on such lists ought to work because data structuresare
finite, and so are the types. But how can we give the equality

instance forFix? Here is the obvious attempt; the instance head
paraphrases the data type declaration forFix:

instance Eq (f (Fix f)) => Eq (Fix f) where
(In a) == (In b) = a == b

Now, the expression(test1 == test2) gives rise to the constraint
Eq (Fix (List Char)), whose simplification resembles unfold-
ing steps of a recursive data type constructor:

Eq (Fix (List Char))
→ Eq (List (Fix (List Char))) InstanceEq (Fix f)
→ Eq (Fix (List Char)) InstanceEq (List a x)
→ Eq (List (Fix (List Char))) ... etc. ...

In this case, too, building a recursive dictionary is precisely the
right thing to do. Ofcoursewe need a recursive function, if we are
to compute equality on a recursive type, andFix (List Char) is
indeed a recursive type, albeit indirectly.

6. Case study: QuickCheck
As a real-life illustration of the ideas of this paper, we nowdescribe
the shrink function from the QuickCheck library, referred to in
the Introduction. For the sake of a concise notation, we willpretend
that Haskell supports abstraction over classes, but everything in this
section is readily encoded using Section 4; the actual code is in the
source distribution that comes with the paper.

The Haskell library QuickCheck makes it easy to test functions.
It generates random data of the appropriate type, feeds it tothe
function, and checks that the result satisfies a programmer-supplied
criterion. QuickCheck is described by a fascinating seriesof papers
[CH00, CH02b], but we concentrate here on a more recent devel-
opment: its ability to refine failing cases. When QuickCheckfinds
inputs that make the function under test fail, these inputs are of-
ten not thesmallestones that make it fail. So it makes sense to
successively “shrink” the failing input, until it no longerfails. This
technique turns out to work surprisingly well in practise.

What is needed, then, is an overloaded functionshrink that
takes a value and returns a list of values of the same type, that have
been shrunk by one “step”:

class Shrink a where
shrink :: a -> [a]

shrinkProxy :: Proxy Shrink
shrinkProxy = error "urk"

We return a list, because there is often more than one way to shrink
a value, and there may be none (e.g., an integer cannot be shrunk).
A “step” is the smallest shrinkage we can do to the value; by
applyingshrink many times, we can shrink a value by more than
one step.

There are two obvious generic strategies for shrinking a valuev:

1. Choose one ofv’s sub-components, where that sub-component
is of the same type asv. For example, one way to shrink a list
(x:xs) is to return justxs, becausexs has the same type as
(x:xs).

2. Shrink one (and only one) ofv’s (immediate) sub-components
by one step. For example, to shrink a pair(a,b) we can either
shrinka or shrinkb.

These strategies suggest the following genericShrink instance:

instance Data Shrink a => Shrink a where
shrink t = children t ++ shrinkOne t

In the next two sections, we will write the helper functions
children andshrinkOne. Meanwhile, whenever the user intro-
duces a new data typeFoo, she can either do nothing (and get the

generic instance above), or give an explicit instance declaration to
override it. The user may want to provide a data type-specificin-
stance in order to ensure invariants during shrinking. For example:

data ListWithLength a = LWL [a] Int
-- Invariant:
-- the Int is the length of the list

instance Data Shrink a
=> Shrink (ListWithLength a) where

shrink (LWL [] n) = []
shrink (LWL (x:xs) n)
= LWL xs (n-1) :

[LWL xs’ n
| xs’ <- shrinkOne xs]

6.1 Finding compatibly-typed children

Let’s writechildren first.
It is a generic function with the following type:

children :: Data Shrink a => a -> [a]

Its business is to look at each of the sub-components of its argu-
ment, and return the “largest” subcomponents that have the same
type as the argument. (For simplicity, we will limit ourselves toim-
mediatesubcomponents here.) The definition ofchildren makes
use of the type-safe cast operation:

children :: Data Shrink a => a -> [a]
children t

= [c | Just c <- gmapQ shrinkProxy cast t]

Recall the type ofcast:

cast :: (Typeable a, Typeable b) => a -> Maybe b

whereTypeable is a superclass ofData. The call(cast x) re-
turnsJust x if the context needs a value of the same type asx
(that is,a=b), andNothing otherwise. The generic map function,
gmapQ appliescast to each oft’s immediate children, in a context
that requires the result to have the typeMaybe τ , wheret has type
τ , so all we need do is to collect theJust members of this list. Note
that we passshrinkProxy to gmapQ, even thoughcast does no
shrinking; it needs onlyTypeable. We need to choosesomeproxy
to comply withgmapQ’s type, and we have a(Data Shrink a)
dictionary to hand.

6.2 Shrinking sub-components

Writing shrinkOne generically is a little harder. Recall that
(shrinkOne t) should applyshrink to all the immediate sub-
components oft, and construct shrunken versions oft from the
result. For example, suppose that:

shrinkOne x = [x1]
shrinkOne y = [y1,y2]

then the result of shrinking the pair(x,y) is this:

shrinkOne (x,y) = [(x1,y), (x,y1), (x,y2)]

Notice that each result has just one shrunken component. Before
thinking about implementing agenericshrinkOne, let us write a
particular case. Here isshrinkOne for pairs:

shrinkOnePr :: (Shrink a, Shrink b)
=> (a,b) -> [(a,b)]

shrinkOnePr (x,y) = [(x’,y) | x’ <- shrink x]
++ [(x,y’) | y’ <- shrink y]

The more components, the more similar-looking list compre-
hensions we have to write. It would be nicer — and we are antici-
pating our needs for generic programming — to usedo-notation:

shrinkOnePr :: (Shrink a, Shrink b)
=> (a,b) -> [(a,b)]

shrinkOnePr (x,y) = do { x’ <- shrink x
; y’ <- shrink y
; return (x’, y’) }

This would not work, partly because the list monad formsall
combinationsof the results as opposed to combinations with one
shrunk position only, and partly because there areno combinations
that include the originalx andy. We can solve both problems with
a single blow, by using a different monad, like this:

data S a = S a [a]

shrinkS :: Shrink a => a -> S a
shrinkS t = S t (shrink t)

The idea is that(shrinkS t) returns a pair(S t ts), con-
taining the original argumentt and a list of one-step shrunken ver-
sions oft. Then we give aninstance declaration that makesS
into a monad, in a different way to lists, with a more selective way
of combining its components. For example:

do { x’ <- S x [x1]
; y’ <- S y [y1,y2]
; return (x’,y’) }

returns the list[(x1,y), (x,y1), (x,y2)]. Furthermore, the
same pattern works no matter how many components are involved.
Here is how we makeS into a monad:

instance Monad S where
return x = S x []

(S x xs) >>= k
= S r (rs1 ++ rs2)
where
S r rs1 = k x
rs2 = [r | x <- xs, let S r _ = k x]

The case forreturn is easy. Now recall that(>>=) has type:

(>>=) :: Monad m => m a -> (a -> m b) -> m b

The un-shrunk resultr is obtained by passing the un-shrunk part
x of the first argument(S x xs) to the rest of the computation
k, and taking the un-shrunk part of the result. The shrunk parts of
(k x), namelyrs1 are useful too, because they are shrunk by one
step, and so form part of the result. The other one-step shrunken
results,rs2, are obtained by taking the shrunken partsxs of the
first argument, passing them to the rest of the computationk, and
taking the un-shrunken part of its result.

Now we can indeed writeshrinkOnePr with do-notation, us-
ing S as its result type:

shrinkOnePr :: (Shrink a, Shrink b)
=> (a,b) -> S (a,b)

shrinkOnePr (x,y) = do { x’ <- shrinkS x
; y’ <- shrinkS y
; return (x’, y’) }

All that remains is to do this generically. Since we want to combine
results monadically, the combinator we need is themonadicmap
gmapM, a cousin ofgmapQ [LP03]:

gmapM :: (Monad m, Data cxt a)
=> Proxy cxt
-> (forall b. Data cxt b => b -> m b)
-> a -> m a

Although gmapM is, in reality, defined using the yet-more-general
combinatorgfoldl, it can best be understood through its instances.
For example, here is the instance for pairs:

instance (cxt (a,b), Data cxt a, Data cxt b)
=> Data cxt (a,b) where

gmapM _ f (x,y)
= do { x’ <- f x

; y’ <- f y
; return (x’,y’) }

Comparing this definition ofgmapM for pairs withshrinkOnePr
above, it should be clear that the generic code forshrinkOne is
simply this:

shrinkOne :: Data Shrink a => a -> [a]
shrinkOne t = ts

where
S _ ts = gmapM shrinkProxy shrinkS t

6.3 Summary

This example shows nicely how important it is to haveextensible
generic functions. QuickCheck is alibrary and cannot, of course,
anticipate all the data types that its clients will define. Furthermore,
the clients must be able to override the generic definition ofshrink
at will, because the generic method of shrinking might breakinvari-
ants of the data structure.

Shrinking is just one example of the need for extensible generic
functions, but QuickCheck has many others. For example the over-
loaded functionarbitrary supports the generation of random
data; just likeshrink, there is a sensible generic definition, but
the client must be able to override it. Incidentally, our choice of
shrink happens to illustrate the continuing usefulness of the type-
safecast function.

7. Discussion and variations
In this section we discuss various alternative design choices, and
contrast the approach described here with our earlier work.

7.1 Run-time type tests

Does this paper render obsolete our earlier work on “scrap your
boilerplate” [LP03, LP04], which relied on run-time type tests? No,
it does not, for several reasons. First, run-time type testsremain
extremely useful, as we saw in theShrink example in Section 6.
In Section 7.2, we will also employcast to model twin traversal.
Second, the extra clutter of the context parameters (in bothtypes
and terms) is a real disadvantage, especially when generic functions
are used in a first-class way, as we will illustrate in Section7.3.

Third, one sometimes positivelywants to enumerate type-
specific cases explicitly! This issue arises with Haskell’stype
classes today. Sometimes you have a list of (first-name, last-name)
pairs: you might want to sort it lexicographically by last name,
then by first name. But the built-inOrd instance for pairs works
the other way round, and Haskell gives no way to use different
instances at different places in the program [WB89]. This often
prompts programmers to define new data types, but that does not
work when you want to sort a single type in more than one way.
Indeed, Haskell’s Prelude has a functionsortBy that takes an ex-
plicit function to use as the ordering. In short, the whole approach
of using instance declarations to incrementally extend functions
(whether generic or not) is rather “global”; if you want morelocal
behaviour then the classic SYB approach might be better.

Lastly, just as dynamic types support run-time compositionof
values that cannot be statically type-checked, soextQ and friends
allow the special cases of a generic function to be composed dy-
namically.

7.2 Twin traversal

We may wonder about the generality of the new SYB style. Can
we rephrase all classical generic programming examples as listed
in [LP03, LP04] so that the generic functions are open ratherthan
closed? There is one challenge: multi-parameter traversal— in
particular, twin traversal as in generic equality. In old style, we had
proposed the following definition of generic equality [LP04]:

geq :: Data a => a -> a -> Bool
geq x y = geq’ x y
where
geq’ :: forall a b. (Data a,Data b)

=> a -> b -> Bool
geq’ x y = (toConstr x == toConstr y)

&& and (gzipWithQ geq’ x y)

HeregzipWithQ is a generic variation on the standardzipWith
operation. It zips two lists of immediate subterms (“kids”). When
recursing into kids withgzipWithQ, we use an independently
polymorphic generic equality; c.f. “forall a b” in the type of
geq’. Clearly, if we wanted to rephrase this approach directly to
the new style “with class”, we will naturally end up requiring type-
class parameterisation for classes withtwo parameters. Alas, our
parameterisation ofData is restricted to classes with a single type
parameter.

Why do we need independent polymorphism? The recursion
into kids, (gzipWithQ geq’ x y) usescurried generic maps
such that one generic map processes the kids ofx to compute a
list of partial applications ofgeq’ that are used in an accumulator
position when processing the kids ofy with another generic (and
accumulating) map. In order to model the list of partial applications
as a normalhomogeneouslist, each partial application must be a
generic function. (That is, we cannot record the types of thekids of
x in the types of the partial applications.) This forced genericity of
partial applications implies independent polymorphism.

Existential quantification combined withcast comes to our res-
cue. We can eliminate the heterogeneity of kid types, and thereby
use a dependently polymorphicgeq in recursive calls. This new
technique works equally well for both old and new SYB style.

We start with an envelope that wraps castable values.
The only way to access such an envelope is indeed by casting:

data Pack = forall x. Typeable x => Pack x
unpack :: Typeable a => Pack -> Maybe a
unpack (Pack x) = cast x

Processing the kids ofx andy is organised as an accumulating
generic map over the kids ofy, where the kids ofx contribute the
initial accumulator value in the form of a list ofPacked kids.

geq :: Data a => a -> a -> Bool
geq x y

= let ([], bools) = gmapAccumQ geq’ x’ y
in and ((toConstr x == toConstr y) : bools)

where
x’ = gmapQ Pack x
geq’ :: Data y => [Pack] -> y -> ([Pack],Bool)
geq’ (x:xs) y
= (xs, maybe False (geq y) (unpack x))

Note that the single-type-parametric polymorphic operationgeq
is used for the recursive calls that compare pairs of kids. Hence, we
can readily movegeq to a generic-function class with a single type
parameter. (This is not demonstrated here.) It is a nuisancethat we
need to performcasts for the kids ofx. One can easily see that the
casts will succeed for the case thatx andy use the same outermost
term constructor. Alas, the type system cannot infer this fact.

7.3 First class generic functions

An attractive feature of our earlier paper [LP03] is that generic
functions are first class: in particular, they can be passed as ar-
guments to other Haskell functions, and they can be returnedas
results. Our new scheme shares this advantage, but the additional
static checks make it somewhat less convenient, as we discuss in
the rest of this section.

A potent application of first-class status is the ability to modu-
larise algorithms into tree traversal and node processing.For exam-
ple, here is the definition ofeverywhere, taken from the original
SYB paper:

-- Old type
everywhere :: Data a

=> (forall b. Data b => b -> b)
-> a -> a

The call(everywhere f t) takes a generic functionf and a
data structuret, and appliesf to every node int. Indeed, by writing
a type synonym we can make the type even more perspicuous:

type GenericT = forall a. Data a => a -> a
everywhere :: GenericT -> GenericT

A generic transformerGenericT has typea->a, for any typea that
is traversable (lies in classData). The everywhere combinator
takes a generic transformer that works on individual nodes,and
returns a transformer that works on the entire tree.

Matters are not so easy now thatData has an extra parameter.
To begin with,everywhere’s type must look more like this:

type GenericT cxt = forall b. Data cxt b => b -> b
everywhere :: GenericT cxt -> GenericT cxt

In addition,everywhere needs a proxy type parameter, just like
gmapQ and its cousins (Section 4.2). Soeverywhere’s type is
actually this one:

everywhere :: Proxy cxt
-> GenericT cxt -> GenericT cxt

(For the record, we can eliminatesomeproxy arguments in nested
compositions of generic functions by means of implicit parame-
ters [LLMS00].) Now suppose we want to make an actual traver-
sal (everywhere pickyCtx pickyInc t) where the node-
processing functionpickyInc is defined like this:

pickyInc :: (Data IncEligible t
, Data IncSalary t
) => t -> t

pickyInc t | incEligible t = incSalary t
| otherwise = t

The details of this restricted function for salary increasedo not
matter; what is important is thatpickyInc’s context hastwo con-
straints. Alas, that makes it incompatible witheverywhere, which
passes exactly one dictionary to its argument (seeeverywere’s
type above). Hence, there is no straightforward way to provide the
needed type-proxy argumentpickyCtx.

Assuming that Haskell provides proper abstraction over type
classes, one option is to combineIncEligible andIncSalary
into a single class, thus:

class (IncEligible a, IncSalary a) => PickyInc a
-- no methods needed

We instantiate this class as follows:

instance (IncEligible a, IncSalary a)
=> PickyInc a

Clearly, we prefer a (non-Haskell 98) generic instance here
because we do not want to re-enumerate all types covered by
IncEligible andIncSalary. The adapted definition ofpickyInc
is constrained by the new helper class:

pickyInc :: Data PickyInc t => t -> t
pickyInc = ... as before ...

One could imagine a more sophisticated form of abstraction
over classes, that automates this clutter, so that a singlectx pa-
rameter may transport several constraints instead of just one. This
is a topic for future work.

When we consider theencoding for abstraction over type
classes, as defined in Section 4.1, we may avoid the definitionof a
helper class, but we must provide a composed dictionary type— a
product of the dictionary types forIncEligible andIncSalary:

data PickyIncD a
= PickyIncD { dictE :: IncEligibleD a,

dictI :: IncSalaryD a }

The correspondingSat instance will simply construct a pair
of dictionaries taking advantage of preexistingSat instances for
IncEligibleD and IncSalaryD. Now, to call incSalary we
need to extract it from two layers of wrapping:

incSalary’ :: Data PickyIncD a => a -> Int
incSalary’ = incSalaryD (dictI dict)

This proliferation of different versions of the same generic function
is tiresome.

8. More related work
The overall ‘Scrap your boilerplate’ approach has been compared
to other work on generic programming in detail in [LP03, LP04].
Likewise, we discussed work related to type-class parameterisation
and recursive dictionaries in the respective sections. Therefore, we
are going to focus here on the new enhancement: open, generic
functions.

8.1 Derivable type classes

The “derivable type classes” approach to generic programming
[HP00] is closely related to the work we describe here. Both ap-
proaches assume that a generic function is defined as a methodof a
type class, and that the programmer writes type-specific cases sim-
ply by giving an ordinary instance declaration. The big difference is
that in the derivable-type-class approach, the class definition spec-
ifies a kind of template that can be used to generate the boilerplate;
for example:

class Size a where
gsize :: a -> Int -- Code not correct
gsize {| Unit |} Unit = 1
gsize {| a :*: b |} (a :*: b) = gsize a + gsize b
gsize {| a :+: b |} (Inl a) = gsize a
gsize {| a :+: b |} (Inr b) = gsize b

instance Size [a]
instance Size (a,b)

The definition ofgsize in the class declaration is a kind of
generalised default method. The argument in the funny brackets
{|..|} is a type argument, and the function is defined by induction

over the structure of the type. For each instance declaration that
does not give an explicit method definition, such as the ones for lists
and pairs here, the compiler generates a method from the template,
by converting the instance type to a sum-of-products form, and
passing it to the generic code. It can be tricky to get the generic
code right; in this case, there is a bug ingsize because it counts1
only for nullary constructors! Fixing this requires a second method
in the class, which is quite annoying.

Derivable type classes require considerable compiler support.
The mechanism we propose here requires much less, and what we
do need is useful for other purposes.

8.2 Generic Haskell specifically

In more recent versions of Generic Haskell [CL03, LCJ03], generic
function definitions can involve some sort of default cases.This
allows the programmer to fabricate customised generic functions
while reusing fully generic functions as a kind of default. This is
a major improvement over earlier polytypic programming prac-
tise, where types-specific cases (if any) had to form an integral
part of the polytypic function declaration. Generic Haskell’s de-
fault cases properly support capture of recursion. That is,recursive
occurrences of the reused generic function are properly redirected
to the reusing (i.e., customised) generic function.

Our development shows that Haskell’s existing type-class mech-
anism can be readily leveraged for open, generic functions with
appropriate capture of recursion. Generic Haskell (including its
support for customisation) requires very considerable compiler
support, in fact, a new compiler.

8.3 Generics for the masses

Hinze’s recent “generics for the masses” approach [Hin04] is sim-
ilarly lightweight as ‘Scrap your boilerplate’. The distinguishing
feature of Hinze’s new proposal is that it captures essential idioms
of Generic Haskell in a Haskell 98-based model, which requires
absolutely no extensions.

The “generics for the masses” approach exhibits an important
limitation in the view of generic function customisation. That is,
the class for generics would need to be adapted for each new
type or type constructor that requires a specific case. This is a
pernicious form of non-modularity. Hinze has identified this issue
and its consequences: the approach is not useful for a generic
programming library.

8.4 Intensional type analysis

Intensional type analysis [HM95] has made major contributions to
the notions typecase and induction on type structure. The earlier
work favours structural type equivalence, where the notionof a
nominal branch in a typecase does not occur. An exception is the re-
cent lambda calculusλL [VWW05], where the typecase construct
can involve branches for user-defined types. This calculus also ad-
dresses another limitation of early work on intensional type anal-
ysis: it allows one to compute the branches in a typecase expres-
sion by a join operation. So one can parameterise in branches. Pa-
rameterisation in classic SYB functions is similar in effect. Hence,
λL does not yet support modular customisation. Likewise, all other
techniques that aim at enabling type-safe cast as an operation in a
functional language, e.g., [Wei00, BS02, CH02a], do not support
modular customisation.

9. Conclusions and further work
We have used type-class abstraction and recursive type-class dic-
tionaries to support open, generic functions in an enhanced‘Scrap
your boilerplate’ approach (aka SYB). This makes SYB usefulfor a
new range of generic programming applications, namely onesthat
require generic functions that can later be customised as new data
types are added. QuickCheck is a good example, but other include:
provision of system-wide generic equality, read, show, andfriends;
serialisation libraries in the XML context; extensible language im-
plementation frameworks; and refinement of generic functions even
on fixed data types.

The first SYB paper focused on traversal problems (“generic
consumers”) for complex data structures, such as those correspond-
ing to data models or language syntaxes. The second paper added
support for generic builders (the opposite of generic consumers or
traversals), and it described a number of specific techniques such
as type case for type constructors and multi-parameter traversal.
The present, third paper complements cast-based customisation by
type-class-based customisation, which we had until recently be-
lieved to be impossible.

There is plenty left to do. The new proposed extensions for re-
cursive dictionaries and type-class abstraction deserve dedicated
study of their own: termination conditions for generalisedinstance
heads, well-foundedness conditions for the constructed recursive
dictionaries, type system formalisation for type-class parameterisa-
tion and context composition. In addition, some correspondence re-
sults for different styles of generic programming need to bediscov-
ered. For instance, can we encode all of derivable type classes? Fi-
nally, new application domains of generic programming are ready
to be explored: we have argued that first-class generic functions fa-
cilitate computation of generic functions. This calls for research on
generic function memoisation and adaptive generic algorithms.

Acknowledgements
We thank Koen Claessen and Simon Foster for their thoughtfulcritique
of our early SYB approaches leading to the insight that extensible generic
functions are urgently needed. Many thanks to James Cheney,Simon Mar-
low and Fermin Reig for helpful feedback on drafts of this paper. We also
acknowledge the opportunity to present this work at a Generic Haskell
meeting in January 2005. Ulf Norell, Sean Seefried and SimonFoster con-
tributed Template Haskell code for the derivation of instances of theData
class. We are grateful for helpful comments by the ICFP referees.

References
[BH97] Michael Brandt and Fritz Henglein. Coinductive axiomatization

of recursive type equality and subtyping. InProc 3rd
International Conference on Typed Lambda Calculi and
Appliactions (TLCA’97), Nancy, France, volume 1210 of
Lecture Notes in Computer Science, pages 63–81. Springer
Verlag, 1997.

[BS02] A.I. Baars and S.D. Swierstra. Typing dynamic typing. In
Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP 2002), pages 157–166.
ACM Press, 2002.

[Car86] L Cardelli. Amber. In G Cousineau, PL Curien, and B Robinet,
editors,Combinators and functional programming languages.
LNCS 242, Springer Verlag, 1986.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. InACM SIG-
PLAN International Conference on Functional Programming
(ICFP’00), pages 268–279, Montreal, September 2000. ACM.

[CH02a] J. Cheney and R. Hinze. A lightweight implementation of
generics and dynamics. InProceedings of the ACM SIGPLAN
Workshop on Haskell, pages 90–104. ACM Press, 2002.

[CH02b] Koen Claessen and John Hughes. Testing monadic codewith
QuickCheck. In Manuel Chakravarty, editor,Proceedings of
the 2002 Haskell Workshop, Pittsburgh, October 2002.

[CL03] Dave Clarke and Andres Löh. Generic Haskell, Specifically. In
Proceedings of the IFIP TC2/WG2.1 Working Conference on
Generic Programming, pages 21–47. Kluwer, B.V., 2003.

[Fos05] Simon D. Foster. “HAIFA: The Haskell Application Inter-
operation Framework Architecture”; web site, 2004–2005.
http://www.repton-world.org.uk/mediawiki/index.
php/HAIFA_Wiki.

[Hin04] Ralf Hinze. Generics for the masses. InProceedings of
the ACM SIGPLAN International Conference on Functional
Programming (ICFP 2004), pages 236–243. ACM Press, 2004.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism
using intensional type analysis. InProceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles Of
Programming Languages (POPL 1995), pages 130–141. ACM
Press, 1995.

[HP00] Ralf Hinze and Simon Peyton Jones. Derivable type classes.
In Graham Hutton, editor,Proceedings of the 2000 Haskell
Workshop, Montreal, number NOTTCS-TR-00-1 in Technical
Reports, September 2000.

[Hug99] RJM Hughes. Restricted data types in haskell. In Erik
Meijer, editor, Proceedings of the 1999 Haskell Work-
shop, number UU-CS-1999-28 in Technical Reports, 1999.
ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-1999/1999-28.pdf.

[LCJ03] Andres Löh, Dave Clarke, and Johan Jeuring. Dependency-
style Generic Haskell. InProceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP
2003), pages 141–152. ACM Press, August 25–29 2003.

[LLMS00] Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B.
Shields. Implicit parameters: dynamic scoping with static
types. InProceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles Of Programming Languages (POPL
2000), pages 108–118. ACM Press, 2000.

[LP03] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical approach to generic programming. InACM SIGPLAN
International Workshop on Types in Language Design and
Implementation (TLDI’03), pages 26–37, New Orleans, January
2003. ACM.

[LP04] Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate:
reflection, zips, and generalised casts. InACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’04),
pages 244–255, Snowbird, Utah, September 2004. ACM.

[LS04] K Zhuo Ming Lu and M Sulzmann. An implementation of
subtyping among regular expression types. InProc Asian
Programming Languages Symposium (APLAS’04), volume
3302 of Lecture Notes in Computer Science, pages 57–73.
Springer Verlag, 2004.

[Pie02] Benjamin Pierce.Types and programming languages. MIT
Press, 2002.

[SP02] T Sheard and SL Peyton Jones. Template meta-programming
for Haskell. In Manuel Chakravarty, editor,Proceedings of the
2002 Haskell Workshop, Pittsburgh, October 2002.

[SSW00] Konstantinos F. Sagonas, Terrance Swift, and DavidScott
Warren. An abstract machine for efficiently computing queries
to well-founded models.J. Log. Program., 45(1-3):1–41, 2000.

[VWW05] Dimitrios Vytiniotis, Geoffrey Washburn, and Stephanie
Weirich. An Open and Shut Typecase. InProceedings of
the ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI 2005). ACM Press, January 2005.

[WB89] PL Wadler and S Blott. How to make ad-hoc polymorphism
less ad hoc. InProc 16th ACM Symposium on Principles of
Programming Languages, Austin, Texas. ACM, January 1989.

[Wei00] S. Weirich. Type-safe cast: (functional pearl). InProceedings
of the ACM SIGPLAN International Conference on Functional
Programming (ICFP 2000), pages 58–67. ACM Press, 2000.

