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Abstract

The ‘Scrap your boilerplate’ approach to generic programming al-
lows the programmer to write generic functions that can traverse
arbitrary data structures, and yet have type-specific cases. How-
ever, the original approach required all the type-specific cases t o be
supplied at once, when the r ecursive knot of generic function def-
inition is tied. Hence, generic functions were closed. In contrast,
Haskell’s type classes support open, or extensible, functions that
can be extended with new type-specific cases as new data types are
defined. In this paper, we extend the ‘Scrap your boilerplate’ ap-
proach to support this open style. On the way, we demonstrate the
desirability of abstraction over type classes, and the u sefulness of
recursive dictionaries.

Categories and Subject D escriptors D.1.m [Programming Tech-
niques]: Generic Programming; D.3.3 [Programming Languages]:



Language Constructs and Features; D.2. 13 [Software Engineer-
ing]: Reusable Software

Keywords Generic programming, type classes, extensibility, type-
case, r ecursive dictionaries

1. Introduction
In the so-called “scrap your b oilerplate” approach to generic pro-
gramming, we exploit Haskell’s rich type system to allow pro-
grammers to write “generic” functions [LP03, LP04]. The approach
works very well for constructing closed generic functions; that is,
ones whose special cases are all known in advance. However, until
now, the approach did not work well for open, or extensible, generic
functions.

We consider a generic programming example to illustrate the
open/closed dichotomy. The QuickCheck library [CH00] involves
the following function:

shrink : : Shrink a => a -> [a]

Shrinking a data structure returns a list of smaller data structures of
the same type. QuickCheck runs the user’s function on randomly
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chosen inputs. When it finds a value that fails a test, it repeatedly
uses shrink to try t o find a smaller example t hat also fails.

Shrinking is clearly a generic programming problem. For many
data structures, a boilerplate definition will do, e.g., return the
largest (immediate or deeply nested) subterms of the same type as
the failing term. But some data structures require special treatment.
For example, we must not shrink a syntax tree representing a
program in such a way that variables b ecome unbound.

Each user of the QuickCheck library defines new data types. So
QuickCheck cannot define, once and for all, all the types for which
shrink behaves specially; shrink absolutely must be extensible.
That is not possible u sing the existing “scrap your b oilerplate”
approach, as Koen Claessen carefully explained to us1. In general
terms, lack of open, generic functions effectively b ans generic
programming from use in libraries.

Thus motivated, this p aper describes a variant of “scrap your
boilerplate” (henceforth SYB) that directly supports open, generic
functions. We make the following contributions:

• We describe how to program extensible generic functions in
Haskell (Section 3). It was entirely non-obvious (at least to us)



that SYB could b e enhanced in a such a manner.

• Our initial p resentation assumes that Haskell allows abstraction
over type classes in addition to normal abstraction over types. In
particular, we need to parameterise a class by its superclass — a
feature somewhat r eminiscent of mixins. In Section 4 we b uild
on work b y Hughes to show that this extension is not necessary
[Hug99]. However, we argue that abstraction over type classes
is a natural and desirable extension — after all, Haskell lets you
abstract over p ractically anything else.

• While our new approach builds on Haskell’s type-class sys-
tem — hence the title —  it requires one fundamental extension,
which we deliver in this paper: the ability to construct recur-
sive dictionaries (Section 5). T his extension is both principled
and independently useful. It has b een requested many times b y
(hard-core) Haskell users, and was already part of GHC b efore
we began work on this paper.

We give a case study of the approach applied to QuickCheck in
Section 6, and discuss related work in Section 8. E verything we
describe has been implemented, as Haskell code that runs in GHC,
and is available at h ttp : //www .cs .vu. .nl/boilerplate/. The
extended SYB is finding its way into new applications of generic
programming such as Foster’s HAIFA (“Haskell Application Inter-
operation Framework Architecture”) [Fos05].

1 Personal communication, October 2004.

2. The problem we tackle



Let’s consider a very simple generic function that computes the size
of a data structure:

gsize : : Data a => a -> Int
gsize t = 1 + sum (gmapQ gsize t)

Here we use the SYB combinator gmapQ, a method of the Data
class, defined thus:

class Typeable a => Data a where
gmapQ : : (forall b. . Data b => b -> r)

-> a -> [r]

The idea is that (gmapQ gsize t) applies gsize to each of the
immediate children of t, and returns a list of these sizes; then sum
adds up this list, and we conclude by adding 1 (for the root node) to
the total. Instances of the Data class can be derived automatically,
but we give two sample instances as an illustration:

instance Data Char where
gmapQ f c = []
-- no immediate subterms to be queried

instance Data a => Data [a] where
gmapQ f [] = []
-- no immediate subterms to be queried

gmapQ f (x: :xs) = [f x, , f xs]
-- head and tail are queried

The Data class has several other methods, but for much of this pa-
per we will pretend that it has j ust one method, gmapQ. Everything
we say extends to generic function types other thanj ust queries (c.f.
“Q” in gmapQ).

2.1 Classic customisation



Almost always, however, one wants to define special cases of a
generic function at specific types. For example, suppose that the
datum t contained nodes of type Name:

data Name = N String deriving( Typeable )

Then we might want to count j ust 1for a Name node, r ather than
count up the size of the string inside it. As another example, what
would you expect the c all (gsize [4 ,1] ) to return? I n f act it
returns 5, one for each cons cell, one for the nil at the end of the
list, and one for each Int; but we m ight p refer t o give g size list-
specific b ehaviour, so t hat i t returned (say) the length o f the list.

The original SYB p aper [LP03] d escribed how t o achieve t ype-
specific b ehaviour, u sing t ype-safe c ast and o perations defined
on top o f it. The m ain f unction, g size, i s obtained b y combin-
ing a generic function g size_default w ith a t ype-specific c ase,
name_size, written b y the p rogrammer:

gsize : : D ata a = > a -> Int
gsize t = g size_default ‘ extQ ‘ n ame_size

‘ extQ ‘ p hone_size

gsize_default : : D ata a = > a - > Int
gsize_default t = 1 + sum (gmapQ g size t )

name_size : : N ame - > Int
name_size (N _ ) = 1

phone_size : : P honeNumber - > Int
-- Another special c ase

The t ype o f the c ombinator e xtQ2 is the f ollowing:

2 “ext” h ints a t generic function e xtension — another t erm for c ustomisa-
tion.



extQ : : (Typeable a, Typeable b)
=> (a->r) -> (b->r) -> (a->r)

Here, Typeable is a superclass of Data. In the call (extQ f g t)
extQ attempts a cast to decide whether to apply g to t,or to use the
generic method f.Since extQ is left-associative, one can compose
together a whole string of calls to extQ to give the function many
type-specific cases.

2.2 The shortcomings of extQ

However, this way of specialising, or customising, a generic func-
tion suffers from several shortcomings:

• The cast operation of extQ boils down to a run-time type test.
When a customised generic function is applied to a datum, then
type tests are performed in linear sequence for the type-specific
cases, at every node of a traversed data structure. These type
tests can outweigh other computations by a factor.

• There is no static check for overlap; in a long sequence of
extQ calls one could mistakenly add two cases for Name, one
of which would silently override the other.

• The use of cast operations becomes fiddly when we want to
specialise the generic function for type constructors as well as
types [LP04]. A good example is when we want to specialise
gsize for polymorphic lists, as suggested above.

But these problems pale into insignificance beside the main one:

• Once the “knot” is tied, via the mutual recursion between
gsize and gsized efault, one can no longer add type-
specific cases to gsize. Notice the way that gsize contains
a list of all its type-specific cases.



In short, the technique is fundamentally non-modular. Suppose a
programmer adds a new type Boo, and wants to extend gsize to
handle it. The only way to do so is to tie the knot afresh:

my_gsize : : Data a => a -> Int
my_gsize t = gsize_default ‘ extQ ‘ name_size

‘ extQ ‘ p hone_size
‘ extQ ‘ boo_size

gsize_default : : D ata a => a -> Int
gsize_default t = 1 + sum (gmapQ my_gsize t)

boo_size : : Boo -> Int
. . .

The a mount o f new c ode can b e reduced i n obvious w ays — for
example, p ass the r ecursive function t o g size_default a s a n
argument, r ather t han calling i t b y n ame — but i t s till f orces the
programmer t o e xplicitly g ather together all the t ype-specific c ases,
and t hen tie the k not.

2.3 What w e w ant

What m akes the s ituation p articularly t antalising i s the contrast
with t ype classes. I n Haskell, i f w e declare a new t ype N ame, w e
can e xtend equality t o w ork o ver N ame s imply b y g iving a n instance
declaration:

instance E q N ame w here
(N s1) = = (N s2) = s 1==s2

The type s ystem checks t hat there is only one instance for E q N ame.
There i s n o run-time t ype t est; instead, the correct instance i s a uto-
matically selected b ased o n s tatic t ype i nformation. I f a function i s
polymorphic i n a t ype w ith e quality, t hen the correct instance c an-



not b e selected s tatically, s o i t i s p assed a s a run-time p arameter
instead. For example:

isRev : : Eq a => [a] -> [a] -> Bool
isRev xs ys = (xs == reverse ys)

We k now statically that the equality test is p erformed on two lists,
but the element type of the lists is not known statically — h ence
the (Eq a) constraint in the type. At run-time, isRev is p assed
a “dictionary” that gives the equality method for values of t ype a,
and from which it can construct the equality method for l ists of type
[a] (again b y plain dictionary p assing).

Most importantly, though, the programmer never has t o gather
together all the instances and define a r ecursive == that takes all
these instances into account. The r esult is modular: each time you
define a new type, you also define its overloaded operations.

Unfortunately, overloaded operations (in the Haskell sense) are
not generic; you have to define an instance for every type. We
want the b est of both worlds: generic functions (in the scrap-your-
boilerplate sense) together with modular customisation as new data
types are added.

3. The idea

Our goal is to combine SYB with the modular extension offered b y
type classes. The pattern we h ope to use is this:

• Each time we need a new generic function, such as gsize, we
define a new type class, Size, with gsize as a method.

• At the same time, we provide a generic implementation of
gsize, in the form of an instance for (Size t). (Section 3.5
discusses an alternative.)

• When we later introduce a new data type, such as Name in the
example above, we can also add an instance declaration for



Size that gives the type-specific behaviour of gsize for that
type. If we omit such as specific instance, we simply inherit the
generic b ehaviour.

It is helpful to identify three separate protagonists. The SYB au-
thors (i.e., ourselves) write SYB library code, including the defini-
tion of the Data class and its supporting libraries. The g enericf unc-
tion author writes another library that gives the class and generic
definitions; in the case of gsize, t his means the class Size and
the generic definition of gsize. Finally the client imports this li-
brary, defines new types, and perhaps adds instance declarations
that make gsize b ehave differently on t hese new types.

3.1 A failed attempt

Here is a first attempt:

class Size a where
gsize : : a -> Int

instance Size Name where
gsize (N _) = 1

instance Size t where
gsize t = 1 + sum (gmapQ gsize t)

The idea is that the Size Name instance gives the Name-specific
behaviour while the Size t instance gives the default, generic be-
haviour on all types that do not match Name. The r eader will no-
tice r ight away that this assumes that the compiler accepts overlap-
ping instances, a non-standard extension to Haskell. Overlapping
instances are very convenient h ere, but they are not absolutely nec-
essary, as we discuss in Section 3.5. For now, however, let u s as-
sume that overlapping instances are allowed.

Overlap is not the big problem h ere. The problem is t hat the



Size t instance does not type-check! Recall the type of gmapQ:

gmapQ : : Data a => (forall b . Data b => b -> r)
-> a -> [r]

There are two issues. First, the call to gmapQ in the Size t instance
leads to a Data t constraint. So we must add D ata t to the context
of the instance declaration:

instance Data t => Size t where
Datat = >

gsize t = 1 + sum (gmapQ gsize t)

The second issue is not so easily solved. In any call (gmapQ f t),
thefunction f has access to the operations of the Data class (and its
superclasses), but no more —  just look at the type of gmapQ. Sadly,
in the Size t instance declaration we pass gsize to gmapQ, and
gsize now has this type:

gsize : : Size a => a -> Int

The only obvious way out of this difficulty is to arrange that Size
is a superclass of Data:

class (Typeable a , Size a) => Data a where . . .

We have thus defined a single, extensible generic function3.

3.2 Abstraction over a class

Problem solved? By no means. The Data class is defined in the
SYB library, and we cannot extend it with a new superclass every
time we want a new generic function! That would be a new (and
even more pernicious) form of non-modularity. However, it leads
us in an interesting new direction. Since we do not know what class
should b e a superclass of Data, let us p arameterise over that class:

-- Pseudo-code



class (Typeable a , c xta ) => Data cxt a where
gmapQ : : (forall b . Data cxt b => b -> r)

-> a -> [r]

instance Data S ize t => Size t where
gsize t = 1 + sum (gmapQ gsize t)

Here the variable cxt ranges over type classes, not over types. In
the class declaration for Data, the superclass is not fixed, but rather
is specified by cxt. In the generic instance declaration for Size t
we specify which particular superclass we want, namely Size.

We note that Haskell does not offer variables that r ange over
type classes, but we will assume for now that it does. In Section 4 . 1
we will show how class p arameters can be encoded straightfor-
wardly in standard Haskell.

We are nearly h ome, but not quite. Let us r ecall again the
types for gmapQ and gsize, which we write with fully-explicit
quantification:

gmapQ : : forall cxt , a. . Data cxt a
=> (forall b . Data cxt b => b -> r)
-> a -> [r]

gsize : : forall a . Size a => a -> Int

So in the call (gmapQ gsize t), the function f can use any
operations accessible from Data cxt b . In this case we want
cxt to be Size, but there is no way to say so. The universally-
quantified cxt type p arameter in gmapQ’s type is mentioned only
in constraints: it is ambiguous. However, if we could specify the
type arguments to u se, we would b e fine:

-- Pseudo-code



instance Data S ize t => Size t w here
gsize x = 1 + sum (gmapQ { | Size ,t | } gsize x)

3This solution suffers from a difficulty discussed and solved in Section 5,
but we pass lightly on since this is a failed attempt anyway.
Here, we imagine another non-standard extension t o Haskell,
namely the ability to specify the types at which a polymorphic func-
tion is called. The notation gmapQ { | Size ,t | } means “gmapQ
called with cxt = Size and a = t” (refer to the type of gmapQ
given immediately above). We pass two type arguments, because
gmapQ is quantified over two type p arameters, but only the first is
really interesting. Again, we will discuss how to e ncode this exten-
sion in standard Haskell, in Section 4.2, but the essential intent is
simply to fix the type arguments for gmapQ.

3.3 The D ata instances

As in our earlier work, every data type must be made an instance of
class Data, either manually or with compiler support. For example,
here are the instance declarations for integers and lists:

instance (cxt Int) => Data cxt Int where
gmapQ f n = []

instance (cxt [a] , Data cxt a)
=> Data cxt [a] where

gmapQ f [] = []
gmapQ f (x :xs) = [f x , f xs]

Compared to our earlier work, the only change is an extra context
for each instance declaration — (cxt Int) and (cxt [a] ) re-
spectively — to provide the n ecessary superclass. Here, we need
an instance declaration context that contains structured types (e.g.,



(cxt [a] ) ), so one might worry about the termination of con-
straint solving, a p oint we r eturn to in Section 5.

3.4 Using the new customisation

In the type-class framework, new instances can b e added (by the
client of the gsize library) in an extremely straightforward manner.
For example:

instance Size Name where
gsize n = 1

instance Size a => Size [a] where
gsize [] = 0
gsize (x :xs) = gsize x + gsize xs

The first instance declaration says that a Name always has size 1,
regardless of the size of the String inside it (c.f. Section 2.1). The
second instance defines the size of a list to be the sum of the sizes
of its components, without counting the c ons cells themselves, the
[] at the end. (Both would b e counted by the generic definition.)

One can make new generic functions b y combining existing
ones, j ust as you always can with type classes. For example, sup-
pose we have a generic depth-finding function gdepth, defined
similarly to gsize. T hen we can combine them to find the “den-
sity” of a data structure:

density : : (Size a, Depth a) => a -> Int
density t = gsize t / gdepth t

Notice that the context is explicit about all the generic functions
that are called in the body. A gain, this is j ust standard type-class
behaviour, and we could easily have a single class combining b oth
gsize and gdepth.



3.5 Overlapping instances and default methods

So far we have given the generic definition of gsize – the one to
use if not overridden – using an instance declaration thus:

instance Data Size t => Size t where
gsize x = 1 + sum (gmapQ { | Size ,t | } gsize x)

Notice the “=> Size t”, which makes t his instance overlap with
every other instance of Size. Hence, this approach r elies on over-
lapping instances, a non-Haskell 98 feature.

We can avoid overlapping instances, u sing Haskell 98’s default
method declarations instead. We briefly r eview default methods,
using a trivial example:

class Num a where
(+) , (-) : : a -> a -> a
negate : : a -> a
(-) x y = x + negate y

The definition of (-) in the class declaration is the default method
for (-) ; if an instance declaration defines only (+) and negate,
the method for (-) is filled in from the default m ethod in the
class declaration. A default method has the same “use this u nless
overridden” flavour as do our generic functions.

Consider our class Size:

class Size a where
gsize : : a -> Int
gsize x = ????

The default method for gsize can assume absolutely nothing about
the type a, so it is hard for it to do anything useful. The obvious way
to fix this is to add Data as a superclass of Size, thus:

class Data Size a => Size a w here



gsize : : a -> Int
gsize x = 1 + sum (gmapQ {| Size ,a | } gsize x)

Now, for every type for which we want to use the generic definition,
we must add a b oilerplate instance declaration. For instance:

instance Size a => Size [a]
instance (Size a, Size b ) => Size (a,b)

These instances omit the code for gsize, so that it is filled in b y
the default-method code from the class declaration. T ype-specific
instances, such as that for Size Name, are written j ust as before,
with explicit type-specific code for gsize.

Compared to the previous approach, using the default method
has the the advantage that it does not require overlapping instances.
There seem to b e two disadvantages. First, since Data is now a su-
perclass of Size, every t ype that i s an instance of Size m ust also be
an instance of Data, even though the methods of Data may be en-
tirely unused for that type; this seems inelegant. Second, one must
give an explicit (albeit brief) Size instance declaration for every
type for which gsize is to be callable, including ones for which the
generic b ehaviour i s wanted (e.g., lists and p airs above). However,
in some applications this “disadvantage” might b e considered an
advantage, because it forces the library client t o make a conscious
decision about whether to use a t ype-specific implementation for
gsize (by supplying code in the instance declaration), or to use
the generic method (by omitting the code).

3.6 Intermediate summary

We have now concluded our overview of the key new idea in this
paper: if we can abstract over type classes, then we can arrange
for modular customisation of generic f unctions, the challenge we
posed in Section 2. Apart from modular extensibility, the approach



has several other b enefits, compared to the c ast-based technique of
our earlier work:

• There are no run-time type tests. Instead, execution proceeds
using the existing Haskell type-class mechanism: the overload-
ing is resolved either statically, or by dictionary passing.

• There is no danger of accidentally extending a generic function
in incompatible ways for the same data type. Any attempt to do
so will b e reported as an overlapping-instance error.

• No extra complexity is associated with customising the generic
function at type constructors — for example, see the instance
for Size on pairs in the previous sub-section. By contrast, in
our earlier work [LP04], it required distinct generic function
combinators for each new kind of type constructor.

We have assumed a number of extensions t o Haskell 98:

• Multi-parameter type classes, a very well-established extension.

• Overlapping instance declarations are required in one formula-
tion, but are entirely avoidable (Section 3.5).

• The ability to abstract over t ype classes. This extension can be
encoded in ordinary Haskell (Section 4 . 1).

• Explicit t ype application; again this is readily encoded in ordi-
nary Haskell (Section 4.2).

• The ability to declare an instance for (Size t), where t is
a type variable; and the possibility of non-type-variable con-
straints in the context of an instance declaration. Both these ex-
tensions are used in the instance declaration for (Size t) in
Section 3.2, for example. T hey are b oth illegal in Haskell 98, in
order t o guarantee decidability of type inference.

Of these, the last is the only extension that is b oth unavoidable



and not already widely available. Decidability of type inference
is indeed threatened. In Section 5, we describe a corresponding
Haskell extension that is based on building r ecursive dictionaries.

4. Encoding in Haskell

In this section we show how to encode the technique discussed in
Section 3 in Haskell with common extensions.

4.1 Encoding abstraction over classes

The biggest apparent difficulty is the question of abstraction over
type classes. J ohn Hughes encountered a very similar problem six
years ago, in the context of a language concept for algebraic data
types with attached r estrictions, and he described a way to encode
abstraction over type classes without extending Haskell [Hug99].
We can adopt Hughes’ techniques for our purposes.

We begin by defining, once and for all, a class Sat, with a single
method, dict4:

class Sat a where dict : : a

This class becomes a superclass of Data, thus:

class (Typeable a, Sat( cxta )) => D ata cxt a where
gmapQ : : (forall b . Data cxt b => b -> r)

-> a -> [r]

Now, whenever a generic-library author defines a new class for
a generic function, such as Size, she additionally defines a new
record type SizeD, which corresponds to the d ictionary type for
the envisaged class. The fields of the r ecord type correspond one-
to-one to the methods of the class:

data SizeD a = Size { gsizeD : : a -> Int }



This type automatically gives us a r ecord selector with the follow-
ing parametrically polymorphic type:

gsizeD : : SizeD a -> a -> Int

It happens in t his case that there is only one method, but the
encoding works equally well when there are many. Along with the
new r ecord type, we also give a new instance declaration for Sat:

4 Short for “Satisfies” and class “dictionary”, respectively.
instance Size t => Sat (SizeD t) w here

dict = SizeD { gsizeD = gsize }

As you can see, b oth the record type and the instance declaration
are trivially derived from the class declaration of Size. Now the
library author can give the generic definition for gsize, via an
instance declaration for Size t,j ust as in Section 3.2:

instance Data SizeD t => Size t where
gsize t = 1 + sum (gmapQ { | SizeD ,t | }

(gsizeD dict) t)

Here comes the crucial p oint: the recursive call to gsize is made
by calling (gsizeD dict) , instead of gsize, because the function
passed to gmapQ only has access to Data SizeD t, and hence to
Sat (SizeD t) , but not to Size t. Accidentally calling gsize
instead of (gsizeD dict) would y ield a type error.

It is only when one wants to call gsize i nside an argument
passed to a r ank-2 p olymorphic SYB combinator (such as gmapQ)
that one has to call gsizeD dict. Type-specific code never has
to do this. For example, the instances given in Section 3.4 work
unchanged; n o encoding is needed:

instance Size Name where



gsize n = 1

instance Size a => Size [a] w here
gsize [] = 0
gsize (x :xs) = gsize x + gsize xs

In practise this means that the encoding effort for type-class ab-
straction is limited to generic function libraries; clients of such li-
braries will not b e concerned with the encoding.

4.2 Explicit type application

In Section 3.2 we found that we needed t o specify the type ar-
guments for a call to gmapQ, which we did using the notation
gmapQ { | Size ,t | }.There is a standard way to treat this difficulty
in standard Haskell, b y using a type-proxy p arameter. Suppose that
we give gmapQ the following t ype:

gmapQ : : forall cxt , a . Data cxt a => Proxy cxt
-> (forall b. Data cxt b => b -> r)
-> a -> [r]

The function gmap gets a new f ormal parameter, of type Proxy cxt,
so that the type of an actual parameter will fix the type cxt. The
type Proxy does not need to define any constructor, as i t is u sed for
carrying around type i nformation only:

data Proxy (cxt : : * -> *)

The actual type-proxy p arameter for the Size context is con-
structed as follows:

sizeProxy : : Proxy Size
sizeProxy = error "urk"

As a result, we can now call (gmapQ sizeProxy) to fix the cxt



type argument of gmapQ to be Size:

instance Data SizeD t => Size t where
gsize t = 1 + sum (gmapQ sizeProxy

(gsizeDd ict) t)

We define sizeProxy t o be error "urk", to emphasise that it is
only used as a type p roxy; its value is never examined. The defini-
tions of gmapQ, in instance declarations for D ata simply ignore the
type-proxy argument. For example (notice the u nderbars):

instance (Sat (cxt [a] ) , Data cxt a)
=> Data cxt [a] where

gmapQ _ f [] = []
gmapQ _ (x :xs) = [f x , f xs]

In defining the type Proxy above, we took advantage of two GHC
extensions. First, we omitted all the constructors, since we never
build a concrete value of this type. Second, the type parameter
cxt of Proxy has kind (* -> *) ,which we indicated with a kind
signature. If we wanted to stick to vanilla Haskell 98, we could
instead write:

data Proxy cxt = P (cxt Int)
-- Any type other than Int would also b e fine

The constructor P will never be used, but it specifies the kind of
cxt via its use in the component (cxt Int) .

Although we describe type-proxy arguments as an encoding of
“proper” type arguments, they are in some ways superior. In the
hypothetical extension of Section 3.2, allowing type arguments, we
had to pass two type arguments { | Size ,t | }, even though only one
was of interest. With type proxies we can identify exactly which
type arguments must be passed. Furthermore, omitting an explicit
type-proxy argument will lead to a somewhat-comprehensible error



message, whereas omitting a genuine t ype argument might lead to
a less-comprehensible ambiguity error.

4.3 Intermediate summary

The encoding we describe i s not heavy. The Sat class and Proxy
types are defined in the SYB library, along with Data, Typeable
and much else; and the derivation of D ata and Typeable instances
is automated in GHC5. In addition to defining a class for the
generic function, the author of a generic library must also define a
corresponding (a) record type, (b) Sat instance, and (c) type proxy.
These definitions are pure b oilerplate, and take only a line or two
each. One could employ Template Haskell [SP02] to eliminate the
need to define (a)–(c) explicitly.

The only tricky points arise in writing the generic code for the
function: the provision of type-proxy p arameters, and the necessity
of calling (gizeD dict) instead of gsize in SYB combinator ar-
guments. The client of a generic library sees no encoding whatso-
ever. However, like any encoding, type errors are likely to be less
perspicuous than if type-class abstraction were directly supported.

For completeness, F igure 1gives a small but complete example,
which executes in GHC. It is p artitioned into the code that has to
be written by the three protagonists.

4.4 Related work

Hughes encountered the need for abstraction over type classes in
the context of restricting type p arameters of abstract data type
constructors [Hug99]. For instance, an operation for a membership
test could b e of p otentially different types, depending on the actual
data type constructors:

-- An Eq constraint would b e fine
-- for a simple set data type



member : : Eq a => a -> PlainSet a -> Bool

-- An Ord constraint w ould b e m ore efficient
-- for b inary trees
member : : Ord a => a -> BinTree a -> Bool

Hence, the type could not b e defined once and for all in a type
class. Hughes therefore proposed to enable restricted algebraic data
types, where PlainSet and BinTree will be constrained, and
these constraints are implied b y any use of the restricted data types

5 As ofwriting this paper, compiler support is limited to the previous form of
Data instances, but the source distribution for this paper includes templates
(in the sense of Template Haskell) for the new form o f Data instances.





Figure 1. Self-contained sample code for generic size

in type signatures or otherwise. Hughes proposed abstraction over
type classes as an aid for the simulation of restricted data types. For
instance, a collection class would be parameterised as follows:

class Collection c cxt where
member : : cxt a => a -> c a -> Bool

Hughes made the p oint that r estricted data types should receive ex-
tra language support, since the simulation b ased on “classes pa-
rameterised in classes” would require that the p rogrammer antici-
pates extra parameters for constraints when designing classes such
as Collection. In our case, the parametrisation in a superclass of
Data is intuitive, which makes “classes p arameterised in classes”
an appropriate technique for SYB.

Hughes’ encoding of abstraction over type classes comprised
the Sat class, but the assumption was made that existing classes



should readily serve as p arameters of other classes. In the SYB
context, we need abstraction over type classes for the p rovision of
new classes that implement generic functions. In fact, the default
instance of such a new class (or the default method of the c lass) is
the one and only client of the explicit dictionary.

5. Recursive dictionaries

Suppose we try to evaluate the expression (gsize ’ x ’ ) for the
program of Figure 1. The call to gsize gives rise to the constraint
Size Char, which the type checker must discharge. Let us see how
the constraint can b e satisfied:

Size Char
→ Data SizeD Char Instance head Size t
→ Sat (SizeD Char) Instance head D ata cxt Char
→ Size Char Instance head Sat (SizeD t)

... etc. ...

To satisfy the constraint Size Char we select the generic instance
with the head Size t (because there is no Size instance that is
specific to Char). Using that instance declaration means that we
must now satisfy Data SizeD Char. We use the instance dec-
laration for (Data cxt Char) , also given in F igure 1, which in
turn means that we must satisfy Sat (SizeD Char) . Using the in-
stance declaration for Sat (SizeD t) means that we need to sat-
isfy Size Char — but this is the very constraint f rom which we
started dictionary construction. There is a danger that constraint
solving will fail to terminate.

Indeed, the instance declaration for (Data cxt Char) is not
legal Haskell 98:

instance Sat (cxt Char) => Data cxt Char where
gmapQ _ f n = []



The instance is illegal because the context (before the “=>”) does
not consist of simple constraints; that is, constraints of the form
C α1 ...αn, where the αi arej ust type variables. Haskell 98 imposes
this restriction on instance constraints precisely i n order to ensure
that constraint-solving always terminates. GHC requires the flag
-fallow-undecidable-instances to accept the instance decla-
ration, to highlight the danger of non-termination. (Hugs also sup-
ports such a flag.) Incidentally, this problem is not caused by the
Sat encoding; it would arise, in the same way, if parameterisation
over type classes were directly supported. (The problem arises even
for a hard-coded superclass, as discussed in Section 3.1.)

5.1 Cycle-aware c onstraint resolution

For the present scenario, however, there is a simple solution to
the non-termination problem: build a recursive dictionary. T o this
end, a Haskell type checker must detect and discharge cycles in
constraint r esolution. W e will now specify and assess the approach
taken in GHC.

We presume that constraint r esolution is modelled b y a function
solve(S, C) that solves a constraint C, b y deducing i t f rom a set of
“given” constraints S. Recursive dictionaries require the following
behaviour:

solve(S, C)
= succeed, if C ∈ S
= solve(S ∪ C, (D1,. . . , Dn))

if there is a unique instance declaration
that can be instantiated to the form (D1, . . . , Dn) => C

= fail, otherwise

The key p oint is t hat in the r ecursive call to solve, we add C t o
the “given” constraints S before trying to solve the sub-problems



(D1, . . . , Dn). D ictionary construction is merely an elaboration of
this scheme for constraint resolution. In each step, the algorithm
needs to construct a dictionary to witness the solution, and the
effect of “adding C to S before the recursive call” is to b uild a
recursive dictionary.

This technique does not guarantee that solve will terminate, of
course. Consider the following declaration:

instance Foo [ [a] ] => Foo [a] where . . .
Using this declaration to satisfy constraint Foo [Char] , say, sim-
ply yields a more complicated constraint Foo [ [Char] ] , and so
on. Adding C to S b efore the r ecursive call does not solve the h alt-
ing problem! It just makes solve terminate more often.

This technique does not guarantee either that the r ecursively
dictionary is useful. Consider the following declaration:

instance Foo [a] => Foo [a] w here . . .

The type checker will terminate all r ight, but only b y building a
dictionary that is defined to be e qual to itself; any attempt to use
methods from the dictionary will loop at run-time. One might b e
able to impose useful restrictions on the form of instance h eads so
that well-founded recursion is enforced. This refinement is likely to
require a global analysis of the program in question. W e leave this
as a topic for future work.

5.2 Related work

The general idea of adding a goal to the set of known facts b efore
attempting to p rove its sub-goals is, of course, far from new
it amounts to a co-inductive p roof r ather than an inductive one.
In the p rogramming-language area it crops up when one attempts
to decide the subtyping relation on recursive types [Car86, BH97,



Pie02, LS04]. Our application is unusual in that we derive a re-
cursive proof term from the co-inductive p roof, namely a recursive
definition of the dictionary we seek. Our approach also shares sim-
ilarities with tabling and other attempts in logic programming that
improve the termination b ehaviour of depth-first search and SLD
resolution [SSW00].

Hughes’s p aper [Hug99] also mentioned the desirability of de-
tecting loops in context reduction, but for a different reason, and
with a different (and less satisfying solution). His problem con-
cerned instance declarations that looked like

instance Sat (EqD a) => Eq a
instance Eq a => Sat (EqD a)

His proposal was that when an infinite loop like this was detected,
the context-reduction search should back-track, and seek an alter-
native way t o satisfy the constraints.

Our proposal is quite different. Looping context reductions suc-
ceed, and build a recursive dictionary, r ather than failing as Hughes
suggests. This extension to Haskell’s context-reduction mechanism
has been suggested several times. Here is a recent example. A p ro-
grammer wanted to define and use the Fix data type:

data Fix f = In (f (Fix f ) )

data List a x = Nil | Cons a x

instance (Eq a, Eq x) => Eq (List a x) where
Nil == Nil = True
(Cons a b ) == (Cons c d) = a == c && b == d
other1 == other2 = False

Subject to an instance for Fix, we would like to test for equality
of lists like the following:



test1, test2 : : Fix (List Char)
test1 = In Nil
test2 = In (Cons ’ x ’ (In Nil) )

The expression (test1 == test2) should evaluate to False!
Equality on such lists ought to work because data structures are
finite, and so are the types. But how can we give the equality
instance for Fix? Here is the obvious attempt; the instance head
paraphrases the data type declaration for Fix:

instance Eq (f (Fix f ) ) => Eq (Fix f) w here
(In a) == (In b) = a == b

Now, the expression (test1 == test2) gives rise to the constraint
Eq (Fix (List Char) ) , whose simplification resembles unfold-
ing steps of a recursive data type constructor:

Eq (Fix (List Char) )
→ Eq (List (Fix (List Char) )) Instance Eq (Fix f)
→ Eq (Fix (List Char) ) Instance Eq (List a x)
→ Eq (List (Fix (List Char) )) ... etc. ...

In this case, too, building a recursive dictionary is precisely the
right thing to do. Of course we need a recursive function, if we are
to compute equality on a recursive type, and Fix (List Char) is
indeed a recursive type, albeit indirectly.

6. Case study: QuickCheck

As a real-life illustration of the ideas of this paper, we now describe
the shrink function from the QuickCheck library, referred to in
the Introduction. For the sake of a concise notation, we will pretend
that Haskell supports abstraction over classes, but everything in this
section is readily encoded u sing Section 4 ; the actual code is in the
source distribution that comes with the p aper.



The Haskell library QuickCheck makes it easy to test functions.
It generates random data of the appropriate type, feeds it to the
function, and checks that the result satisfies a programmer-supplied
criterion. QuickCheck is described by a fascinating series of p apers
[CH00, CH02b], but we concentrate here on a more r ecent devel-
opment: its ability to refine failing cases. W hen QuickCheck finds
inputs that make the function under test fail, these inputs are of-
ten not the smallest ones that make it fail. So it makes sense to
successively “shrink” the failing input, u ntil it no longer fails. This
technique turns out to work surprisingly well in practise.

What is needed, then, is an overloaded function shrink that
takes a value and returns a list of values of the same type, that have
been shrunk b y one “step”:

class Shrink a where
shrink : : a -> [a]

shrinkProxy : : Proxy Shrink
shrinkProxy = error "urk"

We return a list, because there is often more than one way to shrink
a value, and there may b e none (e.g., an integer cannot be shrunk).
A “step” is the smallest shrinkage we can do to the value; b y
applying shrink many times, we can shrink a value by more than
one step.

There are two obvious generic strategies for shrinking a value v:

1. Choose one of v’s sub-components, where that sub-component
is of the same type as v. For example, one way to shrink a list
(x :xs) is to return j ust xs, because xs has the same type as
(x :xs) .

2. Shrink one (and only one) of v’s (immediate) sub-components
by one step. For example, to shrink a pair (a,b) we can either



shrink a or shrink b .

These strategies suggest the following generic Shrink instance:

instance D ata Shrink a => Shrink a where
shrink t = children t ++ shrinkOne t

In the next two sections, we will write the helper functions
children and shrinkOne. Meanwhile, whenever the user intro-
duces a new data type Foo, she can either do nothing (and get the
generic instance above), or give an explicit instance declaration to
override it. The user may want to provide a data type-specific in-
stance in order to ensure invariants during shrinking. For example:

data ListWithLength a = LWL [a] Int
-- Invariant :
-- the Int is the length of the list

instance D ata Shrink a
=> Shrink (ListWithLength a) where

shrink (LWL [] n) = []
shrink (LWL (x :xs) n )

= LWL xs (n-1) :
[ LWL xs ’ n
| xs ’ <- shrinkOne xs]

6.1 Finding compatibly-typed children

Let’s write children first.
It is a generic function with the following type:

children : : Data Shrink a => a -> [a]

Its business is to look at each of the sub-components of its argu-
ment, and return the “largest” subcomponents that have the same
type as the argument. (For simplicity, we will limit ourselves to im-



mediate subcomponents here.) The definition of children makes
use of the type-safe cast operation:

children : : Data Shrink a => a -> [a]
children t

= [c | Just c <- gmapQ shrinkProxy cast t]

Recall the type of cast:

cast : : (Typeable a, Typeable b ) => a -> Maybe b

where Typeable is a superclass of Data. The call (cast x) re-
turns Just x if the context needs a value of the same type as x
(that is, a=b), and Nothing otherwise. The generic map function,
gmapQ applies cast to each of t’s immediate children, in a context
that requires the result to have the type Maybe τ, where t has type
τ, so all we need do is to collect the Just members of this list. Note
that we pass shrinkProxy to gmapQ, even though cast does no
shrinking; it needs only Typeable. We need to choose some proxy
to comply with gmapQ’s type, and we have a (Data Shrink a)
dictionary to hand.

6.2 Shrinking sub-components

Writing shrinkOne generically is a little harder. Recall that
(shrinkOne t) should apply shrink to all the immediate sub-
components of t, and construct shrunken versions of t from the
result. For example, suppose that:

shrinkOne x = [x1]
shrinkOne y = [y1,y2]

then the r esult of shrinking the pair (x ,y) is this:

shrinkOne (x ,y) = [(x1,y) , (x ,y1) , (x ,y2) ]

Notice that each r esult has j ust one shrunken component. Before



thinking about implementing a generic shrinkOne, let us write a
particular case. Here is shrinkOne for pairs:

shrinkOnePr : : (Shrink a, Shrink b)
=> (a ,b) -> [(a,b) ]

shrinkOnePr (x ,y) = [ (x ’ ,y) | x ’ <- shrink x]
++ [ (x ,y ’ ) | y ’ <- shrink y]

The more components, the more similar-looking list compre-
hensions we have to write. It would be nicer — and we are antici-
pating our needs for generic programming —  to use do-notation:

shrinkOnePr : : (Shrink a, Shrink b )
=> (a,b) -> [(a ,b) ]

shrinkOnePr (x ,y) = do { x ’ <- shrink x
; y ’ <- shrink y
; return (x ’ , y ’ ) }

This would not work, p artly because the list monad forms all
combinations of the results as opposed to combinations with one
shrunk position only, and partly because there are no combinations
that include the original x and y. We can solve b oth problems with
a single b low, b y using a different monad, like this:

data S a = S a [a]

shrinkS : : Shrink a => a -> S a
shrinkS t = S t (shrink t)

The idea is that (shrinkS t) returns a p air (S t ts) , con-
taining the original argument t and a list of one-step shrunken ver-
sions of t. Then we give an instance declaration t hat makes S
into a monad, in a different way to lists, with a more selective way
of combining its components. For example:



do { x ’ <- S x [x1]
; y ’ <- S y [y1,y2]
; return (x ’ ,y ’ ) }

returns the list [(x1,y) , (x ,y1) , (x ,y2) ] . Furthermore, the
same pattern works no matter how many components are involved.
Here is how we make S into a monad:

instance Monad S where
return x = S x []

(S x xs) >>= k
= S r (rs1 ++ rs2)
where

S r rs1 = k x
rs2 = [r | x <- xs , let S r _ = k x]

The case for return is easy. Now r ecall that (>>=) has type:

(>>=) : : Monad m => m a -> (a -> m b ) -> m b

The un-shrunk result r is obtained b y passing the un-shrunk p art
x of the first argument (S x xs) to the rest of the computation
k, and taking the un-shrunk p art of the result. The shrunk p arts of
(k x) , namely rs1 are useful too, because they are shrunk by one
step, and so form part of the result. The other one-step shrunken
results, rs2, are obtained b y taking the shrunken parts xs of the
first argument, passing them to the r est of the computation k, and
taking the un-shrunken p art of its result.

Now we can indeed write shrinkOnePr with do-notation, us-
ing S as its r esult t ype:

shrinkOnePr : : (Shrink a, Shrink b )



=> (a,b) -> S (a ,b)
shrinkOnePr (x ,y) = do { x ’ <- shrinkS x

; y ’ <- shrinkS y
; return (x ’ , y ’ ) }

All that remains is to do this generically. Since we want to combine
results m onadically, the combinator we need is the monadic map
gmapM, a cousin of gmapQ [LP03]:

gmapM : : (Monad m , Data cxt a)
=> Proxy cxt
-> (forall b . Data cxt b => b -> m b )
-> a -> m a

Although gmapM is, in reality, defined using the yet-more-general
combinator gfoldl, it can best be understood through its instances.
For example, here is the instance for pairs:

instance (cxt (a,b) , Data cxt a , Data cxt b)
=> D ata cxt (a,b) w here

gmapM _ f (x ,y)
= do { x ’ <- f x

; y’ <- f y
; return (x ’ ,y ’ ) }

Comparing this definition ofgmapM for pairs with shrinkOnePr
above, it should be clear that the generic code for shrinkOne is
simply this:

shrinkOne : : Data Shrink a => a -> [a]
shrinkOne t = ts

where
S _ ts = gmapM shrinkProxy shrinkS t

6.3 Summary



This example shows nicely how important it is to h ave extensible
generic functions. QuickCheck is a library and cannot, of course,
anticipate all the data types that its clients will define. F urthermore,
the clients must b e able to override the generic definition of shrink
at will, because the generic method of shrinking might b reak invari-
ants of the data structure.

Shrinking is j ust one example of the need for extensible generic
functions, but QuickCheck has m any others. For example the over-
loaded function arbitrary supports the generation of r andom
data; j ust l ike shrink, there i s a sensible generic definition, but
the client must b e able to override it. Incidentally, our c hoice of
shrink happens to illustrate the continuing u sefulness of the type-
safe cast function.

7. Discussion and variations

In this section we discuss various alternative design choices, and
contrast the approach described h ere with our earlier work.

7.1 Run-time type tests

Does this p aper render obsolete our earlier work on “scrap your
boilerplate” [LP03, LP04], which relied on run-time type tests? No,
it does not, for several reasons. First, run-time t ype t ests remain
extremely useful, as we saw in the Shrink example in Section 6.
In Section 7.2, we will also employ cast to model twin traversal.
Second, the extra clutter of the context p arameters (in b oth types
and terms) is a real disadvantage, especially when generic functions
are used in a first-class way, as we will illustrate in Section 7.3.

Third, one sometimes p ositively wants to enumerate type-
specific cases explicitly! T his issue arises with Haskell’s type
classes today. Sometimes you h ave a list of (first-name, last-name)
pairs: you might want to sort it lexicographically b y last name,



then b y first name. But the built-in Ord instance for pairs works
the other way round, and Haskell gives no way to use different
instances at different places in the program [WB89]. T his often
prompts programmers to define new data types, but that does not
work when you want to sort a single type in more t han one way.
Indeed, Haskell’s Prelude has a function sortBy that takes an ex-
plicit function to use as the ordering. In short, the whole approach
of using instance declarations to incrementally extend functions
(whether generic or n ot) is r ather “global”; if you want more local
behaviour then the classic SYB approach might be better.

Lastly, j ust as dynamic types support run-time c omposition of
values that cannot be statically type-checked, so extQ and friends
allow the special cases of a generic function t o be composed dy-
namically.

7.2 Twin traversal

We may wonder about the generality of the new SYB style. Can
we rephrase all classical generic programming examples as listed
in [LP03, L P04] so that the generic functions are open r ather than
closed? T here is one challenge: multi-parameter t raversal — in
particular, twin traversal as in generic equality. In old style, we had
proposed the following definition of generic equality [LP04]:

geq : : Data a => a -> a -> Bool
geq x y = geq’ x y

where
geq’ : : forall a b . (Data a ,Data b )

=> a -> b -> Bool
geq’ x y = (toConstr x == toConstr y)

&& and (gzipWithQ geq’ x y)

Here gzipWithQ is a generic variation on the standard zipWith
operation. It zips two lists of immediate subterms (“kids”). When



recursing into k ids with gzipWithQ, we use an independently
polymorphic generic equality; c.f. “forall a b ” in the type of
geq’ . Clearly, if we wanted to rephrase this approach directly to
the new style “with class”, we will n aturally end up r equiring type-
class parameterisation for classes with two p arameters. Alas, our
parameterisation of Data is restricted to classes with a single type
parameter.

Why do we need independent polymorphism? The r ecursion
into k ids, (gzipWithQ geq’ x y) u ses curried generic m aps
such that one generic map processes the kids of x to compute a
list of partial applications of geq’ that are used in an accumulator
position when p rocessing the k ids of y with another generic (and
accumulating) map. I n order t o model the list of partial applications
as a normal homogeneous list, each partial application must be a
generic function. (That is, we cannot record the t ypes of the k ids of
x in the t ypes of the partial applications.) This forced genericity of
partial applications implies independent p olymorphism.

Existential quantification combined with cast comes to our res-
cue. We can eliminate the heterogeneity of kid types, and thereby
use a dependently p olymorphic geq in recursive calls. This new
technique works equally well for b oth old and new SYB style.

We start with an envelope that wraps castable values.
The only way t o access such an envelope is indeed by casting:

data Pack = forall x . Typeable x => Pack x
unpack : : Typeable a => Pack -> M aybe a
unpack (Pack x) = cast x

Processing the k ids of x and y is organised as an accumulating
generic map over the kids of y, where the k ids of x contribute the
initial accumulator value in the form of a list of Packed k ids.

geq : : Data a => a -> a -> Bool



geq x y
= let ( [] , b ools) = gmapAccumQ geq’ x ’ y

in and ( (toConstr x == toConstr y) : b ools)
where

x ’ = gmapQ Pack x
geq’ : : Data y => [Pack] -> y -> ( [Pack] ,Bool)
geq’ (x :xs) y

= (xs , m aybe False (geq y) (unpack x) )

Note that the single-type-parametric polymorphic operation geq
is u sed for the recursive calls that compare pairs of kids. Hence, we
can readily move geq to a generic-function class with a single type
parameter. (This is not demonstrated h ere.) It is a nuisance that we
need to perform casts for the k ids of x. One can easily see that the
casts will succeed for the case t hat x and y use the same outermost
term constructor. A las, the type system cannot infer this fact.

7.3 First class generic functions

An attractive feature of our earlier p aper [LP03] is that generic
functions are first class: in p articular, they can be passed as ar-
guments to other Haskell functions, and they can b e returned as
results. Our new scheme shares this advantage, but the additional
static checks make it somewhat less convenient, as we discuss in
the rest of this section.

A potent application of first-class status is the ability to modu-
larise algorithms into tree traversal and node p rocessing. For exam-
ple, h ere is the definition of everywhere, taken from the original
SYB p aper:

-- Old type
everywhere : : Data a

=> (forall b . Data b => b -> b )



-> a -> a

The call (everywhere f t) takes a generic function f and a
data structure t,and applies f to every node in t.Indeed, b y writing
a type synonym we can make the type even more p erspicuous:

type GenericT = forall a. . Data a => a -> a
everywhere : : GenericT -> GenericT

A generic transformer GenericT has type a->a, for any type a that
is traversable (lies in class Data). The everywhere combinator
takes a generic transformer that works on individual nodes, and
returns a transformer that works on the entire tree.

Matters are not so easy now that Data has an extra parameter.
To b egin with, everywhere’s type must look more like this:

type GenericT cxt = forall b . Data cxt b => b -> b
everywhere : : GenericT cxt -> GenericT cxt

In addition, everywhere needs a proxy t ype p arameter, j ust like
gmapQ and its cousins (Section 4.2). So everywhere’s type is
actually this one:

everywhere : : Proxy cxt
-> G enericTc xt -> GenericT cxt

(For the record, we can eliminate some proxy arguments in nested
compositions of generic functions by means of implicit parame-
ters [LLMS00].) Now suppose we want to make an actual traver-
sal (everywhere pickyCtx pickyInc t) where the node-
processing function pickyInc is defined like this:

pickyInc : : ( Data IncEligible t



, Data IncSalary t
) => t -> t

pickyInc t | incEligible t = incSalary t
| otherwise = t

The details of this restricted function for salary increase do not
matter; what is important is that p ickyInc’s context has two con-
straints. Alas, that makes it incompatible with everywhere, which
passes exactly one dictionary to its argument (see everywere’s
type above). Hence, there is no straightforward way to provide the
needed type-proxy argument pickyCtx.

Assuming that Haskell provides p roper abstraction over type
classes, one option is to combine IncEligible and IncSalary
into a single class, thus:

class (IncEligible a, IncSalary a) => PickyInc a
-- n o methods needed

We instantiate this class as follows:

instance (IncEligible a, IncSalary a)
=> PickyInc a

Clearly, we p refer a (non-Haskell 98) generic instance here
because we do not want to r e-enumerate all types covered b y
IncEligible and IncSalary. The adapted definition of pickyInc
is constrained b y the new helper class:

pickyInc : : Data PickyInc t => t -> t
pickyInc = . . . as b efore . . .

One could imagine a more sophisticated form of abstraction
over classes, that automates this clutter, so that a single ctx pa-



rameter may transport several constraints instead of just one. T his
is a topic for future work.

When we consider the encoding for abstraction over type
classes, as defined in Section 4.1, we may avoid the definition of a
helper class, but we must provide a composed dictionary type —a

product of the dictionary types for IncEligible and IncSalary:

data PickyIncD a
= PickyIncD { dictE : : IncEligibleD a ,

dictI : : IncSalaryD a }

The corresponding Sat instance will simply construct a pair
of dictionaries taking advantage of p reexisting Sat instances for
IncEligibleD and IncSalaryD. Now, to call incSalary we
need to extract it from two layers of wrapping:

incSalary ’ : : D ata PickyIncD a => a -> Int
incSalary ’ = incSalaryD (dictI dict)

This proliferation of different versions of the same generic function
is t iresome.

8. More related work

The overall ‘Scrap your b oilerplate’ approach has been compared
to other work on generic programming in detail in [LP03, LP04].
Likewise, we discussed work related to type-class parameterisation
and r ecursive dictionaries in the r espective sections. Therefore, we
are going to focus h ere on the new enhancement: open, generic
functions.

8.1 Derivable type classes

The “derivable type classes” approach to generic p rogramming
[HP00] is closely related to the work we describe here. Both ap-



proaches assume that a generic function is defined as a method of a
type class, and that the p rogrammer writes type-specific cases sim-
ply by giving an ordinary instance declaration. The big difference is
that in the derivable-type-class approach, the class definition spec-
ifies a kind of template that can b e used to generate the b oilerplate;
for example:

class Size a where
gsize : : a -> Int -- Code not correct
gsize {| U nit |} Unit = 1
gsize {| a : * : b |} (a :* : b ) = gsize a + gsize b
gsize {| a : + : b |} (Inl a) = gsize a
gsize {| a : + : b |} (Inr b) = gsize b

instance Size [a]
instance Size (a ,b)

The definition of gsize in the class declaration is a k ind of
generalised default method. The argument in the funny brackets
{| . . |} is a type argument, and the function is defined b y induction
over the structure of the type. For each instance declaration that
does not give an explicit method definition, such as the ones for lists
and pairs here, the compiler generates a method from the template,
by converting the instance type to a sum-of-products form, and
passing i t to the generic code. It can be tricky t o get the generic
code right; i n this case, there is a bug in gsize because it counts 1
only for nullary constructors! Fixing this requires a second method
in the class, which is quite annoying.

Derivable type classes require considerable compiler support.
The mechanism we propose here requires much less, and what we
do need is useful for other purposes.



8.2 Generic Haskell specifically

In more r ecent versions of Generic Haskell [CL03, LCJ03], generic
function definitions can involve some sort of default cases. This
allows the programmer to fabricate customised generic functions
while reusing fully generic functions as a kind of default. This is
a major improvement over earlier p olytypic p rogramming prac-
tise, where types-specific cases (if any) had to form an integral
part of the polytypic function declaration. Generic Haskell’s de-
fault cases properly support capture of recursion. That is, recursive
occurrences of the reused generic function are properly redirected
to the reusing (i.e., customised) generic function.

Our development shows that Haskell’s existing type-class mech-
anism can b e readily leveraged for open, generic functions with
appropriate capture of r ecursion. Generic Haskell (including its
support for customisation) requires very considerable compiler
support, in fact, a new compiler.

8.3 Generics for the masses

Hinze’s recent “generics for the masses” approach [Hin04] is sim-
ilarly lightweight as ‘Scrap your boilerplate’ . The distinguishing
feature of Hinze’s new proposal is that it captures essential i dioms
of Generic Haskell i n a Haskell 98-based model, which requires
absolutely n o extensions.

The “generics for the masses” approach exhibits an important
limitation in the view of generic function c ustomisation. That is,
the class for generics would n eed to b e adapted for each new
type or type constructor that requires a specific case. This is a



pernicious form of non-modularity. Hinze has identified this issue
and its consequences: the approach is not useful for a generic
programming library.

8.4 Intensional type analysis

Intensional type analysis [HM95] has made major contributions to
the notions typecase and induction on type structure. The earlier
work favours structural type equivalence, where the notion of a
nominal branch in a typecase does not occur. An exception is the re-
cent lambda calculus λL [VWW05], where the typecase construct
can involve branches for user-defined types. This calculus also ad-
dresses another limitation of early work on intensional type anal-
ysis: it allows one to compute the branches in a typecase expres-
sion by a j oin operation. So one can parameterise in b ranches. Pa-
rameterisation in classic SYB functions is similar in effect. Hence,
λL does not yet support modular customisation. L ikewise, all other
techniques t hat aim at enabling type-safe cast as an operation in a
functional language, e.g., [Wei00, BS02, CH02a], do not support
modular customisation.

9. Conclusions and further work

We have used type-class abstraction and recursive type-class dic-
tionaries to support open, generic functions in an enhanced ‘Scrap
your boilerplate’ approach (aka SYB). This makes SYB useful for a
new r ange of generic programming applications, namely ones that
require generic functions that can later b e customised as new data
types are added. QuickCheck is a good example, but other include:
provision of system-wide generic equality, read, show, and friends;
serialisation libraries in the XML context; extensible language im-
plementation frameworks; and refinement ofgeneric functions even



on fixed data types.
The first SYB p aper focused on traversal problems (“generic

consumers”) for complex data structures, such as those correspond-
ing to data models or language syntaxes. The second paper added
support for generic builders (the opposite of generic consumers or
traversals), and it described a number of specific techniques such
as type case for type constructors and multi-parameter traversal.
The present, third p aper complements cast-based customisation b y
type-class-based customisation, which we had u ntil recently be-
lieved t o be impossible.

There is plenty left to do. The new proposed extensions for re-
cursive dictionaries and type-class abstraction deserve dedicated
study of their own: termination conditions for generalised instance
heads, well-foundedness conditions for the constructed recursive
dictionaries, type system formalisation for type-class p arameterisa-
tion and context composition. In addition, some correspondence re-
sults for different styles of generic programming need to b e discov-
ered. For instance, can we encode all of derivable type classes? Fi-
nally, new application domains of generic programming are ready
to be explored: we have argued that first-class generic functions fa-
cilitate computation of generic functions. This calls for research on
generic function memoisation and adaptive generic algorithms.
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