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Abstract
Haskell is known for its strong, static type system. A good type sys-
tem classifies values, constraining the valid terms of the language
and preventing many common programming errors. The Glasgow
Haskell Compiler (GHC) has further extended the type language
of Haskell, adding support for type-level computation and explicit
type equality constraints.

Type-level programming is used to classify values, but types
themselves have remained notoriously unclassified. Recently, how-
ever, the kind-level language was extended with support for user-
defined kinds and kind polymorphism. In this paper we revisit
generic programming approaches that rely heavily on type-level
computation, and analyse how to improve them with the extended
kind language. For instructive purposes, we list a series of advan-
tages given by the new features, and also a number of shortcomings
that prevent desirable use patterns.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

Keywords datatype-generic programming, Haskell, kind poly-
morphism, datakinds, Agda

1. Introduction
Datatype-generic programming (Gibbons 2007) approaches in
Haskell have evolved from early pre-processor approaches like
PolyP (Jansson and Jeuring 1997) and Generic Haskell (Löh 2004)
to the large number of embedded libraries seen nowadays (Ro-
driguez Yakushev et al. 2008). Most of the recent libraries, such
as Regular (Van Noort et al. 2008), Multirec (Rodriguez Yakushev
et al. 2009), Instant Generics (Chakravarty et al. 2009; Van Noort
et al. 2010), and the framework for generic programming in GHC
(Magalhães et al. 2010a), rely heavily on advanced type-level fea-
tures such as Generalised Algebraic Data Types (GADTs, Schri-
jvers et al. 2009) and type families (Sulzmann et al. 2007). How-
ever, all the approaches share a lack of kind discipline; for in-
stance, types used internally for representing other datatypes all
live in the kind ?, even though conceptually they define a sep-
arate class of types. The lack of proper kinds when doing com-
plex type-level programming results in simple type mistakes that
go unnoticed, especially during library development, but appear
later, normally through painful debugging and unhelpful error
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messages. Moreover, most approaches have difficulties support-
ing datatypes of different kinds, often resorting to code duplication
for accommodating each kind separately. Visible examples of this
are the dataCast1/dataCast2 functions in the Scrap Your Boiler-
plate approach (SYB, Lämmel and Peyton Jones 2003, 2004), or
the Generic/Generic1 classes of Magalhães et al. (2010a).

This is all bound to change, though, with the recent addition of
kind polymorphism and user-defined kinds to GHC (Yorgey et al.
2012). The new features, available as a “technology preview” in
GHC version 7.4, and due to be fully supported in version 7.6,
bring a whole new range of programming techniques within reach.
In this paper we explore the potential of these new features for im-
proving generic programming, giving “the right kind” annotations
to some existing approaches, and analysing in detail the improve-
ments achieved. Naturally, as soon as new features are introduced
into the wild, programmers begin using them, exploring dark cor-
ners, and demanding new and more complex extensions. We will
play our role in that task, pointing out how current limitations hin-
der further innovations, and providing insight for future develop-
ments in the language.

Specifically, the contributions of this paper are the following:

• Multiple examples of the usefulness of kind polymorphism
and user-defined kinds for generic programming in Haskell,
by redefining existing implementations to make use of the new
features.

• Pointing out not only the advantages of the new features, but
also their shortcomings, identifying key limitations and provid-
ing insight for future developments.

• Defining a new library for generic programming in Haskell
that supports datatypes with arbitrary number of parameters,
mutually-recursive datatypes, and composition. This library
had been previously defined in the dependently-typed language
Agda (Norell 2007), but is now expressible in Haskell.

We introduce the important concepts as they appear, but due to the
exploratory nature of this paper with regards to GHC extensions
and generic programming libraries, we assume some familiarity
with both. The reader is referred to related work for in-depth cov-
erage of particular extensions or libraries.

In the remainder of this paper we first introduce kind polymor-
phism and user-defined kinds through datatype promotion (Sec-
tion 2). We then use the new features for improving the Regular
(Section 3) and Multirec (Section 4) libraries, and analyse how
to improve SYB given a kind-polymorphic Typeable (Section 5).
In Section 6 we discuss how to improve the built-in support for
generic programming in GHC by formulating a Haskell encoding
of the Agda generic programming approach of Löh and Magalhães
(2011), made possible by the new extensions. Finally, we discuss
future work and conclude in Section 7.



Notation
In this paper we will often use the same name for constructors,
types, and kinds. To reduce the potential for confusion, constructors
are coloured in blue (like Just), types and type classes in orange
(like Maybe Int), and kinds in green (like ?). A black and white
version is available from http://dreixel.net/research/pdf/
trkgp_nocolor.pdf.

2. User kinds and kind polymorphism
Yorgey et al. (2012) introduce two new features in GHC: user-
defined kinds (through datatype promotion) and kind polymor-
phism. We introduce the two features in this section by means of
example uses, and refer the reader to the original paper for imple-
mentation details.

2.1 Datatype promotion
Consider the datatype of Peano-style natural numbers:

data Nat = Ze | Su Nat

Through datatype promotion, enabled with the flag -XDataKinds,
this declaration gives rise not only to a type Nat inhabited by the
expressions Ze and Su n for every n :: Nat, but also to a kind Nat
inhabited by the types Ze and Su ν for every ν :: Nat.

Only types of kind ? can contain values; types of other kinds are
always uninhabited. Nonetheless, we can use the new Nat kind to
define a type of length-indexed lists, or vectors:

data Vec ::?→ Nat→ ? where
Nil :: Vec α Ze
Cons :: α → Vec α ν → Vec α (Su ν)

This vector type can be used to prevent a usual runtime error, that
of asking for the first element of an empty list. Since vectors keep
track of their length, we can define a function that returns the first
element of a non-empty vector:

headVec :: Vec α (Su ν)→ α

headVec (Cons a t) = a

This function cannot fail, as it does not operate on empty vectors;
a call of the form headVec Nil does not typecheck.

We could define Vec without -XDataKinds; the usual trick is
to define empty datatypes that stand for a new kind and use them
carefully. So we could define:

data Ze′

data Su′ ν

data Vec′ ::?→ ?→ ? where
Nil′ :: Vec′ α Ze′

Cons′ :: α → Vec′ α ν → Vec′ α (Su′ ν)

Note the difference in the kind of Vec′: both its arguments are of
kind ?, which means that Vec′ Int Int would not trigger a kind
error. However, we always expect the second argument to Vec′ to be
either Ze′ or Su′; -XDataKinds allows us to make that requirement
explicit, and have the compiler enforce it for us, statically, just
like the compiler enforces properties on the structure of values by
means of their types.

Not all datatypes are currently promoted by GHC; only datatypes
with a kind of the form ?→ . . .→ ?→ ? are promoted. In partic-
ular, higher-kinded datatypes and datatypes whose kinds involve
promoted types are not promoted. Additionally, datatypes whose
constructors are kind polymorphic, involve constraints, or use ex-
istential quantification are also not promoted.

2.2 Kind polymorphism
Consider the type of standard Haskell lists:

data [α ] = [] | α : [α ]

With -XDataKinds this type gets promoted too! What is, then, the
kind of promoted lists? The type of lists is polymorphic, so the kind
of promoted lists is polymorphic too, but at the kind level. So for
all possible kinds κ , the term [κ ] denotes a valid kind.

Kind polymorphism is activated with the flag -XPolyKinds,
which enables kind-polymorphic inference and checking. Consider
the following datatype:

data Proxy σ = Proxy

Without -XPolyKinds, the kind of Proxy is ?→ ?; the kind of
the argument σ is defaulted to ?, as the Haskell 98 language
report states (Peyton Jones 2003). With -XPolyKinds, however,
the kind of Proxy becomes ∀κ. κ → ?. This extra generality gives
us the ability to instantiate Proxy with types of different kinds. For
instance, Proxy Int, Proxy Maybe, and Proxy Ze are all valid types.
The usefulness of kind polymorphism will become clearer in the
examples of the coming sections.

3. Improving the Regular library
Regular1 is a simple library for generic programming in Haskell,
originally developed to support a rewriting system (Van Noort et al.
2008). It has a fixed-point view on data: the generic representa-
tion is a pattern-functor, and a fixed-point operator ties the recur-
sive knot. In the original formulation, this is used to ensure that
rewriting meta-variables can only occur at recursive positions of the
datatype. Its name derives from the concept of a regular datatype,
which is a type that can be represented as a potentially recursive
polynomial functor. This definition excludes exponentials (func-
tions), or nested datatypes (Bird and Meertens 1998), among oth-
ers, which Regular indeed does not support.

3.1 Defining the universe
The first step in improving Regular is to encode its representation
types (such as sum, product, unit, etc.) as a universe. Universes
are a well-known strategy for implementing generic programming
in dependently-typed languages (Morris 2007); we find that they
now apply naturally to Haskell with promotion. The basic idea is
to define a datatype that encodes the structure of datatypes, and a
function that explains how to view this structure as a datatype itself.

Essentially, we want to define a new kind encompassing the
representation types of Regular. Imagine the following syntax for
introducing kinds directly:

kind Universe = U | K ? | I
| C MetaCon Universe
| Universe :+: Universe
| Universe :×: Universe

In this way we would introduce a new kind Universe, inhabited by
each of the six representation types of Regular. Note in particular
how K, the type for representing constants, is parametrised over a
type of kind ?.

Since the only way to define new kinds is through datatype
promotion, we must define the universe as a datatype, and hope
that it is promoted to the kind above. But how can we define
K in the datatype version of the universe? There is no datatype
argument that is promoted to kind ?; so we are forced to abstract
over a parameter, which we will later instantiate to kind ? (after
promotion):

data Universe star = U | K star | I
| C MetaCon (Universe star)

1 http://hackage.haskell.org/package/regular
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| (Universe star) :+: (Universe star)
| (Universe star) :×: (Universe star)

This is slightly cumbersome, and leads us to formulate the first
shortcoming of the current implementation of user kinds in GHC.

Shortcoming 1. We have to define a new datatype, even when all
we are interested in is the respective kind.

From Shortcoming 1 it follows that if we want to have kinds
such as ? or ?→ ? as arguments to user-defined kinds, we will have
to first abstract from them as kind variables, and later instantiate
them to the right kind. Alternatively, GHC could define a built-in
datatype Star whose promotion is defined to be ?.

We will see this instantiation in the interpretation of the Regu-
lar universe in Section 3.2. For now, we should discuss the encod-
ing of meta-information for constructors in the C representation
type. This meta-information stores the constructor name, its fixity,
and associativity, and is important when defining functions such as
generic read or show. The current encoding of Regular generates
one empty datatype for each constructor of the type being repre-
sented. We propose replacing this with an encoding of the meta-
information at the kind level; MetaCon should be defined as fol-
lows:

data MetaCon = MC [Char ] Fixity Bool
data Fixity = Prefix | Infix Assoc Int
data Assoc = LeftAssoc | RightAssoc | NotAssoc

The kind MetaCon, arising from the promotion of the datatype
MetaCon, now contains all the meta-information available for a
constructor; its first argument encodes the constructor name, the
second its fixity, and the third controls whether record notation was
used. We will see in Section 3.4 exactly how this new representation
is an improvement over the current one.

3.2 Interpretation
Together with the Regular universe we must define an interpreta-
tion: a value witness for types of kind Universe. We define the in-
terpretation for Regular as follows:

data Jυ :: Universe ?K (τ ::?) where
U′ :: JU K τ

K′ :: α → J(K α)K τ

I′ :: τ → J I K τ

C′ :: (Constructor ν)⇒ Jα K τ → J(C (MC ν φ ρ) α)K τ

L′ :: Jα K τ → Jα :+: β K τ

R′ :: Jβ K τ → Jα :+: β K τ

×′ :: Jα K τ → Jβ K τ → Jα :×: β K τ

For notational convenience we call the interpretation datatype J K,
taking the universe argument υ inside the brackets; the argument
for the recursive positions τ comes after the brackets. Because
Universe is a datatype with constructors such as K, we cannot call
the constructor corresponding to the interpretation of K simply K;
we are forced to come up with a new name, so we prime all the
constructor names. This is a consequence of Shortcoming 1.

The kind of υ is Universe ?; as promised, the argument to
Universe is always ?. Ideally we would define a kind synonym for
Universe ?, but unfortunately kind synonyms are not implemented
yet.2

Shortcoming 2. The lack of support for kind synonyms means we
cannot abbreviate kinds.

2 On the other hand, we are now free to instantiate Universe to kinds other
than ?; it remains to see whether there is any practical application for this.

The interpretation itself is mostly unsurprising: units have no
arguments, constants take a value of the given constant type, and
for a recursive position (I′) we store the τ variable. This is the way
Regular encodes recursion; see the example in Section 3.4 for clari-
fication. Products take two arguments, and a sum can be built in two
different ways. The meta-information for constructors introduces a
class constraint on the (type-level) name of the constructor. This
class provides the value-level operations on meta-information:

class Constructor (ν :: [Char ]) where
conName :: Proxy ν → String
conFixity :: Proxy ν → Fixity
conFixity = const Prefix
conIsRecord :: Proxy ν → Bool
conIsRecord = const False

We need to use the Proxy datatype (introduced in Section 2.2)
because the type of the methods in the class needs to mention
at least one of the class type variables, but we cannot take ν as
an argument directly since its kind is not ?. We suspect that a
datatype like Proxy is going to appear in most code using kind
polymorphism, so it should probably be defined within a module
that comes with GHC.

Note also that, at the time of writing, there is no real support for
type-level Strings in GHC: while lists are promoted, Strings are lists
of Char, and there is no syntax for using promoted characters. As a
workaround, we can assign a unique number to each datatype and
use that instead. Note however that type-level Ints are not supported
either, so we would have to use type-level Peano-style naturals.
Also, due to Shortcoming 2, we have to write [Char ] instead of just
String. We hope that Iavor Diatchki’s work on type-level literals
will soon allow us to define these types.3

Shortcoming 3. We lack support for type level naturals and
strings.

3.3 Converting to and from user datatypes
We need a way to convert between user datatypes and their generic
representation to provide a seamless user experience. We do not
want users to ever have to see the generic representation; they
should use their datatypes as usual, and the generic functions
should automatically convert to the generic representation as nec-
essary. For this task Regular uses a type class:

class Regular (α ::?) where
type PF α :: Universe ?
from :: α → JPF α K α

to :: JPF α K α → α

Regular uses a shallow generic encoding: a value of type α is
converted to a one-layer generic representation of type JPF α K α;
the values at the recursive positions (under I′) are of type α , and
not generic representations.

Advantage 1. The kind of the PF type family now clearly estab-
lishes that only representation types make up a valid representa-
tion.

3.4 Example encoding
To illustrate the encoding of user datatypes we show how lists are
represented in the new encoding of Regular:

instance Regular [α ] where
type PF [α ] = (C (MC ?1 (Infix RightAssoc ?3) False) U)

:+: (C (MC ?2 Prefix False) ((K α) :×: I))

3 http://hackage.haskell.org/trac/ghc/wiki/TypeNats
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from [] = L′ (C′ U′)
from (h : t) = R′ (C′ (×′ (K′ h) (I′ t)))
to (L′ (C′ U′)) = []
to (R′ (C′ (×′ (K′ h) (I′ t)))) = h : t

Due to the current lack of support for type-level strings and integers
(Shortcoming 3), we cannot quite define ?1 (the type-level string
"[]"), ?2 (the type-level string ":"), and ?3 (the type-level integer
5).

We also need to give Constructor instances for each of the
constructor representations:

instance Constructor ?1 where
conName = "[]"

instance Constructor ?2 where
conName = ":"

conFixity = Infix RightAssoc 5

Note how these constructions are basically a value-level repeti-
tion of information that is already present in the types. We hope
that recent work on automatic singleton generation (Eisenberg and
Weirich 2012) can be used to automate this task.

3.5 Generic functions
Many generic functions can be defined in Regular. We start with
the functorial map function, which can in turn be used to define
standard recursive morphisms. As the function is indexed over the
universe types, we define it using a type class:

class GMap (φ :: Universe ?) where
gmap :: (α → β )→ Jφ K α → Jφ K β

Given the kind of GMap, it is now clear that this class is used
internally in Regular, and user datatypes are not to be instantiated
to it.

Advantage 2. We can only give instances of GMap for represen-
tation types.

We define the generic function by providing an instance for
each representation type. Units and constants have nothing to be
mapped, whereas at the recursive position we apply the function
being mapped. For constructors, sums, and products we simply
recurse:

instance GMap U where
gmap f U′ = U′

instance GMap (K α) where
gmap (K′ a) = K′ a

instance GMap I where
gmap f (I′ r) = I′ (f r)

instance (GMap φ)⇒ GMap (C γ φ) where
gmap f (C′ x) = C′ (gmap f x)

instance (GMap φ ,GMap ψ)⇒ GMap (φ :+: ψ) where
gmap f (L′ a) = L′ (gmap f a)
gmap f (R′ b) = R′ (gmap f b)

instance (GMap α,GMap β )⇒ GMap (α :×: β ) where
gmap f (×′ a b) =×′ (gmap f a) (gmap f b)

Shortcoming 4. GHC does not check for exhaustiveness of in-
stances for a promoted datatype (e.g. warn if we forget the instance
for U).

The definition of catamorphism, using gmap, remains un-
changed:

cata :: (Regular α,GMap (PF α))
⇒ (JPF α K β → β )→ α → β

cata f = f ◦gmap (cata f )◦ from

In fact, we can even go further than Shortcoming 4, and argue that
the GMap (PF α) part of in the constraint of cata is unnecessary;
GHC could check that the GMap class has all the necessary in-
stances for the Universe ? kind, and then automatically fill-in the
appropriate class dictionaries.

Compared to the current implementation of Regular without
user kinds, the main advantage of this new way of defining gmap is
that we can use more precise kinds, preventing common mistakes.
Furthermore, a function such as generic show is now easier to
define given the presence of constructor meta-information at the
type level. Consider the class definition for generic show, together
with the interesting cases for C:

class GShow (φ :: Universe ?) where
gshow :: (τ → String)→ Jφ K τ → String

instance (GShow φ)⇒ GShow (C (MC ν Prefix ρ) φ) where
gshow f (C′ x) = "("++ conName (Proxy :: Proxy ν)

++" "++gshow f x++")"

instance (GShow φ ,GShow ψ)
⇒ GShow (C (MC ν (Infix α ι) ρ) (φ :×: ψ)) where
gshow f (C′ (×′ x y)) = "("++gshow f x++" "

++ conName (Proxy :: Proxy ν)
++" "++gshow f y++")"

The function being carried around (f ) is used for the recursive
positions, and can be ignored for the purposes of this example.
What is important to notice is that we can give separate instances
for prefix and infix constructors. A similar treatment can be given to
constructors using record syntax, but we elided the selector meta-
information for simplicity.

Advantage 3. We can match meta-data properties at the type
level, allowing generic functions to easily change their behaviour
according to meta-data.

4. Improving Multirec
Multirec (Rodriguez Yakushev et al. 2009) is a library for generic
programming supporting families of mutually recursive datatypes.
It can be seen as a generalisation of Regular, using indexed func-
tors instead of plain functors for the generic representation. Like
Regular, its current implementation 4 is not properly kinded, as the
representation types are not encoded as a separate universe.

Fortunately we can improve Multirec in a way similar to Regu-
lar, by defining a datatype for the universe and using its promoted
constructors as the representation types:

data Universe star ι = U | K star | I ι | (Universe star ι) :m: ι

| (Universe star ι) :+: (Universe star ι)
| (Universe star ι) :×: (Universe star ι)
| (star→ star) :·: (Universe star ι)

There are a few important things to notice about Multirec’s uni-
verse:

• Since Multirec represents datatypes as indexed functors, the
universe is parametrised over an ι parameter, representing the
family index. This parameter is used in the I case to state which
type in the family we recurse into.

• A new representation type α :m: ι is used to tag a particular
branch α of the representation with an index ι , stating that said
branch encodes the type of index ι .

4 http://hackage.haskell.org/package/multirec
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• Since version 0.6, Multirec has support for a limited form of
composition, which allows representing datatypes that use con-
tainer types, such as lists or Maybe. We encode this with φ :·: α ,
where φ :: ?→ ? and α is a representation. Note that we rely
on the promotion of the function type star→ star to the kind
?→ ?.

• We omit the case for constructor meta-data for simplicity, as it
is similar to Regular.

As with Regular, the interpretation is given as a GADT over
the (promoted) universe. It is parametrised over a τ type that maps
indices to their corresponding types, and a particular index ι ; since
we are encoding families of datatypes as a single datatype, we use
ι to select which datatype we intend to obtain the interpretation for:

data Jυ :: Universe ? ικ K (τ :: ικ → ?) (ι :: ικ ) where
U′ :: JU K τ ι

K′ :: α → J(K α)K τ ι

I′ :: τ o→ J(I o)K τ ι

m′ :: Jα K τ ι → Jα :m: ι K τ ι

L′ :: Jα K τ ι → Jα :+: β K τ ι

R′ :: Jβ K τ ι → Jα :+: β K τ ι

×′ :: Jα K τ ι → Jβ K τ ι → Jα :×: β K τ ι

C′ :: φ (Jα K τ ι)→ Jφ :·: α K τ ι

The mediation between representation types and user types is
done with two type classes, one providing value conversion (Fam,
for family), and the other (El, for element) assisting in the genera-
tion of family indices:

newtype I0 ι = I0 {unI0 :: ι }

class Fam (φ ::?→ ?) where
type PF φ :: Universe ? ?
from :: φ ι → ι → JPF φ K I0 ι

to :: φ ι → JPF φ K I0 ι → ι

class El (φ :: ικ → ?) (ι :: ικ ) where
proof :: φ ι

The definitions of Fam and El are better understood through an ex-
ample, so we show how to encode the following family of mutually
recursive types:

data Zig = Zig Zag | ZigEnd
data Zag = Zag [Zig ]

The argument to Zag is a list of Zigs. The first step in encoding this
family is to define a GADT to serve as witness for the presence of
each of the types in the family:

data ZigZag ι where
ZigZagZig :: ZigZag Zig
ZigZagZag :: ZigZag Zag

We can now define a Fam instance for the ZigZag family:5

instance Fam ZigZag where
type PF ZigZag = (((I Zag) :+: U) :m: Zig)

:+: (([] :·: (I Zig)) :m: Zag)

from ZigZagZig (Zig zag) = L′ (m′ (L′ (I′ (I0 zag))))
from ZigZagZig (ZigEnd) = L′ (m′ (R′ U′))
from ZigZagZag (Zag zigs) =

5 All of the representation code is currently generated automatically by
Multirec using Template Haskell (Sheard and Peyton Jones 2002). This
support can be retained when using data kinds, since these are already
supported in Template Haskell (Eisenberg and Weirich 2012).

R′ (m′ (C′ (map (I′ ◦ I0) zigs)))

to ZigZagZig (L′ (m′ (L′ (I′ (I0 zag))))) = Zig zag
to ZigZagZig (L′ (m′ (R′ U′))) = ZigEnd
to ZigZagZag (R′ (m′ (C′ zigs))) =

Zag (map (λ (I′ (I0 x))→ x) zigs)

In the Fam class we use a lifted identity type I0 as the τ argument to
the interpretation. This simply means that at the recursive positions
we have normal datatype values again; Multirec, like Regular, uses
a shallow encoding of data. In the definition of the catamorphism
(which we elide for brevity), for instance, this parameter is not fixed
to a particular type, allowing a different return type per index, for
instance.

We have seen that converting Multirec to make use of better
kinds brings considerable changes to the library. However, the
changes are mostly mechanical, cause no loss of functionality, and
result in a properly kinded library. From the user’s perspective there
is no difference, as the representations are automatically generated.
We have remained faithful to the current definition of the Fam class
and used indices of kind ?, but with the current kind-polymorphic
definition of Universe we are free to use indices of other kinds. In
Section 6.2.1 we show a way to define a Fam class that allows more
general index kinds.

5. Improving Typeable and SYB
SYB (Lämmel and Peyton Jones 2003, 2004), a library for generic
programming with built-in support in GHC, uses runtime type-safe
casting to support generic functions with ad hoc cases for specific
datatypes.

5.1 Kind-polymorphic Typeable
SYB relies on the Typeable library for runtime type comparison
and casting. Currently, Typeable consists of a group of classes, of
the following form:

data TypeRep
class Typeable (α ::?) where

typeOf :: α → TypeRep
class Typeable1 (φ ::?→ ?) where

typeOf1 :: φ α → TypeRep

The datatype TypeRep gives a runtime representation of a datatype;
we leave its definition abstract as its internals are not important for
our discussion. A type of kind ?→ ?, such as Maybe, gets two
instances:

instance Typeable1 Maybe . . .
instance (Typeable α)⇒ Typeable (Maybe α) . . .

There is a total of eight Typeable classes, from Typeable to
Typeable7 . This is inconvenient not only because of the obvious
duplication, but also because:

1. Types of arity higher than seven cannot be given a Typeable
instance;

2. Types with arguments of higher ranks (such as ?→ ?) cannot
be instantiated at all;

3. Types with arguments of user-defined kinds cannot be instanti-
ated either.

Yorgey et al. (2012) already proposed a kind-polymorphic
Typeable class as follows:

class Typeable (φ :: κ) where
typeOf :: Proxy φ → TypeRep



The construction of “towers” of Typeable instances for higher-
kinded types like Maybe can then be condensed into a single, kind-
polymorphic instance:

instance (Typeable (φ :: κ1→ κ2),Typeable (α :: κ1))
⇒ Typeable (φ α) . . .

We further propose naming the Typeable method typeRep, instead
of typeOf , so that we can retain typeOf , typeOf1, etc. for backwards
compatibility:

typeOf ::∀(α ::?). Typeable α ⇒ α → TypeRep
typeOf = typeRep (Proxy :: Proxy α)

typeOf1 ::∀(φ ::?→ ?)(α ::?). Typeable φ ⇒ φ α → TypeRep
typeOf1 = typeRep (Proxy :: Proxy φ)

Note that the code above uses scoped type variables to provide the
right type to Proxy.

5.2 Kind-polymorphic SYB?
SYB also has a form of duplication to accommodate types of
various kinds, which we might hope to remove by using kind
polymorphism. This duplication is noticeable in the definition of
the extension functions:

ext0 :: (Typeable (α ::?),Typeable (β ::?))
⇒ φ α → φ β → φ α

ext0 def ext = maybe def id (gcast ext)

ext1 :: (Data α,Typeable1 ψ)
⇒ φ α → (∀β . Data β ⇒ φ (ψ β ))→ φ α

ext1 def ext = maybe def id (dataCast1 ext)

The function ext1 is just a variant of ext0 that is used when deal-
ing with types of kind ?→ ?. There is also an ext2 variant. The
dataCast1 function comes from the Data class:

class Data α where
dataCast1 :: Typeable1 ψ

⇒ (∀β . Data β ⇒ φ (ψ β ))→Maybe (φ α)
dataCast1 = Nothing

The default definition of dataCast1 is suitable for types of kind ?,
like Int. For types of kind ?→ ?, like Maybe, gcast1 should be
used instead; this function is very similar to gcast (used by ext0),
but while gcast uses typeOf , gcast1 uses typeOf1:

gcast :: (Typeable (α ::?),Typeable β )⇒ φ α →Maybe (φ β )
gcast x = r where

r = if typeOf (getArg x)≡ typeOf (getArg (fromJust r))
then Just $ unsafeCoerce x
else Nothing

getArg :: φ α → α

getArg =⊥

gcast1 :: (Typeable1 (ψ ::?→ ?),Typeable1 ψ ′)
⇒ φ (ψ α)→Maybe (φ (ψ ′ α))

gcast1 x = r where
r = if typeOf1 (getArg x)≡ typeOf1 (getArg (fromJust r))

then Just $ unsafeCoerce x
else Nothing

getArg :: φ α → α

getArg =⊥
Note how the difference between gcast and gcast1 is basically
confined to their type; the implementation is equivalent, especially
in the new Typeable setting where typeOf and typeOf1 are both just
typeRep.

5.2.1 Example usage—kind monomorphic
Defining a generic function in SYB and extending it with a type-
specific case for a container type such as Maybe is currently done
as follows:

newtype Result (α ::?) = Result Int
example :: ∀α. (Data α,Typeable α)⇒ Result α

example = general ‘ext1‘ maybe1 ‘ext0‘ maybe0

where general :: Result α

general = Result 0
maybe0 :: Result (Maybe Int)
maybe0 = Result 1
maybe1 :: ∀χ. Result (Maybe χ)
maybe1 = Result 2

The example function returns:

• Result 0 when its type is instantiated to Result Int;
• Result 1 when its type is instantiated to Result (Maybe Int);
• Result 2 when its type is instantiated to Result (Maybe Char).

We have to use ext1 for maybe1; using ext0 would result in an am-
biguous variable χ (from the type of maybe1) during unification.
This is because general ‘ext0‘ maybe1 leads to the following unifi-
cations:

• φ with Result;
• α (from ext0) with α (from example);
• β with Maybe χ .

From ext0 we get a Typeable β constraint, which translates into
a Typeable (Maybe χ) constraint in this case. Using the instance
Typeable α⇒ Typeable (Maybe α) we get a Typeable χ constraint,
which is not satisfied. Fixing this is not easy; since only maybe1
knows χ , we would have to change the type signature of example
to include the Typeable χ constraint, which in turn would require
adding a dummy argument of type χ to example. Using ext1 we
avoid this problem, since we only get a Typeable1 Maybe con-
straint, which does not introduce any constraints on χ .

5.2.2 Example usage—kind polymorphic
In a kind-polymorphic setting, we can remove this duplication by
providing a single function for casting and for extending a function
with an ad hoc case:

gcast ::∀(α :: κ1)(β :: κ2)(φ :: κ1→ ?)(ψ :: κ2→ ?).
(Typeable α,Typeable β )⇒ φ α →Maybe (ψ β )

gcast x = r where
r = if typeRep (getArg x)≡ typeRep (getArg (fromJust r))

then Just $ unsafeCoerce x
else Nothing

getArg ::∀φα. φ α → Proxy α

getArg =⊥

ext ::∀(α :: κ1)(β :: κ2)(φ :: κ1→ ?)(ψ :: κ2→ ?).
(Typeable α,Typeable β )⇒ φ α → ψ β → φ α

ext def = maybe def id ◦gcast

Both gcast and ext now have a much more general type; gener-
alising α and β ’s kind also requires generalising the kind of the
containers, φ and ψ .

We can redefine example using the new ext:

newtype Result (α :: κ) = Result Int
example ::∀α. (Typeable α)⇒ Result α



example = general ‘ext‘ maybe0 ‘ext‘ maybe1

where general :: Result α

general = Result 0
maybe0 :: Result (Maybe Int)
maybe0 = Result 1
maybe1 :: Result Maybe
maybe1 = Result 2

Note that:

1. There is no more duplication; we use a single extension function
(ext), which uses a single cast function (gcast);

2. The case for maybe1 no longer requires quantification over a
type variable.

3. The order in which we perform extension is no longer relevant.

Unfortunately the example presented is not general enough. In
example we are never looking at the input value, and simply return
a result that depends on the input type. Most generic functions,
however, do inspect their input; this means the inputs have a type
of kind ?, so we cannot use the trick shown above to handle types
of different kinds in a similar fashion. For instance, the generic
show function has a special case for [α ]; we cannot express this
case as a function of type []→ String,6 only as a function of type
∀α. [α ] → String. In this scenario we are back to the problem
described at the end of Section 5.2.1, namely ambiguity of type
variable α during unification.

This issue arises also from the way Typeable instances are
given. Even in the kind-polymorphic setting, we need two Typeable
instances for lists:

instance Typeable [] where . . .
instance (Typeable α)⇒ Typeable [α ] where . . .

This follows from the design of the Typeable library; we want to
be able to check that the container type of [ Int ] and [Char ] is the
same (using typeOf1), but the fully applied types are distinct (using
typeOf ). The second instance above is the root of our problem:
it introduces a Typeable α constraint that we cannot adequately
propagate from the generic function definition through to ext.

There is a good reason to want the current behaviour of Ty-
peable to persist. Again, generic show is a good example: we want
to define it by giving a general case, a special case for lists, and an
even more special case for lists of characters. At the moment, how-
ever, it is not clear how to remove the duplication in SYB using
kind polymorphism alone.

6. Improving generic programming in GHC
Having seen the potential of an improved kind system in the im-
plementation of the generic programming approaches discussed so
far, we turn our attention to the latest GHC addition for generic pro-
gramming, implemented in the GHC.Generics module, described
by Magalhães et al. (2010a). This approach, which we call Deriv-
ing,7 uses an implementation strategy similar to Regular and Multi-
rec, but without using functors as representation types. Recursion is
handled without specific abstraction of recursive positions, result-
ing in a more flexible universe (which allows encoding more user
datatypes), but less structured (unable to support the definition of
the recursive morphisms, for instance).

6 This type is even ill-kinded; we could try Proxy []→ String, but that will
not work either because the Proxy type does not store a value, only its type.
7 Even though it does not really allow defining new derivable type classes;
it allows defining classes with a generic default, which results in a very
similar usage style to standalone deriving.

We could follow the same strategy used for Regular (Section 3)
or Multirec (Section 4) to improve Deriving,8 but instead we decide
to tackle a long standing limitation with Deriving. Unlike Regular
and Multirec, Deriving does support parametrised datatypes, allow-
ing for the (generic) definition of the standard list map on the ar-
guments, for instance. However, it only supports abstracting over
one parameter (much like Regular only supports abstracting over
one recursive position). So while we can express map for lists and
Maybe, for instance, we cannot express the bimap for Either. The
classes that witness the isomorphism between user datatypes and
their representation in Deriving currently look like this:

class Generic α where
type Rep α ::?→ ?

from :: α → (Rep α) χ

to :: (Rep α) χ → α

class Generic1 φ where
type Rep1 φ ::?→ ?

from1 :: φ α → Rep1 φ α

to1 :: Rep1 φ α → φ α

The Generic class is used to encode user types of kind ?, while
Generic1 is used for user types of kind ?→ ?. The repetition is
evident; while the universe types themselves are not repeated (we
encode datatypes without parameters by creating a fake parameter
χ that is never used), datatype representation requires potentially
two instances, even though they are rather similar. In this section we
aim at removing this duplication, while at the same time defining a
representation that allows any number of datatype parameters.

6.1 First attempt
A legitimate first approach to this task would be to use the same
strategy as proposed by Hesselink (2009) to support parameters in
Multirec. A user datatype is associated not only with its generic
representation, but also the list of types it is parametrised over:

class Generic (α ::?) where
type Rep α :: Universe ?
type Es α :: [? ]
from :: α → JRep α K (Es α)
to :: JRep α K (Es α)→ α

We show a simplified universe with a type for encoding parameters,
P, that simply takes the index (as a natural number) of the parameter
we are interested in:

data Universe star = U | K star | P Nat
| (Universe star) :+: (Universe star)
| (Universe star) :×: (Universe star)

We can define a suitable interpretation for this universe given a list
of parameters. In the P case we store the n-th parameter from this
list:

data Jυ :: Universe ?K (τ :: [? ]) ::? where
U′ :: JU K τ

K′ :: α → J(K α)K τ

P′ :: Nth τ ν → J(P ν)K τ

L′ :: Jα K τ → Jα :+: β K τ

R′ :: Jβ K τ → Jα :+: β K τ

×′ :: Jα K τ → Jβ K τ → Jα :×: β K τ

For this we need a type-level lookup function on lists:

8 As described in http://hackage.haskell.org/trac/ghc/
wiki/Commentary/Compiler/GenericDeriving?version=51#
Kindpolymorphicoverhaul

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving?version=51#Kindpolymorphicoverhaul
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving?version=51#Kindpolymorphicoverhaul
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving?version=51#Kindpolymorphicoverhaul


type family Nth (τ :: [? ]) (ν :: Nat) ::?
type instance Nth (α : β ) Ze = α

type instance Nth (α : β ) (Su ν) = Nth β ν

We must be careful never to ask for an index outside the bonds of
the list, else we will get a type error. Ideally, τ should have kind
Vec ? κ , where κ is the number of parameters in the type (Vec was
defined in Section 2.1), but Vec is not promotable due to its kind,
and because it is a GADT.

Shortcoming 5. GHC does not support GADT promotion.

In any case, the universe given here will not work. Note, for
instance, that we have omitted a case for composition; the orig-
inal Deriving approach supports composition, as it is clear that
datatypes with one parameter can be composed. With multiple pa-
rameters, however, composition is not always possible. For exam-
ple, what should be the result of composing Either with Maybe?
Furthermore, our type K for recursion is not expressive enough
to allow defining generic map, for instance. Consider a family of
datatypes, all sharing a single parameter. While mapping a func-
tion over the parameters, when we encounter another datatype with
K we have to keep mapping inside this new type. Unfortunately K
does not keep any information about the structure of its argument
(namely if they are parametrised, and what their parameters are),
so we cannot properly define map. The bottom line is that general-
ising our representation to an arbitrary number of parameters also
requires an explicit abstraction over recursion, so that we can keep
track of which parameters go where. Additionally, if we want to be
able to compose the represented types, we either need to simplify
composition to a special case (like Multirec does), or we need to be
able to specify how each parameter connects to each input.

6.2 Indexed functors in Haskell
Fortunately, generalising the representation types to indexed func-
tors, as shown by Löh and Magalhães (2011), allows flexible
parametrisation, mutual recursion through fixed points, and gen-
eralised composition to coexist. The resulting library, which we
call Indexed, requires a number of dependently-typed program-
ming techniques that remained out of reach for practical Haskell
programming so far. However, with the new extensions to the kind
language, we can encode a significant portion of the Indexed uni-
verse in Haskell.

We do not provide a detailed explanation for the universe and its
interpretation; we refer the reader to Löh and Magalhães (2011) for
more details. Here we focus mostly on how to bring the approach
to Haskell, and what challenges arise.

6.2.1 Universe
The Indexed universe can be seen as a generalisation of Multirec’s
universe, with the important difference that we now distinguish
between input indices (ι) and output indices (o):

data Code ι o = Z
| U
| I ι

| ! (Code ι o) o
| (Code ι o) :+: (Code ι o)
| (Code ι o) :×: (Code ι o)
| ∀ν . (Code ν o) :·: (Code ι ν)
| ∀ι ′. IX (ι ′→ ι) (Code ι ′ o)
| ∀o′. OX (o → o′) (Code ι o′)
| µ (Code (Sum ι o) o)

data Sum α β = L α | R β

Conceptually, input indices stand for parameters, and output in-
dices stand for the datatypes being defined. So a family of two

datatypes with three parameters will typically use a type with three
inhabitants for ι and a type with two inhabitants for o.

A code Z stands for empty datatypes, while U is used for con-
structors without arguments. I picks a particular index, while ! tags
a particular representation with a specific index (similarly to Mul-
tirec’s :m:). Sums and products are unsurprising, but composition
now requires that the codes being composed have a matching input
and output type. Note the existential quantification of the ν type
variable; we are relying on promotion of existential quantification!
The codes IX and OX stand for input and output reindexing, respec-
tively, and are used mostly to allow composition of codes of distinct
indices. Finally we have the fixed point code µ; here we take a code
where the input indices are a disjoint sum between a parameter in-
dex ι and a output type index o, and return a Code ι o, by closing
the recursive positions. For this we also rely on a disjoint sum type
Sum.

6.2.2 Interpretation
The interpretation helps clarify the universe, especially in regards
to the fixed point operator. We have given all the interpretations so
far as a GADT, but for Indexed we need to use a data family:9

data family (Jγ :: Code ι oK) :: (ι → ?)→ (o→ ?)

The kind of the interpretation states that given a universe code and
a mapping of input indices to concrete types, we can produce a map
of output indices to concrete types. We start with the interpretation
of units, sums, products, and composition, which are unsurprising:

data instance JU K τ o = U′

data instance Jα :+: β K τ o = L′ (Jα K τ o)
| R′ (Jβ K τ o)

data instance Jα :×: β K τ o =×′ (Jα K τ o) (Jβ K τ o)
data instance Jα :·: β K τ o = C′ {unJKC :: Jα K (Jβ K τ) o}

Note how we nest the interpretation for composition; this works
only because the kind of :·: is expressive enough.

An input index is obtained by using the map τ , while tagging is
done with an equality constraint as in Multirec:

data instance J(I ι)K τ o = I′ {unJKI :: τ ι }
data instance J(! α o′)K τ o where

!′ :: Jα K τ o→ J(! α o)K τ o

For input reindexing we need type-level composition, which we
express using a newtype. Output reindexing is easier since we can
just apply the transformation to o:

newtype FComp φ ψ α = FComp {unFComp :: φ (ψ α)}
data instance J(IX ψ α)K τ o = I′X (Jα K (FComp τ ψ) o)
data instance J(OX φ α)K τ o = O′X (Jα K τ (φ o))

We are left with the fixed-point case, which we interpret by apply-
ing τ on the left (to parameters) and recursively interpreting on the
right (recursive positions). For this we need an auxiliary datatype
Sum1:

data instance J(µ φ)K τ o where
µ ′ :: Jφ K (Sum1 τ (J(µ φ)K τ)) o→ J(µ φ)K τ o

data Sum1 (α :: κ1→ ?) (β :: κ2→ ?) :: Sum κ1 κ2→ ? where
L1 :: α ι → Sum1 α β (L ι)
R1 :: β ι → Sum1 α β (R ι)

9 Data families are more liberal when matching variable kinds; we need this
for the µ φ case.



6.2.3 Mapping indexed functors
Indexed functors support a map operation, which in turn can be
used to define recursive morphisms (Meijer et al. 1991). We define
the indexed map function by giving instances to each representation
type by means of a type class:

infixr 7 :→:
type (φ :→: ψ) = ∀ι . φ ι → ψ ι

class Map (γ :: Code ικ oκ ) where
imap :: (φ :→: ψ)→ (Jγ K φ :→: Jγ K ψ)

Our maps are index preserving, which we represent as a type
synonym (:→:).

Units, sums, and products are standard:

instance Map U where
imap U′ = U′

instance (Map α,Map β )⇒Map (α :+: β ) where
imap f (L′ x) = L′ (imap f x)
imap f (R′ x) = R′ (imap f x)

instance (Map α,Map β )⇒Map (α :×: β ) where
imap f (×′ x y) =×′ (imap f x) (imap f y)

For composition we nest the call to imap:

instance (Map α,Map β )⇒Map (α :·: β ) where
imap f (C′ x) = C′ (imap (imap f ) x)

For an input index we simply apply the function. Tagging proceeds
recursively:

instance Map (I ι) where
imap f (I′ x) = I′ (f x)

instance (Map α)⇒Map (! α o) where
imap f (!′ x) = !′ (imap f x)

Output reindexing proceeds recursively without problems, as the
type of imap does not mention the output index. Input reindexing,
however, requires lifting the mapping function through the compo-
sition:

instance (Map α)⇒Map (OX φ α) where
imap f (O′X a) = O′X (imap f a)

instance (Map α)⇒Map (IX ψ α) where
imap f (I′X a) = I′X (imap (FComp◦ f ◦unFComp) a)

Finally, for fixed points we apply f to parameters (on the left), and
recursively map recursive occurrences (on the right). We use an
auxiliary function (‖) for this purpose:

instance (Map γ)⇒Map (µ γ) where
imap f (µ ′ x) = µ ′ (imap (f ‖ imap f ) x)

(‖) :: (φ :→: φ ′)→ (ψ :→: ψ ′)
→ (Sum1 φ ψ) :→: (Sum1 φ ′ ψ ′)

(f ‖ ) (L1 x) = L1 (f x)
( ‖ g) (R1 x) = R1 (g x)

Having defined map, we can now encode standard recursive
morphisms, such as ana-, cata-, and hylomorphisms:

ana :: (Map γ) ⇒ (ψ :→: Jγ K (Sum1 φ ψ))
→ (ψ :→: J(µ γ)K φ)

ana g x = µ ′ (imap (id ‖ ana g) (g x))

cata :: (Map γ)⇒ (Jγ K (Sum1 φ ψ) :→: ψ)
→ (J(µ γ)K φ :→: ψ)

cata f (µ ′ x) = f (imap (id ‖ cata f ) x)

hylo :: (Map γ)⇒ (Jγ K (Sum1 φ ρ) :→: ρ)
→ (ψ :→: Jγ K (Sum1 φ ψ))→ (ψ :→: ρ)

hylo f g x = f (imap (id ‖ hylo f g) (g x))

6.2.4 Converting to and from user datatypes
We have some choices regarding how to encapsulate the conversion
between user datatypes and the generic representation. One way to
do it is to use a strategy similar to Multirec’s, using the datatypes
themselves as indices:

class Fam (φ ::?→ ?) where
type PF φ :: Code ? ?
type Rec φ ::?→ ?

from :: φ α → α → JPF φ K (Rec φ) α

to :: φ α → JPF φ K (Rec φ) α → α

In this class definition, the type family Rec defines how to handle
the recursive positions of the datatype. Since we set the input and
output index kinds to ?, we are forced to define new datatypes to
encode input indices (just like in Multirec). Although this encoding
is a valid choice, it would be preferable not to force the indices to
be of kind ?.

We can conceive a more general Fam class like the following:

class Fam (o :: oκ ) where
type PF o :: Code ικ oκ

type Ix o :: ικ → ?
type Ox o ::?
from :: Ox o→ JPF oK (Ix o) o
to :: JPF oK (Ix o) o→ Ox o

This definition, however, is rejected by GHC; it assumes that the
kind variable ικ in the kinds of PF and Ix are unrelated, and
is unable to match them. In fact, for our purposes, ικ behaves
much like an associated kind variable; the input index type can be
determined solely by the output index type (as long as we commit
to defining a new index type per family and using its promotion as
the output index kind).

Shortcoming 6. We lack a mechanism for treating kind variables
independently of types, allowing, among other things, for the defi-
nition of kind families (kind-level computations that return a kind).

We plan to explore further alternatives to encapsulating datatype
encodings in the Haskell version of Indexed (see Section 7). For
now, we propose using the Multirec-like encoding given before,
but for the rest of this paper we will not use the Fam class.

6.2.5 Example encodings
To further illustrate the use of Indexed in Haskell we provide a
number of example datatype encodings.

Lists We start with the standard Haskell list type. Lists have one
parameter, and are a single type, so we use the singleton type () as
both input and output index:

type ListF = (U :+: ((I (L ())) :×: (I (R ())))
:: Code (Sum () ()) ())

type ListC = (µ ListF :: Code () ())

The list functor ListF encodes the representation type of lists as a
choice between a unit (the empty list constructor) and a product
of an element (parameter on the left) and another list (recursive
position on the right). We then tie the recursive knot with the fixed-
point operator in the definition of the ListC representation type. We
give kind annotations to the type synonyms for clarity only; note
the use of the promoted singleton kind ().



The conversion functions are mostly standard, apart from the
fact that we have to instantiate the τ parameter of the interpretation.
Recall that its kind is ()→ ? for the list setting, and it should map
the index to the list parameter. For this we use a Const datatype that
ignores the index and returns the parameter:

data Const α β = Const {unConst :: α }

fromList :: [α ]→ JListC K (Const α) ()

fromList [] = µ ′ (L′ U′)
fromList (x : xs) = µ ′ (R′ (×′ (I′ (L1 (Const x)))

(I′ (R1 (fromList xs)))))

toList :: JListC K (Const α) ()→ [α ]

toList (µ ′ (L′ U′)) = []
toList (µ ′ (R′ (×′ (I′ (L1 (Const x))) (I′ (R1 xs))))) =

x : toList xs

Due to the presence of fixed points in the universe, the conversion
functions are now necessarily directly recursive. It remains to see
if this has a negative impact on performance, and if a shallow
embedding for Indexed can be defined.

Rose trees Rose trees branch to an arbitrary number of subtrees
at each level, using lists at the recursive position:

data Rose α = Fork α [Rose α ]

We can encode rose trees in Indexed using composition and the
code for lists defined earlier in Section 6.2.5:

type RoseF = ((I (L ())) :×: (ListC :·: (I (R ())))
:: Code (Sum () ()) ())

type RoseC = (µ RoseF :: Code () ())

The rose tree functor RoseF defines rose trees as a product between
an element and a composition of lists with recursive positions
(more rose trees). We take the fixed point with RoseC, defining a
single type with one input parameter, again using the singleton type
as the index.

To convert from a rose tree we need to recursively convert
user lists into representation lists. We first use fromList, and then
recursively map fromRose to the list parameters:

fromRose :: Rose α → JRoseC K (Const α) ()
fromRose (Fork a as) =

µ ′ (×′ (I′ (L1 (Const a))) (C′

(imap (I′ ◦R1 ◦ fromRose◦unConst) (fromList as))))

The conversion in the opposite direction proceeds entirely symmet-
rically. We define an auxiliary function unR1 to avoid explicit pat-
tern matching while mapping:

toRose :: JRoseC K (Const α) ()→ Rose α

toRose (µ ′ (×′ (I′ (L1 (Const a))) (C′ as))) =
Fork a (toList (imap (Const ◦ toRose◦unR1 ◦unJKI) as))

unR1 :: Sum1 α β (R ι)→ β ι

unR1 (R1 x) = x

Abstract Syntax Tree So far we have only seen single datatypes,
but Indexed, like Multirec, also supports families of datatypes.
Consider the following family of datatypes encoding a simplified
Abstract Syntax Tree (AST):

data Expr α = Var α

| Let (Decl α) (Expr α)

data Decl α = Assign α (Expr α)
| Seq [Decl α ]

The two types defined, Expr and Decl, are mutually recursive, share
a parameter α , and Decl makes use of lists. We use () again as the
input index, and we define a type ASTI with two elements to use as
output index:

data ASTI = ExprI | DeclI

The encoding of ExprF is then straightforward:

type ExprF = ((I (L ())) :+: ((I (R DeclI)) :×: (I (R ExprI)))
:: Code (Sum () ASTI) ASTI)

For encoding DeclF we need to use reindexing. Recall the kind of
composition:

(:·:) ::∀νκ . Code νκ oκ → Code ικ νκ → Code ικ oκ

In the Decl case, ικ = (), and oκ = ASTI . This implies that we need
to reindex the output of ListC from () to ASTI . We thus create a new
code List↑AST as the reindexing of ListC to the kind Code () ASTI ,
and use the new code in the definition of the code for Decl:

type List↑AST = (OX List↑ASTO ListC :: Code () ASTI)

type DeclF = (((I (L ())) :×: (I (R ExprI))) :+:
(List↑AST :·: (I (R ExprI)))

:: Code (Sum () ASTI) ASTI)

The reindexing is performed by a type family:

type family List↑ASTO :: ASTI → ()

Unfortunately we cannot give any meaningful instances for this
type family. To be able to match on the indices on the left we would
need to declare it as follows:

type family List↑ASTO (o :: ASTI) :: ()

With this definition, however, we cannot use it as argument to
OX , because GHC requires type family applications to be fully
saturated. Although GHC’s core language does support unsaturated
type families (Weirich et al. 2011), there has been no attempt to lift
this restriction in source Haskell code. One could think that (in this
case in particular) we only need some form of operator K of type
(α :: κ1)→ (β :: κ2)→ (α :: κ1), but we can only define such an
operator when κ1 = ?. In that case we can define the operator as a
datatype. However, in the general case κ1 is not necessarily ?, and
as such we would need to define K as a type synonym, in which
case we run into the restriction that type synonyms need to be fully
applied.

Shortcoming 7. Promotion of function types is only fully useful in
the presence of unsaturated type family applications, but these are
currently not allowed.

6.2.6 Another look at reindexing
Given that we cannot really use reindexing as we have defined it in
the universe, we turn to exploring alternative definitions that do not
use functions. We could, for instance, try a more direct encoding of
the reindexing by means of a list of tuples:

data Code ι o = . . .
| ∀ι ′. IX [ (ι ′,ι) ] (Code ι ′ o)
| ∀o′. OX [ (o,o′) ] (Code ι o′)

In this encoding we would hope to state the reindexing by explic-
itly listing the mapping between the indices. Lists and tuples get
promoted to kinds, so IX and OX can be promoted. However, in the
interpretation function we would need to lookup the reindexing in
the map. For this we would need type functions:

type family Lookup (α :: [ (κ,ικ ) ]) (ι :: κ) :: ικ



Unfortunately we cannot define Lookup; since type families are
not allowed any overlapping, the following code is not accepted
by GHC:

type instance Lookup ((α,τ) : σ) α = τ

type instance Lookup ((α,τ) : σ) β = Lookup σ β

Pattern-matching axioms10 have been proposed to allow a lim-
ited form of overlapping in type families. Were these to be imple-
mented, we could try to implement reindexing as an explicit rela-
tion between indices.

We are then left without a way to do reindexing in this approach.
This limits the usefulness of Indexed, since to encode Decl we
would need to re-encode lists at a different kind. Even if automated,
this sort of duplication is clearly undesirable.

7. Future work and conclusion
After exploring the potential of the improved kind language for
improving different generic programming libraries, we now turn
our attention to the shortcomings encountered, and what future
work can be done to address them.

Type-level literals We plan to release new versions of the Regular
and Multirec libraries as described in this paper; we will do so
whenever type-level integers and strings are available in GHC, so
that we have a proper way to encode datatype meta-information.

Improving SYB While Typeable can be easily improved with the
use of kind polymorphism, we have not been able to come up with
a simplification for SYB’s gcast/dataCast1/dataCast2 duplication.
More research is necessary to identify how to solve this problem.

Arity-generic functions Similarly to SYB, there is duplication
on standard functions such as liftM/liftM2 and zipWith/zipWith3.
Sheard (2006) studied this problem in Ωmega, a language with
support for singleton types for dependent type emulation. Weirich
and Casinghino (2010) name these “arity-generic” functions, and
give unified definitions for them in Agda. It remains to be seen if
these can now be encoded in Haskell.

Reindexing We have run into trouble with reindexing in our
Haskell encoding of Indexed (Section 6.2). We plan to continue
exploring alternative ways to encode this functionality, or neces-
sary changes to the language to support our encoding.

Performance We have not yet analysed the performance of the
rewritten libraries in the style of Magalhães et al. (2010b). We
have good hopes that runtime performance does not deteriorate
simply by the use of promotion, but we plan to confirm this by
benchmarking. Furthermore, it would be interesting to see if the
new kinds can be used for optimisation purposes.

Kind polymorphism and user-defined kinds have a tremendous
potential for improving existing code, especially in generic pro-
gramming libraries. Furthermore, the new extensions also enable
developing programs that were previously impossible or uncanny
to express. With new features come new limitations, but the promo-
tion mechanism is in its early stages, and is likely to be improved to
reflect programmers’ needs and desires. We see these changes as an
exciting new direction for Haskell, and look forward to future pro-
grams with less duplication, more expressive types, and stronger
type-level guarantees.
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Optimizing generics is easy! In Proceedings of the 2010 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, pages 33–
42. ACM, 2010b. doi:10.1145/1706356.1706366.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional pro-
gramming with bananas, lenses, envelopes and barbed wire. In John
Hughes, editor, Proceedings of the 5th ACM Conference on Functional
Programming Languages and Computer Architecture, volume 523 of
Lecture Notes in Computer Science, pages 124–144. Springer, 1991.
doi:10.1007/3540543961 7.

Peter Morris. Constructing Universes for Generic Programming. PhD
thesis, The University of Nottingham, November 2007.

Thomas van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans,
Johan Jeuring, and Bastiaan Heeren. A lightweight approach to
datatype-generic rewriting. In Proceedings of the ACM SIGPLAN
Workshop on Generic Programming, pages 13–24. ACM, 2008.
doi:10.1145/1411318.1411321.

http://hackage.haskell.org/trac/ghc/wiki/NewAxioms
http://www.cse.unsw.edu.au/~chak/papers/CDL09.html
http://www.cse.unsw.edu.au/~chak/papers/CDL09.html
http://dx.doi.org/10.1007/978-3-540-76786-2
http://dx.doi.org/10.1007/978-3-540-76786-2
https://github.com/hesselink/thesis/
https://github.com/hesselink/thesis/
http://dx.doi.org/10.1145/263699.263763
http://dx.doi.org/10.1145/604174.604179
http://dx.doi.org/10.1145/1016850.1016883
http://igitur-archive.library.uu.nl/dissertations/2004-1130-111344
http://igitur-archive.library.uu.nl/dissertations/2004-1130-111344
http://dx.doi.org/10.1145/2036918.2036920
http://dx.doi.org/10.1145/1863523.1863529
http://dx.doi.org/10.1145/1706356.1706366
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1145/1411318.1411321


Thomas van van Noort, Alexey Rodriguez Yakushev, Stefan Holder-
mans, Johan Jeuring, Bastiaan Heeren, and José Pedro Magalhães.
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