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Abstract

tttaoHHhyenfmeaapd ssmHeTkkyp  caeee slsprlqekealllulevsvsie- a Cellseinells,ikfo vttima eiyh nenosdplac wvgv d oipleainem nnr orlusrgfa egteom( nraGrrs suay,ai itnmpH cc instpComoses on.mdtir)rsnthtmon  rgnf aaooogsiti nrons,r it fs up uiny torgrapsouttheegist dc-ehlrlyeat ert ymveo  uv pexnaemlctc lls c eiinalyndaosssdgmst eseteidrfe pifmmyriuert ot.shv adA re.ato siR l.oft g uyT noeet hpcosha eee,dennb dl t G l tyaluanye ptln,axggeh t spuyugols apiaoygwcegwsie-s-et
ever, the kind-level language was extended with support for user-
defined kinds and kind polymorphism. In this paper we revisit
generic programming approaches that rely heavily on type-level
computation, and analyse how to improve them with the extended
kind language. For instructive purposes, we list a series of advan-
tages given by the new features, and also a number of shortcomings
that prevent desirable use patterns.

Categories and Subject D escriptors D.1.1 [Programming Tech-
niques]: Functional Programming

Kmeoyrwpohrisdms,d adatataktiynpdse,-gA egndearic programming, Haskell, kind poly-



1. Introduction
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eastaR  le.g2 u0l0a9r)( ,VI annstaN noto Grtee nte arli.c2 s( 0C0h8a),kM ravualtritryece t( Ra lo.d2 r0ig0u9e;zV Y aankN usohoervt
et al. 2 010), and the f ramework for generic p rogramming i n GHC
(Magalha ˜es e t al. 2010a), r ely heavily o n advanced t ype-level f ea-
tures s uch a s G eneralised A lgebraic D ata T ypes (GADTs, S chri-
jvers e t al. 2 009) and t ype families ( Sulzmann e t al. 2 007). H ow-
ever, all the a pproaches s hare a l ack o f k ind d iscipline; for in-
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on the f irst tp age .T o c opy o therwise ,t o r epublish ,t o p ost o n servers o r t o r edistribute
to l ists ,r equires sp rior rs pecific p ermission a nd/or ra fee

WGP’12 September r9 ,2 012 ,C openhagen ,D enmark
Copyrigh t? c 2 012 ACM 9 78-1-4503-1576-0/12/09 . . .$10.00



aifmonrreges at ds hcaatcegaoe dtmys.apmtMae oCsod oaarfestid to1niv/fgdfeaee r,traaecm Cnhotak sk stiit2nna ddpfspu, snreo opcfatatierconahntesr eeslsy ion.h rV at tvhiinseegibd S t lioecffrc ie acoxpudal etmYiod epsuuleprs slu iBo cpoafpilot tehirotir-sn-
plate approach (SYB, L ¨ammel and Peyton Jones 2003, 2004), or
the Generic/Generic1 classes of Magalha ˜es et al. (2010a).

This is all bound to change, though, with the recent addition of

2Gki0nH1dC2)p .v oTe lryhsmeioon nrpe7 wh.i4sf m,eaa tn aundrdeds u ,us aeevrt -aoidleab fbielnef euda llsk yia ns d“ utspetp cohornG toeHldoCgi yn( Yp v orerergvseiieyowne ”t7 a .i 6nl.,
bring a whole new range of programming techniques within reach.
In this paper we explore the potential of these new features for im-
proving generic programming, giving “the right kind” annotations
to some existing approaches, and analysing in detail the improve-
ments achieved. Naturally, as soon as new features are introduced
into the wild, programmers begin using them, exploring dark cor-
ners, and demanding new and more complex extensions. We will
play our role in that task, pointing out how current limitations hin-

mdeernft usri tnht erhei n lnanogvuaatigoen.s,a ndp rovidingi nsightf orf utured evelop-
Specifically, the contributions of this paper are the following:

•Mandult uipseler-e dxeafinmepdleks ino dfst hf eoru  gseenfuerlincesp sroo gfrak minmdinp gol iynmH orapshkisemll,
by r edefining existing i mplementations t o make use o f the new
features.

• Pointing out not o nly the a dvantages o f the new f eatures, but

ianlsgoi tn hsiegirhs thf oorrtf cuotmurinegd se,vi edleonptmifeynintsg.k eyl imitationsa ndp rovid-
• Defining a new library for generic p rogramming i n Haskell



that supports d atatypes w ith a rbitrary n umber o f p arameters,
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We i ntroduce the i mportant concepts a s t hey appear, but due t o the
exploratory n ature o f t his p aper w ith regards t o GHC e xtensions
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future w ork and conclude i n Section 7



Notation

In this paper we will often use the same n ame for constructors,
types, and kinds. To reduce the potential for confusion, constructors
are coloured in b lue (like J ust), types and type classes in orange
(like M aybe Int), and kinds in green (like ?). A black and white
version is available from http ://dreixel .net/research/pdf/
trkgp_nocolor .pdf.

2. User kinds and kind polymorphism

Yorgey et al. (2012) introduce two new features in GHC: user-
defined k inds (through datatype p romotion) and kind polymor-
phism. We introduce the two features in this section b y means of
example uses, and refer the r eader t o the original p aper for imple-
mentation details.

2.1 Datatype promotion

Consider the datatype of Peano-style natural numbers:

data Nat = Ze | Su Nat

Through datatype p romotion, enabled with the flag -XDataKinds,
this declaration gives rise not only to a type Nat inhabited by the
expressions Z e and Su n for every n ::Nat, but also to a k ind Nat
inhabited by the types Ze and Su ν for every ν ::Nat.

Only types of kind ? can contain values; types of other k inds are
always uninhabited. Nonetheless, we can use the new Nat k ind to
define a type of length-indexed lists, or vectors:

data Vec ::? → Nat → ? where
tNail V c::: V:e?c → →α NZea
Cons :: α → Vec α ν → Vec α (Su ν)



This vector type can b e used to prevent a usual runtime error, that
of asking for the first element of an empty list. Since vectors k eep
track of their length, we can define a function that returns the first
element of a non-empty vector:

headVec :: Vec α (Su ν) → α

hheeaaddVVeecc (::CVoencsα αa (tS) u=ν a)

This function cannot f ail, as it does not operate on empty vectors;
a call of the form headVec Nil does not t ypecheck.

We could define Vec without -XDataKinds; the usual trick is
to define empty datatypes that stand for a new kind and use them
carefully. So we could define:

data Ze0
data Su0 ν

data Vec0 ::? → ? → ? where
Nil0 ::: V:e?c →0 →α? ?Z→ e0
Cons0 :: α → Vec0 α ν → Vec0 α (Su0 ν)

Note the difference in the k ind of Vec0: both its arguments are of
kind ?, which means that Vec0 Int Int would not trigger a kind
error. However, we always expect the second argument to Vec0 to be
either Ze0 or Su0; -XDataKinds allows us to make that r equirement
explicit, and have the compiler enforce it for us, statically, j ust
like the compiler enforces properties on the structure of values b y
means of their types.

Not all datatypes are currently promoted by GHC; only datatypes
with a k ind of the form ? → . . .→ ? → ? are promoted. In partic-
wulaithr, haik gihnedr- okfint dheedf odrmatat? y→ pes. .a.n →d d? a →taty? p easre wp rhoosmeo tkeindd.sI n i npavortlivce-
promoted types are not p romoted. Additionally, datatypes whose
constructors are kind p olymorphic, involve constraints, or use ex-
istential quantification are also not promoted.



2.2 Kind polymorphism

Consider the type of standard Haskell lists:

data [ α ] = [] | α : [ α ]

With -XDataKinds this type gets promoted too! What is, then, the
kind of promoted lists? The type of lists is p olymorphic, so the kind
of promoted lists is polymorphic too, but at the k ind level. So for
all possible kinds κ, the term [ κ] denotes a valid kind.

Kind polymorphism is activated with the flag -XPolyKinds,
which enables kind-polymorphic inference and checking. Consider
the following datatype:

data Proxy σ = Proxy

Without -XPolyKinds, the k ind of Proxy is ? → ?; the kind of
tWheit haorugutm- eXPnot lσy iis ddsef,aut hletedk ntod o?f, Pasr txhye Hs?a sk→ ell? ;9t 8h elank ginuda ogfe
report states (Peyton J ones 2003). With -XPolyKinds, however,
the kind of Proxy becomes ∀κ. κ → ?. T his extra generality gives
uthse etk hein adb oiliftyP rtoox iynb staencotmiatees sP ∀rκox.κy w→ ith ? .tyT pheiss o efx dtriaffg ereennetr ka liintdysg . Fveors
instance, Proxy Int, Proxy M aybe, and Proxy Z e are all valid types.
The usefulness of kind polymorphism will b ecome clearer in the
examples of the coming sections.

3. Improving the Regular library

Regular1 is a simple library for generic programming in Haskell,
originally developed to support a rewriting system (Van Noort et al.
2008). It has a fixed-point view on data: the generic representa-
tion is a pattern-functor, and a fixed-point operator ties the recur-
sive knot. In the original formulation, this is used to ensure that
rewriting meta-variables can only occur at recursive positions ofthe
datatype. Its name derives from the concept of a regular datatype,



which is a type that can b e r epresented as a potentially recursive
polynomial functor. This definition excludes exponentials (func-
tions), or nested datatypes (Bird and Meertens 1998), among oth-
ers, which Regular indeed does not support.

3.1 Defining the universe

The first step in improving Regular is to encode its r epresentation
types (such as sum, product, unit, etc.) as a universe. Universes
are a well-known strategy for implementing generic p rogramming
in dependently-typed languages (Morris 2007); we find that they
now apply naturally t o Haskell with promotion. The b asic idea is
to define a datatype that encodes the structure of datatypes, and a
function that explains how to view this structure as a datatype itself.

Essentially, we want to define a new kind encompassing the
representation types of Regular. Imagine the following syntax for
introducing k inds directly:

kind Universe = U | K ? | I
=| CU M |K et? aC |I on Universe
|| UCnM iveetrasCe o: n+U: Uninviveersrese
|| UUnniivveerrssee ::+×:: UUnniivveerrssee

In this way we would introduce a new kind Universe, inhabited b y
each of the six representation t ypes of Regular. Note in particular
how K, the type for representing constants, is p arametrised over a
type of k ind ?.

Since the only way to define new kinds is through datatype
promotion, we must define the universe as a datatype, and hope
that it is promoted to the k ind above. But how can we define
K in the datatype version of the universe? There is no datatype
argument that is promoted to k ind ?; so we are forced to abstract
over a p arameter, which we will later instantiate to k ind ? (after



promotion):

data Universe star = U | K star | I
=| CU M |K etas tCaro| n I(Universe star)

1http ://hackage .haskell .org/package/regular



| (Universe star) :+: (Universe star)
|| ((UUnniivveerrssee ssttaarr)) :: ×+ :: ((UUnniivveerrssee ssttaarr))

This is slightly cumbersome, and leads us to formulate the first
shortcoming of the current implementation of user kinds in GHC.

Shortcoming 1. We have to define a new d atatype, even when all
we are interested in is the respective kind.

From Shortcoming 1 it follows that if we want to have kinds
such as ? or ? → ? as arguments to user-defined kinds, we will have
stou cfihr sats a? b ostrra ?c→t fr?oa ms athrgeumm easn sk tinodu vsearr-idaebfliense, dak ndin dlas,tew r ein wstilaln htiaavtee
them to the r ight k ind. Alternatively, GHC could define a built-in
datatype Star whose p romotion is defined to b e ?.

We will see this instantiation in the interpretation of the Regu-
lar universe in Section 3.2. For now, we should discuss the encod-
ing of meta-information for constructors in the C r epresentation
type. This meta-information stores the constructor name, its fixity,
and associativity, and is important when defining functions such as
generic read or show. The current encoding of Regular generates
one empty datatype for each constructor of the type being repre-
sented. We propose r eplacing this with an encoding of the meta-
information at the kind level; MetaCon should be defined as fol-
lows:

data MetaCon = M C [ Char] Fixity Bool

data Fixity = Prefix | I nfix A ssoc Int

data A ssoc = LeftAssoc | RightAssoc | NotAssoc

The kind MetaCon, arising from the p romotion of the datatype
MetaCon, now contains all the meta-information available for a
constructor; its first argument encodes the constructor name, the
second its fixity, and the third controls whether r ecord notation was



used. We will see in Section 3.4 exactly how this new representation
is an improvement over the current one.

3.2 Interpretation

Together with the Regular universe we must define an interpreta-
tion: a value witness for types of kind Universe. We define the in-
terpretation for Regular as follows:

data J υ :: Universe ? K (τ ::?) where
tUa0 J::υ υJ U::UK nτi

tKa0 ::J::υ υαJ:U U→:UK nτJi (vKer sαe) ?K Kτ(

I0 :::::: ατJ U→ →K τJ JI(KK Kτα

C0 :::::: τ(αC→  →onsJ J tIr(KKucτ tα o)rK Kντ ) ⇒ J α K τ → J (C (MC ν φ ρ) α) K τ

L0 :::::: (Jτ Cα→ o →oKn τsJtI Ir→Kuc τ tJo oαr ν:+): ⇒β KJ τα

R0 :::::: (JJCβαo oKKn sττt →r→uc JJt oααr :ν:++):: ⇒ββ ⇒K KJ ττα

×0:::::: JJJ βαα KKK τττ →→→ JJJβαα K :: ++τ ::→ββ KJK τατ : ×: β K τ

For notati::::oJJnβaαl KKcττ o n→  →venJ J iβαenK : +cτ e: →w βe KJ c ατal: l× ×th:e β in Kt τerpretation datatype J JK ,
Ftaokrinn go athtie:o: nuJanαliKv ceoτ rns→ ve eaJ nrgiβeunK mcτ een→ w te eυJc α αailnl :×st ihd:eeβ itK nht eτe rbprraectkateiotsn; tdhaet atrygpuemJ en K,t
fFoorr nt  hoet rteiocnuralsi vcoen pvoensiiteinocnes wτe c coamllet sh eai fntteer tphreet abtiraonckd eattsa. BypeecaJ usK e,
Universe is a datatype with constructors such as K, we cannot call
the constructor corresponding to the interpretation of K simply K;
we are forced to come up with a new name, so we p rime all the
constructor names. This is a consequence of Shortcoming 1.

The kind of υ is Universe ?; as p romised, the argument to
Universe is always ?. Ideally we would define a kind synonym for

yUent.iv2erse? ,b utu nfortunatelyk inds ynonymsa ren oti mplemented
Shortcoming 2. The lack of supportf or kind synonyms means we
cannot abbreviate kinds.



2On theo therh and,w ea ren ow freet o instantiate Universe to kinds other
than ?; it remains to see whether there is any practical application for this.

The interpretation itself is mostly unsurprising: units h ave no
arguments, constants t ake a value of the given constant type, and
for a r ecursive position (I0) we store the τ variable. This is the way
Regular encodes recursion; see the example in Section 3.4 for clari-
fication. Products take two arguments, and a sum can b e b uilt in two
different ways. The meta-information for constructors introduces a
class constraint on the (type-level) name of the constructor. T his
class provides the value-level operations on meta-information:

class Constructor (ν :: [ Char]) where
conName ::Proxy ν → String

conFixity ::Proxy ν → Fixity
ccoonnFFiixxiittyy =::P croonxyst νP→ refixF

conIsRecord ::Proxy ν → B ool
ccoonnIIssRReeccoorrdd =::P croonxyst νFa→ lseB

We need to use the Proxy datatype (introduced in Section 2.2)
because the type of the methods in the class n eeds to mention
at least one of the class t ype variables, but we cannot t ake ν as
an argument directly since its kind is not ?. W e suspect t hat a
datatype like Proxy is going t o appear in most code using k ind
polymorphism, so it should probably be defined within a module
that comes with GHC.

Note also that, at the time of writing, there is no r eal support for
type-level Strings in GHC: while lists are promoted, Strings are lists
of Char, and there is no syntax for using promoted characters. As a
workaround, we can assign a u nique number to each datatype and
use that instead. Note however that type-level Ints are not supported
either, so we would have to use type-level Peano-style naturals.
Also, due to Shortcoming 2, we have to write [ Char] instead of just



String. W e hope that I avor Diatchki’s work on type-level literals
will soon allow us to define these types.3
Shortcoming 3. We lack support for type level naturals and
strings.

3.3 Converting to and f rom user datatypes

We need a way to convert between u ser datatypes and their generic
representation to provide a seamless u ser experience. We do not
want u sers to ever h ave to see the generic representation; t hey
should use their datatypes as u sual, and the generic functions
should automatically convert to the generic representation as nec-
essary. For this task Regular u ses a type class:

class Regular (α ::?) where
type PF α :: Universe ?

from :: α → JPF α K α

tfroo :::: JαP→ F αJ PK Fα α→K αα

Regulfarro ums:e:::sJα αaP→ →Fs hαJ aPKllFα owα → →gKαα e neric encoding: a value of type α is
converted t:o: JaP PoFne α-laKyα er→ →geα neric r epresentation of type J PF α K α;

tchoen vvearluteeds aot atho en re-eclauyresrivg ee npoersiictir oenpsr e(suenndteatr oI0n) aorfe t yopfe etJ ypPeF α α, Kaα nd;
ncootn vgeernteedric t orea por nesee-nlatayetiorng es.n

Advantage 1. The kind of the PF type f amily now clearly estab-
lishes that only representation types m ake up a valid representa-
tion.

3.4 Example encoding

To illustrate the encoding of u ser datatypes we show how lists are
represented in the new encoding of Regular:

instance Regular [ α ] where



type P F [ α ] = (C (MC ?1 (Infix RightAssoc ?3) False) U)
:+: (C (MC ?2 Prefix False) ((K α) :×: I))

3 http : //hackage .haskell . org/trac/ghc/wiki/TypeNats



from [] = L 0 (C0 U0)
from (h : t) = R 0 (C0 (×0 (K0 h) (I0 t)))

to (L0 (C0 U0)) = []
to (R0 (C0 (×0 (K0 h) (I0 t)))) = h : t

Due to the current lack of support for type-level strings and integers
(Shortcoming 3), we cannot quite define ?1 (the type-level string
" [] "), ?2 (the type-level string " :"), and ?3 (the type-level integer
5).

We also need to give Constructor instances for each of the
constructor representations:

instance Constructor ?1 where
conName = " [] "

instance Constructor ?2 where
conName = " :"
conFixity =I nfix R ightAssoc 5

Note how these constructions are b asically a value-level repeti-
tion of information that is already present in the types. We h ope
that recent work on automatic singleton generation (Eisenberg and
Weirich 2012) can b e used to automate this t ask.

3.5 Generic functions

Many generic functions can b e defined in Regular. W e start with
the functorial map function, which can in turn be used to define
standard r ecursive morphisms. As the function is indexed over the
universe types, we define it using a type class:

class GMap (φ :: Universe ?) where
gmap :: (α → β) → J φ K α → J φ K β



Given tmhea pk :i:n(dα o →f Gβ )M→ apJ, iφt Kiαs n →ow J φclK eβa r that this class is used
interngallmya pin: :R(αegu→ lar β, )a→n d uJsφe Kr αda →tatyJ pφe sK βare not to be instantiated
to it.

Advantage 2. We can only give instances of GMap for represen-
tation types.

We define the generic function by providing an instance for
each representation type. Units and constants h ave nothing to b e
mapped, whereas at the recursive position we apply the function
being mapped. For constructors, sums, and products we simply
recurse:

instance GMap U where
gmapf U0 = U0

instance GMap (K α) where
gmap (K0 a) = K0 a

instance GMap Iwhere
gmapf (I0 r) = I 0 (f r)

instance (GMap φ) ⇒ GMap (C γ φ) where
sgtamnapcef  ( G(CM0 ax)p =φ )C⇒ 0 (gG mMapapf ( ( xC)

instance (GMap φ ,GMap ψ) ⇒ GMap (φ :+: ψ) where
sgtamnapcef  ( G(LM0 aa)p =φ , LG0 M(gampaψ p)f ⇒a )
gmapf (R0 b) = R 0 (gmapf b)

instance (GMap α, GMap β ) ⇒ GMap (α : ×: β) where
sgtamnapcef  ( (G ×M0 aap pbα) ,=G ×M M0 (pgβm a)⇒p f Ga)M (gamp a(pα:  f× ×b):

Shortcoming 4. GHC d oes not check for exhaustiveness of in-
stancesf or a promoted datatype (e.g. warn if wef orget the instance
for U).

The definition of catamorphism, using gmap, remains un-



changed:

cata :: (Regular α, GMap (PF α))
⇒ (JPF α K β → β) → α → β

cataf =f ◦ gmap (cataf ) ◦from

In fact, we can even go further than Shortcoming 4 , and argue that
the GMap (PF α) part of in the constraint of cata is unnecessary;
GHC could check t hat the GMap class has all the n ecessary in-
stances for the Universe ? k ind, and then automatically fill-in the
appropriate class dictionaries.

Compared to the current implementation of Regular without
user kinds, the main advantage of this new way of defining g map is
that we can use more precise kinds, p reventing common mistakes.
Furthermore, a function such as generic s how is now e asier to
define given the presence of constructor meta-information at the
type level. Consider the class definition for generic show, together
with the interesting cases for C:

class GShow (φ :: Universe ?) where
gshow :: (τ → String) → J φ K τ → String

insgtsahnocwe (::G(Sτh→ ow S φtri) ⇒g) G →Sh JoφwK ( τC → →(MS Ctr νn gPrefix ρ) φ ) where
sgtsahnocwe  f(G G(SCh0 ox)w φ=) "⇒ ⇒( ⇒"G G++ Sh coownN (Cam (Me (CPν roP xyre :f:i xPρ ro)xφy )νw)

++ " " ++ gshowf x ++ ") "

instance (GShow φ , GShow ψ)
⇒ GShow (C (MC ν (Infix α ι) ρ) (φ :×: ψ)) where

g⇒shGo wShf o o(wC 0( (C C×( 0M MxC Cy )ν ) (=I f"i (x "α + ι +) gρs)ho( φw : ×f x: ψ++ ) )" "h
++ conName (Proxy ::Proxy ν)
++ " " ++ gshowf y ++ ") "

The function b eing carried around (f) is used for the r ecursive



positions, and can b e ignored for the purposes of this example.
What is important to notice is that we can give separate instances
for prefix and infix constructors. A similar treatment can be given to
constructors using r ecord syntax, but we elided the selector meta-
information for simplicity.

Advantage 3. We can match m eta-data p roperties at the type
level, allowing genericf unctions to easily change their behaviour
according to meta-data.

4. Improving Multirec

Multirec (Rodriguez Yakushev et al. 2009) is a library for generic
programming supporting families of mutually r ecursive datatypes.
It can b e seen as a generalisation of Regular, using indexed func-
tors instead of plain functors for the generic r epresentation. L ike
Regular, its current implementation 4 is not properly kinded, as the
representation types are not encoded as a separate u niverse.

Fortunately we can improve Multirec in a way similar t o R egu-
lar, b y defining a datatype for the universe and u sing its promoted
constructors as the representation types:

data Universe star ι = U | K star |Iι | (Universe star ι ) :m : ι

=| U(U| nK ivs ertasre |st Iaιr |ι() U:+n:i (eUrnseivs etrasreι )st: amr ι: )ι
|| (( UUnniivveerrssee ssttaarr ιι)) :: ×+ :: ((UUnniivveerrssee ssttaarr ιι ))
|| ((sUtnariv →er sseta stra) r:·ι : )(: U×n:i( vUersneiv setrasre ιs t)

There are a few important things to notice about Multirec’s uni-
verse:

• Since Multirec represents datatypes as indexed functors, the
universe is p arametrised over an ι parameter, r epresenting the
family index. T his parameter is used in the Icase to state which



type in the family we recurse into.

• A new representation type α : m : ι is used to tag a particular
branch α of the representation with an index ι, stating that said
branch encodes the type of index ι .

4http: //hackage .haskell . org/package/multirec



• Since version 0.6, Multirec has support for a limited form of
composition, which allows representing datatypes that use con-
tainer types, such as lists or Maybe. We encode this with φ : ·: α,
wtaihneerre yφp ::e s?, →suc ?h aans dli αts oisr aM ar eypbree.sW enetae tinocno.d eNt ohteis wt hiatth w φe : ·r:eαly,
wonh terhee pφr: o:?m→ otio? n aonfd dthα e ifsun actr ieopnr tsyepnet sttioarn .→N ostteart htoa ttw hee k reinlyd
?o n→t h ?e .

• We omit the case for constructor meta-data for simplicity, as it
is similar to Regular.

As with Regular, the interpretation is given as a GADT over
the (promoted) universe. It is p arametrised over a τ type that maps
indices to their corresponding types, and a particular index ι ; since
we are encoding families of datatypes as a single datatype, we use
ι to select which datatype we intend to obtain the interpretation for:

data J υ :: Universe ? ικ K (τ :: ικ → ?) (ι :: ικ) where
tUa0 J::υ υJ U::UK nτi ιv

tKa0 ::J::υ υαJ:U U→:UK nτJi v( ιKer sαe) ?K τι ιK

I0 :::::: ατJ Uo→ →K→τ J (ιJK K(I αo)) KK ττ ιι

m0 :::::: τJα αα o→ →K→ →τJ Jι( K(→Iα o J)) KαK ττ:mιι  : ι K τ ι
L0 :::::: JJτ ααo KK→ →ττ ιιJ (→→I o JJ) ααK τ::m+ι :: ιβK KK ττ ι

R0 :::::: JJJβαα KKK τττ ιιι →→→ JJJ ααα :::++m::: ι ββ KKK τττ ιι

×0:::::: JJJ βαα KKK τττ ιιι →→→ JJJβαα K :: ++τ ::ι β ββ→KK τJτ ιια :×: β K τ ι
C×0 :::::: φJJαβ αβ(KKJ α ττ ι ιK → →τ →→ι)JJ α→β K KJ+ τ +τφ: β:→· : →ατ J τJKια ατ: ι×

The m::::eJφdiαa( JtKiατ onKι τb →e ιt) wJ→ βeeK nJ τ τφ rιe  :p →·r:α esJ eKαnτ t: aι ×ti:oβ n tKyτ pιe s and user types is
done with:: φtw( oJ αtypKe τ c ιl)as→ ses J, φo: n·:e αprKo vτiιd ing value conversion (Fam,
for family), and the other (El, for element) assisting in the genera-
tion of family indices:

newtype I0 ι = I 0 {unI0 :: ι }

class Fam (φ ::? → ?) where



atysspF ea PmF( φφ :::: U?→n ive? r)s ew ?h e?r

from :: φ ι → ι → J PF φ K I0 ι

tfroo :::: φφ ιι →→ Jι P→F JφP PKF FI0φ φιK →I ι

class El: :(φφ :ι: ι→κ J →P ?F) φ(ιK :I: ικ) where
proof ::φ ι

The definitions of Fam and El are better understood through an ex-
ample, so we show how to encode the following family of mutually
recursive types:

data Zig = Zig Zag | Z igEnd

data Zag = Zag [Zig ]

The argument to Zag is a list of Zigs. The first step in encoding this
family is to define a GADT to serve as witness for the presence of
each of the types in the family:

data Z igZag ι where
ZigZagZig ::ZigZag Zig
ZigZagZag ::ZigZag Zag

We can now define a Fam instance for the ZigZag family:5
instance Fam ZigZag where

type PF ZigZag = (((I Z ag) :+: U) :m: Zig)
:+: (([] :·: (I Z ig)) :m: Zag)

from Z igZagZig (Zig zag) = L0 (m0 (L0 (I0 (I0 zag))))
from ZigZagZig (ZigEnd) = L0 (m0 (R0 U0))
from Z igZagZag (Zag zigs) =

5 All of the r epresentation code is currently generated automatically b y
Multirec using Template Haskell (Sheard and Peyton J ones 2002). T his



support can be retained when using data kinds, since these are already
supported in Template Haskell (Eisenberg and Weirich 2012).

R0 (m0 (C0 (map (I0 ◦I0) zigs)))

to Z igZagZig (L0 (m0 (L0 (I0 (I0 zag))))) = Zig zag
to Z igZagZig (L0 (m0 (R0 U0))) = ZigEnd
to Z igZagZag (R0 (m0 (C0 zigs))) =

Zag (map (λ (I0 (I0 x)) → x ) z igs)

In the Fam class we use a lifted identity type I0 as the τ argument to
the i nterpretation. This simply means that at the r ecursive positions
we h ave normal datatype values again; Multirec, like Regular, u ses
a shallow encoding of data. In the definition of the catamorphism
(which we elide for brevity), for instance, this parameter is not fixed
to a p articular type, allowing a different return t ype per index, for
instance.

We have seen that converting Multirec to make use of better
kinds b rings considerable changes to the library. However, the
changes are mostly mechanical, cause no loss of f unctionality, and
result in a properly kinded library. From the user’s perspective there
is no difference, as the representations are automatically generated.
We have remained faithful to the current definition of the Fam class
and used indices of kind ?, but with the current kind-polymorphic
definition of Universe we are free t o use indices of other kinds. In
Section 6.2. 1we show a way to define a Fam class that allows more
general index k inds.

5. Improving Typeable and SYB

SYB (L¨a mmel and Peyton Jones 2003, 2004), a library for generic
programming with built-in support in GHC, uses runtime type-safe



casting to support generic functions with ad hoc cases for specific
datatypes.

5.1 Kind-polymorphic Typeable

SYB relies on the Typeable library for runtime type comparison
and casting. Currently, Typeable consists of a group of classes, of
the following form:

data TypeRep

class Typeable (α ::?) where
typeOf :: α → TypeRep

class Typeable1 (φ ::? → ?) where
typeOf1 :: φ α →φ: T:?yp →eR? ep)

The datatype TypeRep gives a runtime representation of a datatype;
we leave its definition abstract as its internals are not important for
our discussion. A type of k ind ? → ?, such as Maybe, gets two
ionusrtad niscecsu:s

instance Typeable1 Maybe . . .

instance (Typeable α) ⇒ Typeable (Maybe α) .. .

There is a total of eight Typeable classes, from Typeable to
Typeable7. This is inconvenient not only because of the obvious
duplication, but also because:

1. Types of arity higher than seven cannot b e given a Typeable
instance;

2. Types with arguments of higher r anks (such as ? → ?) cannot
Tbey pinesstw anittihatea drg uatm aelln;

3. Types with arguments of user-defined kinds cannot be instanti-
ated either.



Yorgey et al. (2012) already proposed a kind-polymorphic
Typeable class as follows:

class Typeable (φ :: κ) where
typeOf ::Proxy φ → TypeRep



The construction of “towers” of Typeable instances for higher-
kinded types like M aybe can then b e condensed into a single, kind-
polymorphic instance:

instance (Typeable (φ :: κ1 → κ2), Typeable (α :: κ1 ))
⇒ Typeable (φ →α)κ . . .

We further propose naming the Typeable method typeRep, instead
of typeOf, so that we can retain typeOf, typeOf1 ,etc. for b ackwards
compatibility:

typeOf ::∀(α ::?) . Typeable α ⇒ α → TypeRep
ttyyppeeOOff ∀=( αtyp ::?eR).eTp y (pPeraobxlye :α: αP⇒ roxα y α→)

typeOf1 :: ∀(φ ::? → ?) (α ::?) . Typeable φ ⇒ φ α → TypeRep
typeOf1 ∀=( φty: p:e?R→ ep? ?()P(rαo:x :y? ::) .P Troypxyea φb)l

Note that the code above uses scoped type variables to provide the
right type to Proxy.

5.2 Kind-polymorphic SYB?

SYB also has a form of duplication to accommodate types of
various kinds, which we might hope to r emove b y using kind
polymorphism. This duplication is noticeable in the definition of
the extension functions:

ext0 :: (Typeable (α ::?), Typeable (β ::?))
⇒ φ α → φ β → φ α

ext0 def ext = maybe def id (gcast ext)

ext1 :: (Data α, Typeable1 ψ)
⇒ φ α → (∀β . Data β ⇒ φ (ψ β)) → φ α

ext1 def ext = maybe def id (dataCast1 ext)



The function ext1 is j ust a variant of ext0 that is u sed when deal-
ing with types of k ind ? → ?. There is also an ext2 variant. The
dinagtaw Ciatsht1t yfupnesctio ofnk icnodme? s→ →fro? m. tThhee rDea tisa acllsaoss:a

class Data α where
dataCast1 :: Typeable1 ψ

⇒ (∀β . Data β ⇒ φ (ψ β)) → Maybe (φ α)
dataCast1 =∀ Nβo.thD inatga

The default definition of d ataCast1 is suitable for types of kind ?,

like Int. For types of kind ? → ?, like Maybe, gcast1 should be
luikseed innt.steF aodr; ttyhpise sfuo nfctk iionnd i?s very ,si lmikeila Mr atoy gbce,as gtc a(ussted by ext0),
but while g cast uses typeOf, g cast1 uses typeOf1 :

gcast :: (Typeable (α ::?), Typeable β) ⇒ φ α → Maybe (φ β )
gcast : x: (=T yrp weahbelree(

r= if typeOf (getArg x ) ≡ typeOf (getArg (fromJust r))
tifhe tynp JeuOsft ($ guentsAarfgeC xo)e≡ rct ye p xe
else Nothing

getArg :: φ α → α

ggeettAArrgg =::φ φ⊥α

gcast1 :: (Typeable1 (ψ ::? → ?), Typeable1 ψ0)
⇒ φ (ψ α) → (Mψa :y:?be → →(φ? ()ψ,T0 αpe))a

gcast1 x = r where
r= if typeOf1 (getArg x ) ≡ typeOf1 (getArg (fromJust r))

then J ust $( guenstaArfgeC xo)e≡ rcet y xp
else Nothing

getArg :: φ α → α

ggeettAArrgg =::φ φ⊥α

Note how the difference between gcast and g cast1 is basically



confined to their type; the implementation is equivalent, especially
in the new Typeable setting where typeOf and typeOf1 are bothj ust
typeRep.

5.2.1 Example usage—kind monomorphic

Defining a generic function in SYB and extending it with a type-
specific case for a container type such as M aybe i s currently done
as follows:

newtype R esult (α ::?) = Result Int

example :: ∀α. (Data α, Typeable α) ⇒ Result α

eexxaammppllee : =: ∀  geαn.er( aDla ‘teax αt1 ‘, mTyapyebaeb1l e‘e αxt)0‘⇒ ⇒mR ayebsue0lt

where general :: R esult α

general = Result 0

maybe0 :: R esult (Maybe Int)
maybe0 = R esult 1

maybe1 :: ∀χ. Result (Maybe χ )
maybe1 :=: ∀ Reχs.uR lte s2u

The example function returns:

• Result 0 when its type is instantiated to Result I nt;

• Result 1when its type is instantiated t o Result (Maybe Int);

• Result 2 when its type is instantiated t o Result (Maybe Char).

We have to use ext1 for maybe1 ; using ext0 would result in an am-
biguous variable χ (from the type of maybe1) during unification.
This is because general ‘ext0‘ maybe1 leads to the following unifi-
cations:

• φ with Result;

• α (from ext0) with α (from example);



• β with M aybe χ .

From ext0 we get a Typeable β constraint, which t ranslates into
a Typeable (Maybe χ) constraint in this case. Using the instance
Typeable α ⇒ Typeable (Maybe α) we get a Typeable χ constraint,
wTyhpicehab lise αn o⇒t saTtyispfeieabdl. eF(iMxinagyb tehiαs )iws enog te easy; seianbcele oχ n lcyo nmsatrayibne1t,
knows χ, we would have to change the type signature of example
to include the Typeable χ constraint, which in turn would require
adding a dummy argument of type χ to example. Using ext1 we
avoid this problem, since we only get a Typeable1 Maybe con-
straint, which does not introduce any constraints on χ.

5.2.2 Example u sage—kind polymorphic

In a kind-polymorphic setting, we can remove this duplication b y
providing a single function for casting and for extending a function
with an ad hoc case:

gcast ::∀(α :: κ1 ) (β :: κ2) (φ :: κ1 → ?) (ψ :: κ2 → ?) .
∀(T(αype: :aκble α, Typeable β) →⇒ ?φ) (αψ → ::κ κMa→yb ?e) (.ψ β )

gcast x = rwhere
r= if typeRep (getArg x ) ≡ typeRep (getArg (fromJust r))

tihf teynp J euRestp p$( (ugnestAafregCx o)e≡r cet y y xp
else Nothing

getArg ::∀φα. φ α → Proxy α
ggeettAArrgg =::∀ ⊥φ

ext ::∀(α :: κ1 )(β :: κ2) (φ :: κ1 → ?)(ψ :: κ2 → ?) .
∀(T(αype: :aκble α, Typeable β) →⇒ ?φ) (αψ → ::κ ψ β→ → ?) φ. α

ext def = maybe def id ◦ gcast

Both gcast and ext now have a much more general type; gener-
alising α and β ’s kind also requires generalising the k ind of the



containers, φ and ψ.

We can redefine example using the new ext:

newtype R esult (α :: κ) = R esult Int

example ::∀α. (Typeable α) ⇒ Result α



example = general ‘ext‘ maybe0 ‘ext‘ maybe1

where general :: Result α

general = R esult 0

maybe0 :: Result (Maybe Int)
maybe0 = Result 1

maybe1 :: Result M aybe
maybe1 = Result 2

Note that:

1. There is no more duplication; we use a single extension function
(ext), which uses a single cast function (gcast);

2. The case for maybe1 no longer requires quantification over a
type variable.

3. The order in which we perform extension is n o longer relevant.

Unfortunately the example p resented is not general enough. In
example we are never looking at the input value, and simply return
a result that depends on the input type. Most generic functions,
however, do inspect their input; t his means the inputs have a type
of k ind ?, so we cannot use the trick shown above to handle types
of different kinds in a similar fashion. For instance, the generic
show function has a special case for [ α ] ; we cannot express this
case as a function of type [] → String,6 only as a function of type
∀cαas.e [a αs a] → fu nScttriionng. o Ifnt tpheis [ ]sc →enS atrriion gw,e are back to the problem
d∀αesc.[ riαbe]d→ →at thtrien egn.d I not fh Sisec sticoenn 5ri.2o. 1 w, ena amreebl ya cakmb toigt uhiety rofo btylepme
variable α during u nification.

This issue arises also from the way Typeable instances are
given. Even in the kind-polymorphic setting, we need two Typeable
instances for lists:



instance Typeable [] where . . .

instance (Typeable α) ⇒ Typeable [ α ] where . . .

This follows from the design of the Typeable library; we want t o
be able to check that the container t ype of [ Int] and [ Char] is the
same (using typeOf1), but the fully applied types are distinct (using
typeOf). The second instance above is the r oot of our problem:
it introduces a Typeable α constraint that we cannot adequately
propagate from the generic function definition through to ext.

There is a good r eason to want the current behaviour of Ty-
peable to persist. Again, generic show is a good example: we want
to define it by giving a general case, a special case for lists, and an
even more special case for lists of characters. At the moment, how-
ever, it is not clear how to r emove the duplication in SYB using
kind polymorphism alone.

6. Improving generic programming in GHC

Having seen the p otential of an improved k ind system in the im-
plementation of the generic p rogramming approaches discussed so
far, we turn our attention to the latest GHC addition for generic pro-
gramming, implemented in the GHC .Generics module, described
by Magalh˜a es et al. (2010a). This approach, which we call Deriv-
ing,7 uses an implementation strategy similar to Regular and M ulti-
rec, but without using functors as representation t ypes. Recursion is
handled without specific abstraction of r ecursive p ositions, result-
ing in a more flexible universe (which allows encoding more user
datatypes), but less structured (unable to support the definition of
the recursive morphisms, for instance).

6 This type is even ill-kinded; we could try Proxy [] → String, but that will
nToth wiso trykp eeit ihsee rv beenca iluls-kei tnhdee dP;r owxey ctyoupeld ddt oryesP Pnrootx yst[o r]→e →a vSatrluineg, ,o bnulty thitsa tty wpiell.



7 Even though it does not r eally allow defining new derivable t ype classes;
it allows defining classes with a generic default, which results in a very
similar usage style to standalone deriving.

We could follow the same strategy used for Regular (Section 3)
or Multirec (Section 4) to improve Deriving,8 but instead we decide
to tackle a long standing limitation with Deriving. Unlike Regular
and Multirec, Deriving does support p arametrised datatypes, allow-
ing for the (generic) definition of the standard list map on the ar-
guments, for instance. However, it only supports abstracting over
one parameter (much like Regular only supports abstracting over
one recursive position). So while we can express map for lists and
Maybe, for instance, we cannot express the bimap for Either. The
classes that witness the isomorphism between user datatypes and
their r epresentation in Deriving currently look like this:

class Generic α where
type Rep α ::? → ?

from :: α → (Rep α) χ
tfroo :::: (αRe →p α(R)e χ α→) χα

class Generic1 φ where
type Rep1 φ ::? → ?

from1 :: φ α → Rep1 φ α
to1 :::: Rφeα p1→ →φ Rαe →p φ α

The Generic class is used to encode user types of kind ?, while
Generic1 is used for user types of k ind ? → ?. The repetition is
evident; wihsi lues ethde ounriv uesrerset tyyppeses othfek minsdel? ve→ s a ?re. nThote rre eppeeattietdio n(wi es
encode datatypes without parameters by creating a fake parameter
χ that is never used), datatype representation requires potentially
two instances, even though they are rather similar. In this section we
aim at removing this duplication, while at the same time defining a



representation that allows any number of datatype p arameters.

6.1 First attempt

A legitimate first approach to this task would be to use the same
strategy as proposed by Hesselink (2009) to support parameters in
Multirec. A user datatype is associated not only with its generic
representation, but also the list of types it is parametrised over:

class Generic (α :: ?) where
type Rep α :: Universe ?

type Es α :: [? ]

from :: α → JRep α K (Es α)
tfroo :::: JαR→ ep JαR RKe (pEα s αK( )E →sα α)

We shforwom ma s::::iαmJRp→ elpifJi eα RdKe eu (pEni αvsα eKr( )sEe→ →swα α it)h a type for encoding parameters,
P, that simp:l:yJ Rtaekpesα αthKe ( iEnsd eαx) (→ as aα natural number) ofthe parameter
we are interested in:

data Universe star = U | K star | P Nat
=| U(U| nK ivs ertasre |stP arN ) a:+t: (Universe star)
|| ((UUnniivveerrssee ssttaarr)) :: ×+ :: ((UUnniivveerrssee ssttaarr))

We can define a suitable interpretation for this universe given a list
of p arameters. In the P case we store the n-th p arameter from this
list:

data J υ :: Universe ?K (τ :: [? ] ) ::? where
tUa0 J::υ υJ U::UK nτi

tKa0 ::J::υ υαJ:U U→:UK nτJi (vKer sαe) ?K Kτ(

P0 :::::: JNαUt→h →Kττ Jν( K→α αJ )(PK τν) K τ

L0 :::: Jα αα→ →Kτ ττJ ν →( →K →Jα Jα)( KP:+τ ν : )βK τK τ

R0 :::: JJβα KKτ τττν ν→→→ →JJ Jαα( P::++ν :: ) ββK K Kτ ττ

×0 :::::: JJJβααK KK τττ →→→ JJJααβ K  :: ++τ ::→ββ KJKττ α :×:βK τ



For this w::::eJJ nβαeKKe dττ a →→ →→ty pJJ βαe-: l K+evτ e:→ lβ lo KJ oτα ku: ×p :f uβnK cτ tion on lists:

8Asdescribedinhttp://hackage.haskell.org/trac/ghc/
wiki/Commentary/Compiler/GenericDeriving?version=51#
Kindpolymorphicoverhaul



type family Nth (τ :: [ ?] ) (ν ::Nat) ::?

type instance Nth (α : β) Ze = α
type instance Nth (α : β) (Su ν) = Nth β ν

We must be careful n ever to ask for an index outside the bonds of
the list, else we will get a type error. Ideally, τ should have kind
Vec ? κ, where κ is the number of parameters i n the type (Vec was
defined in Section 2.1), but Vec is not p romotable due to its kind,
and because it is a GADT.

Shortcoming 5. GHC d oes not support GADTp romotion.

In any case, the universe given h ere will not work. Note, for
instance, that we have omitted a case for composition; the orig-
inal Deriving approach supports composition, as it is clear t hat
datatypes with one parameter can be composed. With multiple pa-
rameters, however, composition is not always possible. For exam-
ple, what should b e the result of composing Either with Maybe?
Furthermore, our type K for recursion is not expressive enough
to allow defining generic map, for instance. Consider a family of
datatypes, all sharing a single p arameter. W hile mapping a func-
tion over the parameters, when we encounter another datatype with
K we have to k eep mapping inside this new type. Unfortunately K
does not keep any information about the structure of its argument
(namely if they are parametrised, and what their p arameters are),
so we cannot properly define map. The bottom line is that general-
ising our r epresentation to an arbitrary number of p arameters also
requires an explicit abstraction over r ecursion, so that we can k eep
track of which parameters go where. Additionally, if we want to be
able to compose the represented types, we e ither need to simplify
composition to a special case (like Multirec does), or we need to be
able to specify how each p arameter connects to each input.



6.2 Indexed functors in Haskell

Fortunately, generalising the r epresentation types to indexed func-
tors, as shown b y L o¨h and Magalh˜a es (201 1), allows flexible
parametrisation, mutual recursion through fixed points, and gen-
eralised composition to coexist. The resulting library, which we
call Indexed, requires a number of dependently-typed program-
ming techniques that remained out of reach for p ractical Haskell
programming so far. However, with the new extensions to the kind
language, we can encode a significant portion of the Indexed u ni-
verse in Haskell.

We do not provide a detailed explanation for the universe and its
interpretation; we refer the r eader to L o¨h and Magalh˜a es (201 1) for
more details. Here we focus mostly on how to bring the approach
to Haskell, and what challenges arise.

6.2.1 Universe

The Indexed universe can be seen as a generalisation of M ultirec’s
universe, with the important difference that we now distinguish
between input indices (ι) and output indices (o):

data Code ι o = Z
| U
|| IU ι
|| !I (ιCode ι o) o
|| !(C( Coodde ιe ιoo) :)+o : (Code ι o)
|| ((CCooddee ιι oo)) :: ×+ :: ((CCooddee ιι oo))
|| (∀  Cν.o (dCe oιdo e) : ν× o:) C:·: (dCeo ιdoe ι ν)
|| ∀∀ νι0.. (IXC d(ιe0 ν→o )ι:) ( (CCooddee ι ι0 νo))
|| ∀∀oι0. OX (o →→ ιo0)) ((CCooddee ιι o0)
|| µ(Code( (oSu →m oι o) o)

data Sum α β = L α | R β



Conceptually, input indices stand for p arameters, and output in-
dices stand for the datatypes being defined. So a family of two
datatypes with three parameters will typically use a type with three
inhabitants for ι and a type with two inhabitants for o.

A code Z stands for empty datatypes, while U is used for con-
structors without arguments. Ipicks a p articular index, while ! tags
a p articular representation with a specific index (similarly to M ul-
tirec’s : m:). Sums and products are u nsurprising, but composition
now requires that the codes being composed have a matching input
and output type. Note the existential quantification of the ν type
variable; we are relying on p romotion of existential quantification!
The codes I X and OX stand for input and output reindexing, respec-
tively, and are u sed mostly to allow composition of codes of distinct
indices. Finally we have the fixed p oint code µ;here we take a code
where the input indices are a disjoint sum between a parameter in-
dex ι and a output type index o, and return a Code ι o, by closing
the recursive positions. For this we also rely on a disjoint sum type
Sum.

6.2.2 Interpretation

The interpretation h elps clarify the universe, especially in regards
to the fixed p oint operator. We h ave given all the interpretations so
far as a GADT, but for Indexed we need to use a data family:9

data family (J γ: : Code ι o K ) :: (ι → ?) → (o → ?)

Thed k aitnadf aofm tihley ( inJteγr ::prCeotadteioι no sKt)a:te:s( ιth→ at ?g)iv →en ao u→ niv ?e)rse code and
a madpaptiangf a omfii lnyp( uJtγ γin ::dCicoedse etιo cooKn)c:r:e(ιte→ →typ? e)s,→ →w( eo oc→a n p? r)oduce a map
of output indices to concrete types. W e start with the interpretation
of units, sums, products, and composition, which are unsurprising:

data instance J UK τ o = U0



ddaattaa iinnssttaannccee JJ αU K:+: β K τ o = L 0 (J α K τ o)
=| RL0 ((JJβα KK ττ oo))

ddaattaa iinnssttaannccee JJ αα :: ×+ :: ββ KK ττ oo ==| R×L 0 ((JJ JJJβα βααK K KKK τττ ooo))) (J β K τ o)
ddaattaa iinnssttaannccee JJ αα ::·×: :ββ βK ττ oo == C×0 (({J JuJβnα KJKKτ τ C oo::) )J (αJ Kβ ( KJ βτ oK τ) o}

Notedd httaaow i inn swsttaae nnncceeestJJ ααth ::e ·× :iβ :ntβ K erK pτ  τreo o ta= = tioC×  n f{(ouJrnα αcJKKoτ mpo ::)oJsα( iJtβKio( nK J; βτtoh K i)sτ )w oo}rks
onlyd baetacai unsseta thnece e kJ iαnd ·o:f β β: β·K: Kisτ τeox p= reC ssiv{eu neJnKoug:h:J.

Ayb ne eincapuuste ei nthdeekx iinsd do bofta: ·i:nei sd ebxyp uressinsgiv ethe en map τ., while tagging is
done with an equality constraint as in Multirec:

data instance J (I ι ) K τ o = I0 {unJKI :: τ ι }

ddaattaa iinnssttaannccee JJ (( !I ια) Ko0) K τ o wher{eu
t!t0aa aa:ii : nJn αsstt aaK nnτcc eoe J→J((!I J αι α()! o α) oK)τ τK oτw woh

For dinaptau:ti : JrαsetiaKnnτ decxeo  i→ Jn(g! αw(!oe αn)oeK e) τdK oτt ywo phe-erleevel composition, which we
express :u:sJinαgK aτ no e w→tyJ p(e!. αO uot)pKuτ t oreindexing is easier since we can
just apply the transformation to o:

newtype FComp φ ψ α = FComp {unFComp ::φ (ψ α) }
dnaewtat iynpsetaF nCcoem mJ (pIφX ψ αα= ) =K FτC oo m=p pI{0X u(Jn FαC CK o(FmpCo::mφp ( τψ ψ α)) o})

ddaattaa iinnssttaannccee JJ ((OIX φψ αα)) KK ττ oo == IO0X( J(Jα ααK KK( τF C(φo mo)p)

We daaret alei fnt wtainthc ethJ e( Ofixedφ-p αo)inKt τ τco as=e , Owhic(Jhα αwKe τ τin( tφero p)r)et b y apply-
ing dτa otna tinhes laenftc (etJo (pOaraφme αte)rKs)τ τao nd= re Ocur(sJiαveKly τ τi n(tφeor p)r)eting on the
right (recursive p ositions). For this we need an auxiliary datatype
Sum1 :

data instance J (µφ ) K τ o where
tµa0 i::n Jstφa Kn c(eSu Jm(µ1 τφ )(JK ( τµ oφw ) Kh τer))e o → J (µφ) K τ o

ddaattaa :iS:nuJsmφta1K ( (cαSe u J::m (κµ1 τ→φ( ) JK?(τ) µ µ(o  φβ w w)::Kh κ τe2)r e→) o ? →) →:J: S(uµm φ κ)1K κτ2o → ? where
L1 :::: Jαφ φιK → (S Suumm1τ→ →α (J ?β() µ( (Lβφ )ι: :)K
R1 :::: βα ιι →→ SSuumm1 α β (R ι )



9Dataf amilies arem orel iberalw henm atchingv ariablek inds;w en eedt his
for the µφ c ase.



6.2.3 Mapping indexed functors

Indexed functors support a map operation, which in turn can be
used to define recursive morphisms (Meijer et al. 1991). W e define
the indexed map function by giving instances to each representation
type by means of a type class:

infixr 7 :→:

itnyfpixe r(φ7 :: →→:: ψ) = ∀ι . φ ι → ψ ι

class Map (γ :: Code ικ oκ) where
imap :: (φ : → : ψ) → (J γK φ :→: J γK ψ)

Our miampasp :a:r(eφ i:n →de:xψ ) pr →ese( rJvγinKgφ , w:→h:icJ hγ Kwψ e r epresent as a type
synoniymma (p::→:(φ:).

Uonnyimts, s(u:→ms:),. and products are standard:

instance Map U where
imap U0 = U0

instance (Map α, Map β) ⇒ Map (α :+: β) where
sitmanapcef ((ML0a xp) α=, ML0a p(imβ a)p⇒ f xM)
imapf (R0 x) = R 0 (imapf x )

instance (Map α, Map β ) ⇒ Map (α :×: β) where
sitmanapcef ((M M×0a xp α  y), =M a×p0 β()im ⇒apM f a x)p ((αim a:×p: f β β y))

For composition we nest the call to imap:

instance (Map α, Map β ) ⇒ Map (α :·: β ) where
sitmanapcef ((MC0a xp)α α=, MC0a p(iβm a)⇒p (iM maappf ( )α x  :)·

For an input index we simply apply the function. Tagging proceeds
recursively:

instance Map (Iι) where
imapf (I0 x) = I0 (f x )



instance (Map α) ⇒ Map (! α o) where
sitmanapcef ((M M!0 ax)p =α )!⇒0 ⇒(im Maappf ( !x α)

Output reindexing proceeds recursively without problems, as the
type of imap does not mention the output index. Input reindexing,
however, requires lifting the mapping function through the compo-
sition:

instance (Map α) ⇒ Map (OX φ α) where
sitmanapcef ((MOa0Xp paα) )=⇒ ⇒OX0M (aipm a(Opf a)

instance (Map α) ⇒ Map (IX ψ α) where
sitmanapcef ((MI0Xa ap)α α=) I⇒X0 (Mimaapp( (IFComp ◦f ◦ unFComp) a)

Finally, for fixed points we applyf to parameters (on the left), and
recursively map recursive occurrences (on the right). We use an
auxiliary function (k ) for this purpose:

instance (Map γ) ⇒ Map (µγ) where
sitmanapcef ((Mµ0a xp)γ =) ⇒µ 0 M(imapa( pµ µ(fγ k) wimhaepref ) x )

( k ) :: (φ :→: φ0) → (ψ :→ : ψ0)
→ :: ((Sφu :m→1 :φφ ψ))→ →:→( ψ: ( S:→um:ψ1 φ0 ψ0)

(f k→ k→) ( (SLu1m x) φ=ψ ψL)1 (→f : x( )S
((f  kk kg )) ((RL1 x) = R 1 (g x )

Having defined map, we can now encode standard recursive
morphisms, such as ana-, cata-, and h ylomorphisms:

ana :: (Map γ) ⇒ (ψ :→: J γK (Sum1 φ ψ))
→⇒ ((ψψ ::→→:: JJγ(µK γ(S)uK mφ)

aannaa :g: ( xM M=a pµγ0 ()im⇒→ ap (( ψψ(id: : →→ →→k a::JnJ  aγ(µ µK gγ( ) S()ugKm mφ x)))

cata :: (Map γ) ⇒ (J γK (Sum1 φ ψ) :→: ψ)
→⇒ ((JJγ(µK γ(S)uK mφ :→φψ : ψ): )→



ccaattaaf :: ((Mµ0a axp) γ=) → f⇒ ( i ((mJJa(γpµK (γ(iS)duK Kkm φ φc a:→ta: fψ ) )x )
hylo :: (Map γ) ⇒ (J γK (Sum1 φ ρ) :→: ρ)

→⇒ ((Jψγ :K→( S: uJ mγK (φSu ρm)1: → →φ ψ ρ))) → (ψ :→: ρ)
hhyylloof :: ( gM Mx a=p  fγ )(→ ⇒ima((  pJψ γ( :i→dK →(kS: hJu ymγloK  (fS Sg u)m (g φx )ψ )

6.2.4 Converting to and from user datatypes

We have some choices regarding how to encapsulate the conversion
between user datatypes and the generic r epresentation. One way to
do it is to use a strategy similar to Multirec’s, u sing the datatypes
themselves as indices:

class Fam (φ ::? → ?) where
atysspF ea PmF( φφ ::: ?C→ od?e ?) w?

type Rec φ ::? → ?

from :: φ α → α → JPF φ K (Rec φ) α

tfroo :::: φφ αα →→ Jα P →F φJ KP F(Rφ eKc (φR) eαc φ→) αα

In thisf rcolmas:s::: dφφefα  αin→→  itio α JnP,→ →Fthφ Je PKty(F pRe φe fcKaφ  (mR)eiα lcy φ→R)eα  cα defines how to handle
the r ecursiv:e:φ φ pαo si→ tioJ nsP oFfφ φthK e( Rdeactatφ y)p αe. →Sinα ce we set the input and
output index kinds to ?, we are forced to define new datatypes to
encode input indices (just like in Multirec). Although this encoding
is a valid choice, it would be p referable not to force the indices to
be of kind ?.

We can conceive a more general Fam class like the following:

class Fam (o ::oκ) where
type PF o :: Code ικ oκ

type Ix o :: ικ → ?

type Ox o ::?

from ::Ox o → J PF o K (Ix o) o
tfroo :::: JOPxF o o→K J(IxP Fo)o oK → (Ix Oo )x oo



This dfreofinmi:t:::ioOJnP,x Fohoo → wKe( J IvxPeFro , )ioso K K r →(e IjexO co txe)do o b y GHC; it assumes that the
kind variab:l:eJ PικF oinK (tIhxe ) kio nd →s Oofx PoF and Ix are unrelated, and
is unable to match them. In fact, for our purposes, ι κ behaves
much like an associated kind variable; the input index type can b e
determined solely b y the output index type (as long as we commit
to defining a new index type per family and using its promotion as
the output index kind).

Shortcoming 6. We lack a mechanismf or treating kind variables
independently of types, allowing, among other things, for the d efi-
nition of kindf amilies (kind-level computations that return a kind).

We plan to explore further alternatives to encapsulating datatype
encodings in the Haskell version of Indexed (see Section 7). For
now, we propose using the Multirec-like encoding given before,
but for the rest of this paper we will not use the Fam class.

6.2.5 Example encodings

To further illustrate the use of Indexed in Haskell we provide a
number of example datatype encodings.

Lists We start with the standard Haskell list type. Lists h ave one
parameter, and are a single type, so we use the singleton type () as
both input and output index:

type ListF = (U :+: ((I (L () )) :×: (I (R ())))
::: +Co: (d(eI ( (SLu( m) ()) ×()): (()I) (

type ListC = (µListF :: Code () ())

The list functor ListF encodes the r epresentation type of lists as a
choice between a unit (the empty list constructor) and a product
of an element (parameter on the left) and another list (recursive
position on the right). We then tie the r ecursive knot with the fixed-



point operator in the definition of the L istC representation t ype. We
give kind annotations to the t ype synonyms for clarity only; note
the use of the promoted singleton k ind ().



The conversion functions are mostly standard, apart from the
fact that we h ave to instantiate the τ p arameter of the interpretation.
Recall that its kind is () → ? for the list setting, and it should map
tRheec ianlldet xha atot i t thse k linisdt p isar( a)m →ete? r.f F oor rt hthei sli swte s euttsein ag ,C aonndsti tdsa htaotuylpde mthaapt
ignores the index and returns the parameter:

data Const α β = Const {unConst :: α }

fromList :: [ α ] → JListC K (Const α) ()

ffrroommLLiisstt :[]: →=J L µ0i (tL0K U( C0)
ffrroommLLiisstt (::x[ :α x]s→) →=J L µ0i (tR0K K(( ×C C0o (nIs0 t(α L1) ((C)onst x )))

(I0 (R1 (fromList xs)))))

toList :: JListC K (Const α) () → [ α ]

ttooLLiisstt :(:µJ0L (isLt0 UK0( ))C = []
ttooLLiisstt :(:µJ0L (isRt0 (×K( 0C C(oI0n (sLt 1α ()C (o)n→ st x [α)))] (I0 (R1 xs))))) =

x : toList x s

Due to the presence of fixed points in the u niverse, the conversion
functions are now necessarily directly recursive. It remains to see
if this has a negative impact on p erformance, and if a shallow
embedding for Indexed can be defined.

Rose t rees Rose trees b ranch to an arbitrary number of subtrees
at each level, using lists at the recursive p osition:

data Rose α = Fork α [Rose α ]

We can encode rose trees in Indexed using composition and the
code for lists defined earlier in Section 6.2.5:

type RoseF = ((I (L ())) :×: (ListC : ·: (I (R () )))
(::( IC( oLd(e ()S)u :×m :( )( L( )is)t ( ) :)·



type RoseC = (µRoseF :: Code () ())

The rose tree functor RoseF defines rose trees as a product between
an element and a composition of lists with recursive positions
(more r ose trees). We take the fixed point with RoseC, defining a
single type with one input p arameter, again using the singleton type
as the index.

To convert from a rose tree we need to recursively convert
user lists into r epresentation lists. W e first use f romList, and then
recursively mapf romRose to the list parameters:

fromRose ::Rose α → J RoseC K (Const α) ()
ffrroommRRoossee (::FRoorkse eaα αa→s ) =J

mµ0R (o×s0e (::I0R (oLs1e (αCo →nsJ tRa o))s)e (CK0(
((im×ap (I0 ◦ R1 ◦fromRose ◦ unConst) (fromList as))))

The conversion in the opposite direction proceeds entirely symmet-
rically. W e define an auxiliary function unR1 to avoid explicit pat-
tern matching while mapping:

toRose :: J RoseC K (Const α) () → Rose α
ttooRRoossee :(:µJ0R (o ×s 0e (IK0 ((CL1o n(Cstoα n)st ( a))→ )) (RCo0s aeαs ))) =

RFoosrek a: J(tRo(o×Lsiest K(i( mCaopn (sCt oαn)s( t) )◦ →toRR oossee e◦α αunR1 ◦ unJKI) as))

unR1 ::Sum1 α β (R ι ) → β ι
unR1 (R1 x) =α αx β

Abstract S yntax Tree So far we have only seen single datatypes,
but Indexed, like Multirec, also supports families of datatypes.
Consider the following family of datatypes encoding a simplified
Abstract Syntax T ree (AST):

data Expr α = Var α
| Let (Decl α) (Expr α)



data D ecl α = A ssign α (Expr α)
| Seq [ Decl α ]

The two types defined, Expr and Decl, are mutually r ecursive, share
a p arameter α, and D ecl makes use of lists. W e use () again as the
input index, and we define a type A STI with two elements to use as
output index:

data A STI = ExprI | DeclI

The encoding of ExprF is then straightforward:

type ExprF = ((I (L ())) :+: ((I (R DeclI)) :×: (I (R ExprI)))
:: Code (Sum () A STI) AS))T I:×)

For encoding DeclF we need to use reindexing. Recall the kind of
composition:

(:·:) ::∀νκ. Code νκ oκ → Code ικ νκ → Code ι κ oκ

In the Decl case, ι κ = ( ), and oκ =ASTI . This implies t hat we need
to reindex the output of ListC from () to A STI. We t hus create a new
code List↑AST as the reindexing of ListC to the kind Code () A STI,
and use th↑eA SnTew code in the definition of the code for Decl:

type List↑AST = (OX List↑ASTO ListC :: Code () A STI)

type DeclF = (((I (L () )) : ×: (I (R ExprI))) :+:
((IL (iLst( ↑A))S)T ×:·: :(( II I(( RR E ExxpprrI)))

:: ↑CAoSdTe (·:S u(Im( R() EA xSpTrI) A STI)

The reindexing is performed b y a type family:

type family List↑ASTO ::ASTI → ()

Unfortunately we cannot give any meaningful instances for this
type family. To be able to match on the indices on the left we would



need to declare it as follows:

type family List↑ASTO (o ::ASTI) :: ()

With this definition, however, we c annot use it as argument to
OX, because GHC requires type family applications to b e fully
saturated. Although GHC’s core language does support unsaturated
type families (Weirich et al. 2011), there has been no attempt to lift
this r estriction in source Haskell code. One could think that (in this
case in p articular) we only need some form of operator K of type
(α :: κ1 ) → (β :: κ2) → (α :: κ1 ), but we can only define such an
operator) w→h e(βn κ::1 =) ? →. →In( αth: a:tκ case we can define the operator as a
datatype. However, in the general case κ1 is not necessarily ?, and
as such we would need to define K as a type synonym, in which
case we run into the restriction that type synonyms need to be fully
applied.

Shortcoming 7. P romotion of function types is onlyf ully useful in
the presence of unsaturated typef amily applications, but these are
currently not allowed.

6.2.6 Another look at reindexing

Given that we cannot really use reindexing as we have defined it in
the universe, we turn to exploring alternative definitions that do not
use functions. We could, for instance, try a more direct encoding of
the reindexing by means of a list of tuples:

data Code ι o = .. .
| ∀ ι0. IX [ ( ι0,ι ) ] (Code ι0 o)
|| ∀∀oι0. OX [ (o,o0) ] (Code ι o0)

In this encoding we would hope to state the reindexing by explic-
itly listing the mapping between the indices. Lists and tuples get



promoted to kinds, so IX and OX can be p romoted. However, in the
interpretation function we would need to lookup the reindexing in
the map. For this we would need type functions:

type family Lookup (α :: [ ( κ,ικ) ] ) (ι :: κ) :: ικ



Unfortunately we cannot define Lookup; since type families are
not allowed any overlapping, the following code is not accepted
by GHC:

type instance Lookup ((α, τ) : σ) α = τ

type instance Lookup ((α, τ) : σ) β = Lookup σ β

Pattern-matching axioms10 have b een proposed to allow a lim-
ited form of overlapping in type families. Were these to be imple-
mented, we could try to implement r eindexing as an explicit rela-
tion between indices.

We are then left without a way to do reindexing in this approach.
This limits the usefulness of Indexed, since to encode Decl we
would need to r e-encode lists at a different kind. Even if automated,
this sort of duplication is clearly undesirable.

7. Future work and conclusion

After exploring the potential of the improved kind language for
improving different generic programming libraries, we now turn
our attention to the shortcomings encountered, and what future
work can be done to address them.

Type-level literals We plan to release new versions of the Regular
and Multirec libraries as described in this p aper; we will do so
whenever type-level integers and strings are available in GHC, so
that we h ave a p roper way to encode datatype meta-information.

Improving SYB While Typeable can b e easily improved with the
use of kind p olymorphism, we h ave not been able to come up with
a simplification for SYB’s g cast/dataCast1/dataCast2 duplication.
More research is necessary to identify how to solve this problem.

Arity-generic f unctions Similarly to SYB, there is duplication
on standard functions such as liftM/liftM2 and zipWith/zipWith3.



Sheard (2006) studied this problem in Ωmega, a language with
support for singleton types for dependent type emulation. Weirich
and Casinghino (2010) name these “arity-generic” functions, and
give unified definitions for them in Agda. It remains to b e seen if
these can now b e encoded in Haskell.

Reindexing We have run into trouble with reindexing in our
Haskell encoding of Indexed (Section 6.2). W e p lan to continue
exploring alternative ways to encode this functionality, or neces-
sary changes to the language to support our encoding.

Performance We have not yet analysed the performance of the
rewritten libraries i n the style of Magalh˜a es et al. (2010b). We
have good hopes that runtime performance does not deteriorate
simply by the use of promotion, but we p lan to confirm this by
benchmarking. Furthermore, it would be interesting t o see if the
new kinds can be used for optimisation purposes.

Kind p olymorphism and user-defined k inds have a tremendous
potential for improving existing code, especially in generic p ro-
gramming libraries. Furthermore, the new extensions also enable
developing programs that were previously impossible or uncanny
to express. W ith new features come new limitations, but the promo-
tion mechanism is in its early stages, and is likely to b e improved to
reflect p rogrammers’ needs and desires. W e see these changes as an
exciting new direction for Haskell, and look forward to future p ro-
grams with less duplication, more expressive types, and stronger
type-level guarantees.
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