
Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

1

Generic and well-formed Pandoc

J. Alpuim L.T. van Binsbergen J.P. Pizani Flor

Department of Information and Computing Sciences, Utrecht University

November 5, 2012



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

2

Table of Contents

Pandoc overview
What it does
How it works
How to break it

Proposed solution
Test-case: XHTML
Obtaining Meta Information

Approach #1
Mutual Recursion
Instances

Approach #2
Concept
Implementation



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

3

What it does

I Pandoc converts between several markup languages.

I 6 input languages including LATEX, HTML and Markdown.

I More than 15 output languages.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

4

How it works

I Recognizes input language by the file extension (there is an
option to override it).

I Parses language into a general Pandoc datatype.

I All printers use the general datatype.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

5

How to break it

In HTML:

I Parsing HTML with non-sensical tags (e.g. <bbl>some
text</bbl>);

I Parsing HTML with non-sensical nesting (e.g. head tag
inside a list);

I Mixed input and just plain wrong input does not lead to
error messages.

We concluded that the parser was too tolerant.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

6

How do we improve it?

Proposed Solution

1. Implement specific datatypes for each input language

2. With a separate parser to provide us with error messages

Such that correct parsing gives us a well-formed type

3. Use generic programming for transforming these datatypes
into the Pandoc datatype;

I Project Goal: Work this out for one input language



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

7

Test-case: XHTML

I Defining a datatype corresponding with the XHTML 1.0
Strict language

I Defining a parser (using parsec) to parse into this type

I This gives us errors messages when parsing incorrect input
(however the messages are not really helpful yet)



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

8

Obtaining Meta Information

Pandoc meta-data datatype has fields for title, authors and
date:
data Meta = Meta { docTitle :: [Inline]

, docAuthors :: [[Inline]]
, docDate :: [Inline] }

Our generic function for fetching the title:
gTitle :: (GTitle a) ⇒ (a → [Inline]) → GenericQ [Inline]
gTitle g = everything (++) (mkQ [] g)



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

9

Obtaining Meta Information (cont.)

Given these three classes:
class (Data a, Typeable a) ⇒ GTitle a where

gtitle :: a → [Inline]
class (Data a, Typeable a) ⇒ GMeta a where

gmeta :: a → Meta
class (Data a, Typeable a) ⇒ GPandoc a where

gpandoc :: a → Pandoc

We may do the following with our HTML datatype:
instance GTitle Head where

gtitle (Head l) = ...
instance GMeta HTML where

gmeta h = Meta (gTitle (gtitle :: Head → [Inline]) h) [] []
instance GPandoc HTML where

gpandoc h = Pandoc (gmeta h) (gblocks h)



Approach #1



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

11

Type Classes

The Pandoc datatype is defined in terms of:

I Blocks: The way in which the document is structured (e.g.
tables, lists, etc) and contain inlines.

I Inlines: Specific formats for text (e.g. emph, bold, etc.)

Following the same approach to Meta, two type classes were
defined:

I GBlocks, with method gblocks

I GInlines, with method ginlines



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

12

Mutual Recursion

I Pandoc has only top level blocks

I XHTML can have blocks inside inlines, which makes it
mutually recursive

I The user has to make a decision on how to deal with it



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

13

Instances for XHTML

instance GBlocks BlockTags where
gblocks (Paragraph ts) = Para (ginlines ts) : (gblocks ts)
gblocks (Div ts) = Plain (ginlines ts) : (gblocks ts)
gblocks (Header (H1 blas)) = Header 1 (ginlines blas) :

(gblocks blas)
gblocks (BlockText raw) = [Plain [Str raw]]

instance GInlines InlineTags where
ginlines (Span ias) = ginlines ias
ginlines (Em str) = [(Emph [Str str])]
ginlines (InlineText str) = [Str str]



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

14

Characteristics

I Genericity of transformation interface
• Completely general!

I Level of overhead
• Potentially a lot of boilerplate code.

I Level of understanding of Pandoc datatype
• User needs to be Pandoc-aware.

I Level of freedom for the user when defining transformation
• Free implementation, but choice is required.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

14

Characteristics

I Genericity of transformation interface
• Completely general!

I Level of overhead
• Potentially a lot of boilerplate code.

I Level of understanding of Pandoc datatype
• User needs to be Pandoc-aware.

I Level of freedom for the user when defining transformation
• Free implementation, but choice is required.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

14

Characteristics

I Genericity of transformation interface
• Completely general!

I Level of overhead
• Potentially a lot of boilerplate code.

I Level of understanding of Pandoc datatype
• User needs to be Pandoc-aware.

I Level of freedom for the user when defining transformation
• Free implementation, but choice is required.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

14

Characteristics

I Genericity of transformation interface
• Completely general!

I Level of overhead
• Potentially a lot of boilerplate code.

I Level of understanding of Pandoc datatype
• User needs to be Pandoc-aware.

I Level of freedom for the user when defining transformation
• Free implementation, but choice is required.



Approach #2



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

16

A generic AST parser

What it is
The transformation is implemented as a parser with an output
of type Pandoc. This parser is not an ordinary parser, because:

1. It does not parse a sequence of characters or tokens, but
the AST of a document (as a Haskell datatype).

2. It is generic over its input type, i.e, it does not know the
structure of its input.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

17

A generic AST parser

How it works
The parser is structured as a recursive-descent parser:

I Each concept of Pandoc (one of the possible nodes in a
Pandoc-typed value) corresponds to a parsing function.

I These parsing functions are organized in a hierarchy, like in
a Parsec parser.

I Each parsing function returns its result inside the Maybe
monad.

I Each generic parsing function can be specialized if
necessary.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

18

An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like:

gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ‘ e
where

collect child = (m child, b child)
combine (m, b) = if isJust m && isJust b

then Just $ Pandoc (fromJust m) (fromJust b)
else Nothing

I We try to get all possible substructures, for each child.

I This collect and combine behavior is widespread.

I Specialize behavior by using the e parameter.

I The explicitly-passed parameters m and b “tie the knot”.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

18

An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like:

gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ‘ e
where

collect child = (m child, b child)
combine (m, b) = if isJust m && isJust b

then Just $ Pandoc (fromJust m) (fromJust b)
else Nothing

I We try to get all possible substructures, for each child.

I This collect and combine behavior is widespread.

I Specialize behavior by using the e parameter.

I The explicitly-passed parameters m and b “tie the knot”.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

18

An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like:

gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ‘ e
where

collect child = (m child, b child)
combine (m, b) = if isJust m && isJust b

then Just $ Pandoc (fromJust m) (fromJust b)
else Nothing

I We try to get all possible substructures, for each child.

I This collect and combine behavior is widespread.

I Specialize behavior by using the e parameter.

I The explicitly-passed parameters m and b “tie the knot”.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

18

An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like:

gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ‘ e
where

collect child = (m child, b child)
combine (m, b) = if isJust m && isJust b

then Just $ Pandoc (fromJust m) (fromJust b)
else Nothing

I We try to get all possible substructures, for each child.

I This collect and combine behavior is widespread.

I Specialize behavior by using the e parameter.

I The explicitly-passed parameters m and b “tie the knot”.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

19

How to use the generic functions and specialize
them

How to implement the conversion from a new input language to
the Pandoc type?

dummy :: () → Maybe a
dummy = const Nothing

hPandoc = gPandoc dummy hMeta gBlocks
hMeta = gMeta dummy hTitle hAuthors hDate
hTitle = gTitle eHTMLTitle
hAuthors = gAuthors eHTMLAuthors
hDate = gDate eHTMLDate

I By partially applying the generic parsing functions

I Specializing when desired (minimal matching subtrees)

I “Tying the knot elsewhere”



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

19

How to use the generic functions and specialize
them

How to implement the conversion from a new input language to
the Pandoc type?

dummy :: () → Maybe a
dummy = const Nothing

hPandoc = gPandoc dummy hMeta gBlocks
hMeta = gMeta dummy hTitle hAuthors hDate
hTitle = gTitle eHTMLTitle
hAuthors = gAuthors eHTMLAuthors
hDate = gDate eHTMLDate

I By partially applying the generic parsing functions

I Specializing when desired (minimal matching subtrees)

I “Tying the knot elsewhere”



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

19

How to use the generic functions and specialize
them

How to implement the conversion from a new input language to
the Pandoc type?

dummy :: () → Maybe a
dummy = const Nothing

hPandoc = gPandoc dummy hMeta gBlocks
hMeta = gMeta dummy hTitle hAuthors hDate
hTitle = gTitle eHTMLTitle
hAuthors = gAuthors eHTMLAuthors
hDate = gDate eHTMLDate

I By partially applying the generic parsing functions

I Specializing when desired (minimal matching subtrees)

I “Tying the knot elsewhere”



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

20

Characteristics

I Genericity of transformation interface
• Very general.

I Level of overhead
• Less overhead than #1. The user writes code only for

subtrees in which he wants to override the generic behavior.

I Level of understanding of Pandoc datatype
• The same as approach #1, complete.

I Level of freedom for the user when defining transformation
• Customization is possible, but not needed.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

20

Characteristics

I Genericity of transformation interface
• Very general.

I Level of overhead
• Less overhead than #1. The user writes code only for

subtrees in which he wants to override the generic behavior.

I Level of understanding of Pandoc datatype
• The same as approach #1, complete.

I Level of freedom for the user when defining transformation
• Customization is possible, but not needed.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

20

Characteristics

I Genericity of transformation interface
• Very general.

I Level of overhead
• Less overhead than #1. The user writes code only for

subtrees in which he wants to override the generic behavior.

I Level of understanding of Pandoc datatype
• The same as approach #1, complete.

I Level of freedom for the user when defining transformation
• Customization is possible, but not needed.



Pandoc overview

What it does

How it works

How to break it

Proposed
solution

Test-case: XHTML

Obtaining Meta
Information

Approach #1

Mutual Recursion

Instances

Approach #2

Concept

Implementation

20

Characteristics

I Genericity of transformation interface
• Very general.

I Level of overhead
• Less overhead than #1. The user writes code only for

subtrees in which he wants to override the generic behavior.

I Level of understanding of Pandoc datatype
• The same as approach #1, complete.

I Level of freedom for the user when defining transformation
• Customization is possible, but not needed.


	Pandoc overview
	What it does
	How it works
	How to break it

	Proposed solution
	Test-case: XHTML
	Obtaining Meta Information

	Approach #1
	Mutual Recursion
	Instances

	Approach #2
	Concept
	Implementation


