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What it does

I Pandoc converts between several markup languages.

I 6 input languages including LATEX, HTML and Markdown.

I More than 15 output languages.
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How it works

I Recognizes input language by the file extension (there is an
option to override it).

I Parses language into a general Pandoc datatype.

I All printers use the general datatype.
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How to break it

In HTML:

I Parsing HTML with non-sensical tags (e.g. <bbl>some
text</bbl>);

I Parsing HTML with non-sensical nesting (e.g. head tag
inside a list);

I Mixed input and just plain wrong input does not lead to
error messages.

We concluded that the parser was too tolerant.
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How do we improve it?

Proposed Solution

1. Implement specific datatypes for each input language

2. With a separate parser to provide us with error messages

Such that correct parsing gives us a well-formed type

3. Use generic programming for transforming these datatypes
into the Pandoc datatype;

I Project Goal: Work this out for one input language
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Test-case: XHTML

I Defining a datatype corresponding with the XHTML 1.0
Strict language

I Defining a parser (using parsec) to parse into this type

I This gives us errors messages when parsing incorrect input
(however the messages are not really helpful yet)
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Obtaining Meta Information

Pandoc meta-data datatype has fields for title, authors and
date:
data Meta = Meta { docTitle :: [Inline]

, docAuthors :: [[Inline]]
, docDate :: [Inline] }

Our generic function for fetching the title:
gTitle :: (GTitle a) ⇒ (a → [Inline]) → GenericQ [Inline]
gTitle g = everything (++) (mkQ [] g)
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Obtaining Meta Information (cont.)

Given these three classes:
class (Data a, Typeable a) ⇒ GTitle a where

gtitle :: a → [Inline]
class (Data a, Typeable a) ⇒ GMeta a where

gmeta :: a → Meta
class (Data a, Typeable a) ⇒ GPandoc a where

gpandoc :: a → Pandoc

We may do the following with our HTML datatype:
instance GTitle Head where

gtitle (Head l) = ...
instance GMeta HTML where

gmeta h = Meta (gTitle (gtitle :: Head → [Inline]) h) [] []
instance GPandoc HTML where

gpandoc h = Pandoc (gmeta h) (gblocks h)



Approach #1
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Type Classes

The Pandoc datatype is defined in terms of:

I Blocks: The way in which the document is structured (e.g.
tables, lists, etc) and contain inlines.

I Inlines: Specific formats for text (e.g. emph, bold, etc.)

Following the same approach to Meta, two type classes were
defined:

I GBlocks, with method gblocks

I GInlines, with method ginlines
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Mutual Recursion

I Pandoc has only top level blocks

I XHTML can have blocks inside inlines, which makes it
mutually recursive

I The user has to make a decision on how to deal with it
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Instances for XHTML

instance GBlocks BlockTags where
gblocks (Paragraph ts) = Para (ginlines ts) : (gblocks ts)
gblocks (Div ts) = Plain (ginlines ts) : (gblocks ts)
gblocks (Header (H1 blas)) = Header 1 (ginlines blas) :

(gblocks blas)
gblocks (BlockText raw) = [Plain [Str raw]]

instance GInlines InlineTags where
ginlines (Span ias) = ginlines ias
ginlines (Em str) = [(Emph [Str str])]
ginlines (InlineText str) = [Str str]
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Characteristics

I Genericity of transformation interface
• Completely general!

I Level of overhead
• Potentially a lot of boilerplate code.

I Level of understanding of Pandoc datatype
• User needs to be Pandoc-aware.

I Level of freedom for the user when defining transformation
• Free implementation, but choice is required.
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Approach #2
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A generic AST parser

What it is
The transformation is implemented as a parser with an output
of type Pandoc. This parser is not an ordinary parser, because:

1. It does not parse a sequence of characters or tokens, but
the AST of a document (as a Haskell datatype).

2. It is generic over its input type, i.e, it does not know the
structure of its input.
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A generic AST parser

How it works
The parser is structured as a recursive-descent parser:

I Each concept of Pandoc (one of the possible nodes in a
Pandoc-typed value) corresponds to a parsing function.

I These parsing functions are organized in a hierarchy, like in
a Parsec parser.

I Each parsing function returns its result inside the Maybe
monad.

I Each generic parsing function can be specialized if
necessary.
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An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like:

gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ‘ e
where

collect child = (m child, b child)
combine (m, b) = if isJust m && isJust b

then Just $ Pandoc (fromJust m) (fromJust b)
else Nothing

I We try to get all possible substructures, for each child.

I This collect and combine behavior is widespread.

I Specialize behavior by using the e parameter.

I The explicitly-passed parameters m and b “tie the knot”.
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How to use the generic functions and specialize
them

How to implement the conversion from a new input language to
the Pandoc type?

dummy :: () → Maybe a
dummy = const Nothing

hPandoc = gPandoc dummy hMeta gBlocks
hMeta = gMeta dummy hTitle hAuthors hDate
hTitle = gTitle eHTMLTitle
hAuthors = gAuthors eHTMLAuthors
hDate = gDate eHTMLDate

I By partially applying the generic parsing functions

I Specializing when desired (minimal matching subtrees)

I “Tying the knot elsewhere”
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Characteristics

I Genericity of transformation interface
• Very general.

I Level of overhead
• Less overhead than #1. The user writes code only for

subtrees in which he wants to override the generic behavior.

I Level of understanding of Pandoc datatype
• The same as approach #1, complete.

I Level of freedom for the user when defining transformation
• Customization is possible, but not needed.
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