Generic and well-formed Pandoc

J. Alpuim L.T. van Binsbergen J.P. Pizani Flor

Department of Information and Computing Sciences, Utrecht University

November 5, 2012

A%
W

Universiteit Utrecht

/A
|

1

Table of Contents

Pandoc overview
What it does
How it works
How to break it

Proposed solution
Test-case: XHTML
Obtaining Meta Information

Approach #1
Mutual Recursion
Instances

Approach #2
Concept
Implementation

W,
N

¢ Universiteit Utrecht

/A
|

&
%

2

What it does

What it does

» Pandoc converts between several markup languages.
» 6 input languages including IATEX, HTML and Markdown.
» More than 15 output languages.

N
%

23
S U S Universiteit Utrecht
K

3

How it works

How it works

» Recognizes input language by the file extension (there is an

option to override it).
» Parses language into a general Pandoc datatype.

» All printers use the general datatype.

%,
N

¢ Universiteit Utrecht

/A
|
7l

&
“

4

How to break it

In HTML How to break it

» Parsing HTML with non-sensical tags (e.g. <bbl>some
text</bbl>);

» Parsing HTML with non-sensical nesting (e.g. head tag
inside a list);

» Mixed input and just plain wrong input does not lead to
error messages.

We concluded that the parser was too tolerant.

NI
% $ Universiteit Utrecht
TN

5

How do we improve it?

Proposed Solution

Proposed
solution

1. Implement specific datatypes for each input language
2. With a separate parser to provide us with error messages
Such that correct parsing gives us a well-formed type

3. Use generic programming for transforming these datatypes
into the Pandoc datatype;
» Project Goal: Work this out for one input language

%,
N

Universiteit Utrecht

/A
|

&
K/

6

Test-case: XHTML

» Defining a datatype corresponding with the XHTML 1.0
Strict language
» Defining a parser (using parsec) to parse into this type

Test-case: XHTML

» This gives us errors messages when parsing incorrect input
(however the messages are not really helpful yet)

Universiteit Utrecht

s
L

7

Obtaining Meta Information

Pandoc meta-data datatype has fields for title, authors and
date:
data Meta = Meta { docTitle :: [Inline]
, docAuthors :: [[Inline]] -
. Obtaining Meta
, docDate :: [Inline] } Information

Our generic function for fetching the title:
gTitle =z (a) = (a — [Inline]) — GenericQ [Inline]
gTitle g = everything (+4) (mkQ [] g)

RN

= U = Universiteit Utrecht

KN}

8

Obtaining Meta Information (cont.)

Given these three classes:

class (a, a) = a where
gtitle :: a — [Inline]
class (a, a) = a where
gmeta 1 a — Meta
class (a, a) = a where Obtaining Meta

Information

gpandoc :: a — Pandoc

We may do the following with our HTML datatype:

instance Head where
gtitle (Head 1) = ...
instance HTML where
gmeta h = Meta (gTitle (gtitle :: Head — [Inline]) h) [] []
instance HTML where
gpandoc h = Pandoc (gmeta h) (gblocks h) &
£ U S Universiteit Utrecht

AN

9

Approach #1

A%
N

Universiteit Utrecht

/A
|

Type Classes

The Pandoc datatype is defined in terms of:
» Blocks: The way in which the document is structured (e.g.
tables, lists, etc) and contain inlines.

» Inlines: Specific formats for text (e.g. emph, bold, etc.)

Approach #1

Following the same approach to Meta, two type classes were
defined:
> , with method gblocks

> , with method ginlines

NN
ES % Universiteit Utrecht

= b
KN}

11

Mutual Recursion

» Pandoc has only top level blocks
» XHTML can have blocks inside inlines, which makes it

mutually recursive Morual Recursion
» The user has to make a decision on how to deal with it

%
N

¢ Universiteit Utrecht

/A
|

&
U

12

Instances for XHTML

instance BlockTags where
gblocks (Paragraph ts) = Para (ginlines ts) : (gblocks ts)
gblocks (Div ts) = Plain (ginlines ts) : (gblocks ts)
gblocks (Header (H1 blas)) = Header 1 (ginlines blas) :
(gblocks blas)
gblocks (BlockText raw) = [Plain [Str raw]]

Instances

instance InlineTags where
ginlines (Span ias) = ginlines ias
ginlines (Em str) = [(Emph [Str str])]
ginlines (InlineText str) = [Str str]

<
% & % Universiteit Utrecht

KN}

13

Characteristics

What it does
How it works

» Genericity of transformation interface I —
o Completely general!

Test-case: XHTML

Obtaining Meta
Information

Mutual Recursion
Instances

Concept

Implementation

& = Universiteit Utrecht

AW

14

Characteristics

What it does
How it works

» Genericity of transformation interface How to break it
o Completely general!
» Level of overhead Tes e XHTML

Information

e Potentially a lot of boilerplate code.

Mutual Recursion
Instances

Concept

Implementation

s

\[/

& = Universiteit Utrecht

14

Characteristics

» Genericity of transformation interface

» Completely general!

» Level of overhead
e Potentially a lot of boilerplate code.

» Level of understanding of Pandoc datatype
e User needs to be Pandoc-aware.

What it does

How it works

How to break it
Test-case: XHTML

Obtaining Meta
Information

Mutual Recursion

Instances

Concept

Implementation

7
N

= B = Universiteit Utrecht
N
N

14

Characteristics

What it does

» Genericity of transformation interface e o b
» Completely general!

» Level of overhead L
* Potentially a lot of boilerplate code. e

» Level of understanding of Pandoc datatype Mutual Recursion
e User needs to be Pandoc-aware.

» Level of freedom for the user when defining transformation """

e Free implementation, but choice is required.

7
N

|
N

Universiteit Utrecht

A
U

14

Approach #2

A%
N

Universiteit Utrecht

/A
|

A generic AST parser

What it is
The transformation is implemented as a parser with an output
of type Pandoc. This parser is not an ordinary parser, because:

1. It does not parse a sequence of characters or tokens, but
the AST of a document (as a Haskell datatype).

2. It is generic over its input type, i.e, it does not know the
structure of its input.

Concept

N
- 2
% & % Universiteit Utrecht

KN}

16

A generic AST parser

How it works
The parser is structured as a recursive-descent parser:

» Each concept of Pandoc (one of the possible nodes in a
Pandoc-typed value) corresponds to a parsing function.

» These parsing functions are organized in a hierarchy, like in
a Parsec parser.

» Each parsing function returns its result inside the Maybe
monad.

Concept

» Each generic parsing function can be specialized if
necessary.

&y Gtrech
= = niversiteit Utrecht
s

17

An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like:

gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ’ e
where
collect child = (m child, b child)
combine (m, b) = if isJust m && isJust b
then Just $ Pandoc (fromJust m) (fromJust b)
else Nothing

» We try to get all possible substructures, for each child.

Implementation

%
N

¢ Universiteit Utrecht

/A
|

S
L

18

An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like
gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ’ e

where
collect child = (m child, b child)

combine (m, b) = if isJust m && isJust b
then Just $ Pandoc (fromJust m) (fromJust b)

else Nothing
» We try to get all possible substructures, for each child. ementation

» This collect and combine behavior is widespread.

A%
N

Universiteit Utrecht

/A
|

18

An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like:

gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ’ e
where
collect child = (m child, b child)
combine (m, b) = if isJust m && isJust b
then Just $ Pandoc (fromJust m) (fromJust b)
else Nothing

» We try to get all possible substructures, for each child.

Implementation

» This collect and combine behavior is widespread.

» Specialize behavior by using the e parameter.

<
%

2 .
U@ Universiteit Utrecht

AN

18

An example of generic parsing function

The gPandoc function, root of the parsing hierarchy, looks like:

gPandoc e m b = (combine . flat2 . gmapQ collect) ‘extQ’ e
where
collect child = (m child, b child)
combine (m, b) = if isJust m && isJust b
then Just $ Pandoc (fromJust m) (fromJust b)
else Nothing

v

We try to get all possible substructures, for each child.

Implementation

v

This collect and combine behavior is widespread.

v

Specialize behavior by using the e parameter.

v

The explicitly-passed parameters m and b “tie the knot".

<y

Z VS Universiteit Utrecht

AN

18

How to use the generic functions and specialize

them

How to implement the conversion from a new input language to

the Pandoc type?

How it works

Mutual Recurs

Instances

Concept

Implementation
=0 § Universiteit Utrecht

19

How to use the generic functions and specialize

them

How to implement the conversion from a new input language to

the Pandoc type?

dummy :: () — Maybe a
dummy = const Nothing

hPandoc = gPandoc hMeta gBlocks
hMeta = gMeta hTitle hAuthors hDate
hTitle = gTitle

hAuthors = gAuthors
hDate = gDate

Implementation

%
N

¢ Universiteit Utrecht

/A
|

S
L

19

How to use the generic functions and specialize
them

How to implement the conversion from a new input language to
the Pandoc type?

dummy :: () — Maybe a
dummy = const Nothing

hPandoc = gPandoc hMeta gBlocks
hMeta = gMeta hTitle hAuthors hDate
hTitle = gTitle

hAuthors = gAuthors
hDate = gDate

Implementation

» By partially applying the generic parsing functions

» Specializing when desired (minimal matching subtrees)
. " N
» “Tying the knot elsewhere _§ n% Universiteit Utrecht
NS

19

Characteristics

What it does

» Genericity of transformation interface How it works

How to break it

e Very general.

Test-case: XHTML

Obtaining Meta
Information

Mutual Recursion

Instances

Concept

Implementation

s

\[/

& = Universiteit Utrecht

20

Characteristics

» Genericity of transformation interface
» Level of overhead

. . The user writes code only for
subtrees in which he wants to override the generic behavior.

Implementation

%
N

¢ Universiteit Utrecht

/A
|

&
U

20

Characteristics

» Genericity of transformation interface
e Very general.
» Level of overhead

e Less overhead than #1. The user writes code only for
subtrees in which he wants to override the generic behavior.

» Level of understanding of Pandoc datatype

e The same as approach #1, complete.

Implementation

A%
W

Universiteit Utrecht

/A
|

20

Characteristics

» Genericity of transformation interface

Level of overhead

v

. . The user writes code only for
subtrees in which he wants to override the generic behavior.

v

Level of understanding of Pandoc datatype
e The same as approach #1, complete.

Implementation

v

Level of freedom for the user when defining transformation

%
N

¢ Universiteit Utrecht

/A
|

&
U

20

	Pandoc overview
	What it does
	How it works
	How to break it

	Proposed solution
	Test-case: XHTML
	Obtaining Meta Information

	Approach #1
	Mutual Recursion
	Instances

	Approach #2
	Concept
	Implementation

