
INFOAFP Assignments

AFP Assignment 2

Deadline: Friday, Nov 30, 2012, 24.00

General remarks

• Mail your solution to doaitse@swierstra.net, with in the subject “AsAFP-2010-
2-4: name1 and name2”.

• Team size: preferably 2, but 1 is possible.

• For programs: Programs that are not type correct may not be graded. Program-
ming style influences the grade.

• For text: Submit plain text or PDF, not HTML or Word.

• Gathering information on the internet is okay, but copying entire solutions from
the internet (or elsewhere) is not allowed.

• You can make a Cabal package again, or just submit a zip file.

1 (35%). Find Haskell definitions for the functions start, stop, store, add and mul such
that you can embed a stack-based language into Haskell:

p1, p2, p3 :: Int
p1 = start store 3 store 5 add stop
p2 = start store 3 store 6 store 2 mul add stop
p3 = start store 2 add stop

Here, p1 should evaluate to 8 and p2 should evaluate to 15. The program p3 is allowed
to fail at runtime.

Once you have that, try to find a solution that rejects programs that require non-
existing stack elements during type checking.

Hint: Type classes are not required to solve this assignment. This is somewhat related
to continuations. Try to first think about the types that the operations should have, then
about the implementation.

1

doaitse@swierstra.net


2 (35%). Consider the following class

class Splittable a where
split :: a→ (a, a)

for types that allow values to be split. Random number generators (for instance StdGen)
allow such a split operation:

instance Splittable StdGen where
split = System.Random.split

We can also make other types an instance of Splittable. Define an instance Splittable [a ]
where, assuming that the list passed is infinite, the list is split into one list containing
all the odd-indexed elements, and one containing all the even-indexed elements of the
original list.

Define an instance Splittable Int where n is split into 2 ∗ n and 2 ∗ n + 1.
Consider the datatype

data SplitReader r a = SplitReader {runSplitReader :: r→ a}

which is isomorphic to the Reader datatype. Define a variant of the Reader monad

instance (Splittable r)⇒ Monad (SplitReader r)

where the passed state is split before it is passed on. Also implement the instance of
MonadReader:

instance (Splittable r)⇒ MonadReader r (SplitReader r)

You have to pass enable the FlexibleInstances and MultiParamTypeClasses lan-
guage extensions to make GHC accept this instance. The methods of the class MonadReader
are

ask :: (MonadReader r m)⇒ m r

that allows you to access the read state, and

local :: (MonadReader r m)⇒ (r→ r)→ m a→ m a

that allows you to locally modify the read state.
Finally, consider the function

labelTree :: Int→ SplitReader Int (Tree Int)
labelTree 0 = return Leaf
labelTree n = return ()>> liftM3 Node (labelTree (n− 1)) ask (labelTree (n− 1))

where

2



data Tree a = Leaf
| Node (Tree a) a (Tree a)

deriving Show

When calling runSplitReader (labelTree 3) 1, the function returns

Node (Node (Node Leaf 214 Leaf ) 54 (Node Leaf 886 Leaf ))
14
(Node (Node Leaf 982 Leaf ) 246 (Node Leaf 3958 Leaf ))

Is this what you expected? If you remove return () >> in the definition of labelTree and
try again, what happens? What do these results imply?

3 (30%). QuickCheck’s Arbitrary class is defined as follows

class Arbitrary a where
arbitrary :: Gen a

The type Gen is defined as

newtype Gen a = MkGen {unGen :: StdGen→ Int→ a}

(These definitions are from QuickCheck-2. The definitions in QuickCheck-1 are slightly
different, but essentially the same. It does not matter which version you use.) Look
at the QuickCheck source code for the definition of the monad instance. Assemble an
equivalent monad from the Reader and SplitReader monads or monad transformers.

Define the function sizedInt :: Gen Int just using ask, lift and System.Random.randomR
(i.e., not using the internal structure of the Gen type), such that sizedInt generates a
random number between −n and n where n is the read integer.

3


