
INFOAFP Assignments

AFP Assignment 3

Deadline: Friday, Dec 14, 2012, 24:00

General remarks

• Mail your solution as a single file doaitse@swierstra.net, with in the subject
“Assign-3: name1 and name2” and as filename “afp2012-name1-name2.zip”. Also
give the unzipped directory this name.

• Team size: preferably 2, but 1 is possible.

• Programming style and quality of Haddock comments influences the grade.

• Put Haddock information in your code, so as not to make it a puzzel to mark it.

• Gathering information on the internet is okay, but copying entire solutions from
the internet (or elsewhere) is not allowed.

The goal of this task is to create your own monad. In fact, you have to extend the
well-known state monad (see Control.Monad.State in the hierarchical libraries), and
add some extra features to it.

The first step is to introduce a type constructor for the new monad:

data StateMonadPlus s a == ...

The type variables s and a have the standard meaning: s is the type of the state to
carry and a is the type of the return value. Make the new monad an instance of the
MonadState type class. Hence, you have to include:

import Control.Monad.State

We now discuss the three additional features that your monad has to support.

1

doaitse@swierstra.net


Feature 1: Diagnostics

We want to gather information about the number of calls to all primitive functions that
work on a StateMonadPlus. For this, you have to write a function diagnostics with
the following type:

diagnostics :: StateMonadPlus s String

This function should count the number of binds (>>=) and returns (and other primi-
tive functions) that have been encountered, including the call to diagnostics at hand.
Secondly, provide a function

annotate :: String -> StateMonadPlus s a -> StateMonadPlus s a

which allows a user to annotate a computation with a given label. The functions for
Features 2 and 3, as well as get and put, should also be part of the diagnosis.

As an example, consider the input

do return 3 >> return 4

return 5

diagnostics

which should return the string

"[bind=3, diagnostics=1, return=3]"

Note that >> is implemented in terms of >>=, and thus also counts as a bind.
Here is another example:

do annotate "A" (return 3 >> return 4)

return 5

diagnostics

This returns the string

"[A=1, bind=3, diagnostics=1, return=3]"

Feature 2: Failure

A second feature of your monad is that it can fail during a computation. The Monad

type class offers the following member function:

fail :: (Monad m) => String -> m a

Calling this function should not result in an exception. To facilitate this, the function
runStateMonadPlus (which will be explained later) returns an Either value: Left in-
dicates that the computation failed, Right indicates success. You may have to change
the StateMonadPlus data type to cope with this.

2



Feature 3: History of states

The last feature is to save the current state, and to restore a previous state as the current
state. Include the following type class definition in your code, and make StateMonadPlus
an instance of this type class.

class MonadState s m => StoreState s m | m -> s where

saveState :: m ()

loadState :: m ()

The part m -> s in the class declaration is a functional dependency, indicating that the
type s is uniquely determined by the choice of m. Functional dependencies limit the
instance declarations that are valid, and in turn allow the type checker to make use of
the functional dependency while inferring type. Functional dependencies are a Haskell
language extension. To enable it, you must put a language pragma at the top of your
module:

{-# LANGUAGE MultiParamTypeClasses #-}

Saving and loading states should be implemented as a stack: saving a state means
pushing the current state on the stack, while loading a state means popping a state
from the stack to replace the current one. If loadState is called with an empty stack,
then the computation in the monad should fail (as explained for Feature 2).

Here is an example expression:

do i1 <- get; saveState

modify (*2)

i2 <- get; saveState

modify (*2)

i3 <- get; loadState

i4 <- get; loadState

i5 <- get

return (i1, i2, i3, i4, i5)

This program should return the value (1, 2, 4, 2, 1) if we start with the state consisting
of the integer 1.

Running the monad

You have to write a function

runStateMonadPlus :: StateMonadPlus s a -> s -> Either String (a, s)

for running the monad. Given a computation in the StateMonadPlus and an initial
state, runStateMonadPlus returns either an error message if the computation failed, or
the result of the computation and the final state.

3



To turn your module into a proper library, you should also think about which func-
tions should be exposed to outside this module, and which functions should be hid-
den (and only be visible inside the current module). You might want to consider re-
exporting all functionality offered by the Control.Monad.State module.

Try also to define a number of unit tests or even QuickCheck properties.

Bonus questions

1. Do the monad laws hold for StateMonadPlus? Explain your answer.

2. What are the advantages of hiding (constructor) functions? How important is this
for each of the three additional features supported by StateMonadPlus?

3. What are the modifications required to make a monad transformer for StateMonadPlus?

4. Suppose that we want to write a function

diagnosticsFuture :: StateMonadPlus s String

which provides information about the computations in StateMonadPlus that are still to
come. Explain how this would affect your code. If you feel that such a facility cannot be
implemented, then you should give some arguments for your opinion. If you believe it
can be done, then try to do so.

4


