INFOAFP Assignments

AFP Assignment 4

Deadline: Jan 11, 2013

General remarks

- Mail your solution to doaitse@swierstra.net, with in the subject "Assign-2-4: name1 and name $2^{\prime \prime}$ and containg a zip file with name 2012-2-jname $1_{i-\text {-iname }}{ }_{i}$.
- Team size: preferably 2 , but 1 is possible.
- For programs: Programs that are not type correct may not be graded. Programming style influences the grade.
- For text: Submit plain text or PDF, not HTML or Word.
- Gathering information on the internet is okay, but copying entire solutions from the internet (or elsewhere) is not allowed.
- You can make a Cabal package again, or just submit a zip file.
$\mathbf{1}(10 \%)$. Here is a nested datatype for square matrices:

```
type Square a \(=\) Square' Nil a
data Square' \(t a=\) Zero \((t(t a)) \mid\) Succ \(\left(\right.\) Square \(^{\prime}(\) Cons \(\left.t) a\right)\)
data Nila \(=\) Nil
data Const \(a=\) Cons \(a(t a)\)
```

Give Haskell code that represents the following two square matrices as elements of the Square datatype:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Note: you don't have to define any functions for the Square datatype. Defining sensible functions for Square (even show) is not entirely trivial and might be the topic of a later assignment.

2 (10\%). Write a function

$$
\text { forceBoolList }::[\text { Bool }] \rightarrow r \rightarrow r
$$

that completely forces a list of Boolean values without using seq. Note that pattern matching drives evaluation.

Explain why the function forceBoolList has the type as specified above and not:

$$
\text { forceBoolList }::[\text { Bool }] \rightarrow[\text { Bool }]
$$

and why seq is defined as it is, and

$$
\begin{aligned}
& \text { force }:: a \rightarrow a \\
& \text { force } a=\text { seq } a \operatorname{a}
\end{aligned}
$$

is useless.
3 (10\%). Define a function count such that the following program is well-typed

```
test :: [Int]
test \(=[\) count, count 123 , count "" [True,False \(]\) id \((+)]\)
```

and evaluates to $[0,0,0]$. In other words, count should accept an arbitrary number of arguments (of arbitrary types), and just always return 0 .

Then redefine the function count such that test evaluates to $[0,3,4]$, i.e., count should return the number of arguments.

Please submit both versions of the function.
Hint: no language extensions are required to solve this exercise.
$4(10 \%)$. A curious fact is that Haskell's type system (even that of Haskell without extensions) has exponential space and time complexity. However, the worst case rarely occurs in practice such that the run-time behaviour of the type checker generally is acceptable. Define a family of Haskell expressions such that the type (i.e., the size of the type expression) grows exponentially in the size of the program. Note that if the type is highly repetitive, the type can internally be represented using sharing. However, different type variables cannot be shared. So, to get a truly large type, you have to try to get as many different type variables as possible. If you find yoursolution on the internet explain how it works!
$5(20 \%)$. Recall the datatype of square matrices:

```
type Square \(\quad=\) Square \(^{\prime}\) Nil
data Square' \(t a=\operatorname{Zero}(t(t a)) \mid \operatorname{Succ}\left(\right.\) Square \(^{\prime}(\) Cons \(\left.t) a\right)\)
data Nila \(=\) Nil
data Cons \(t a=\) Cons \(a(t a)\)
```

Note that we have eta-reduced the definition of Square. This turns out to be necessary in the end where we will mention it again.

Let's investigate how we can derive an equality function on square matrices. We do so very systematically by deriving an equality function for each of the four types. We follow a simple, yet powerful principle: type abstraction corresponds to term abstraction, and type application corresponds to term application.

What does this mean? If a type f is parameterized over an argument a, then in general, we have to know how equality is defined on a in order to define equality on $f a$. Therefore we define

$$
\begin{aligned}
& \text { eqNil }::(a \rightarrow a \rightarrow \text { Bool }) \rightarrow(\text { Nil } a \rightarrow \text { Nil } a \rightarrow \text { Bool }) \\
& \text { eqNil eqA Nil Nil }=\text { True }
\end{aligned}
$$

In this case, the a is not used in the definition of Nil, so it is not surprising that we do not use eqA in the definition of eqNil. But what about Cons? The datatype Cons has two arguments t and a, so we expect two arguments to be passed to eqCons, something like

$$
\text { eqCons eqT eq } A(\text { Cons } x x s)(\text { Cons } y y s)=e q A x y \wedge \ldots
$$

But what should the type of eqT be? The t is of kind $* \rightarrow *$, so it can't be $t \rightarrow t \rightarrow$ Bool. We can argue that we should use $t a \rightarrow t a \rightarrow B o o l$, because we use t applied to a in the definition of Cons. However, a better solution is to recognise that, being a type constructor of kind $* \rightarrow *$, an equality function on t should take an equality function on its argument as a parameter. And, moreover, it does not matter what this parameter is! A function like eqNil is polymorphic in type a, so let us require that eqT is polymorphic in the argument type as well:

```
eqCons : : \((\forall b .(b \rightarrow b \rightarrow\) Bool \() \rightarrow(t b \rightarrow t b \rightarrow\) Bool \()) \rightarrow\)
    \((a \rightarrow a \rightarrow\) Bool \() \rightarrow\)
    (Cons \(t a \rightarrow\) Cons \(t a \rightarrow\) Bool)
eqCons eqT eq \(A(\) Cons \(x\) xs) \((\) Cons \(y\) ys \()=e q A x y \wedge e q T\) eq \(A x s\) ys
```

Now you can see how we apply eq T to $e q A$ when we want equality at type $t a$ - the type application corresponds to term application.
Task. A type with a \forall on the inside requires the extension RankNTypes to be enabled. Try to understand what the difference is between a function of the type of eqCons and a function with the same type but the \forall omitted. Can you omit the \forall in the case of eqCons and does the function still work?

Now, on to Square'. The type of eqSquare' follows exactly the same idea as the type of eqCons:

$$
\begin{aligned}
\text { eqSquare' }^{\prime}:: & (\forall b .(b \rightarrow b \rightarrow \text { Bool }) \rightarrow(t b \rightarrow t b \rightarrow \text { Bool })) \rightarrow \\
& (a \rightarrow a \rightarrow \text { Bool }) \rightarrow \\
& \left(\text { Square }^{\prime} \text { t } a \rightarrow \text { Square }^{\prime} \text { t } a \rightarrow \text { Bool }\right)
\end{aligned}
$$

We now for the first time have more than one constructor, so we actually have to give multiple cases. Let us first consider comparing two applications of Zero:

```
eqSquare' eqT eqA (Zero xs) (Zero ys) = eqT (eqT eqA) xs ys
```

Note how again the structure of the definition follows the structure of the type. We have a value of type $t(t a)$. We compare it using eqT, passing it an equality function for values of type $t a$. How? By using eqT eqA.

The remaining cases are as follows:

$$
\begin{aligned}
&\text { eqSquare' eqT eqA (Succ } x s)(\text { Succ ys) }=\text { eqSquare' }(\text { eqCons eqT }) \text { eq } A \text { xs ys } \\
&=\text { False } \\
& \text { eqSquare' eqT eq } A_{--}
\end{aligned}
$$

The idea is the same - let the structure of the recursive calls follow the structure of the type.
Task. Again, try removing the \forall from the type of eqSquare'. Does the function still typecheck? Try to explain!

Now we're done:

$$
\begin{aligned}
& \text { eqSquare }::(a \rightarrow a \rightarrow \text { Bool }) \rightarrow \text { Square } a \rightarrow \text { Square } a \rightarrow \text { Bool } \\
& \text { eqSquare }=\text { eqSquare }^{\prime} \text { eqNil }
\end{aligned}
$$

Test the function. We can now also give an $E q$ instance for Square - this requires the minor language extension TypeSynonymInstances, because for some stupid reason, Haskell 98 does not allow type synonyms like Square to be used in instance declarations:

```
instance \(E q a \Rightarrow E q\) (Square a) where
    \((\equiv)=\) eqSquare \((\equiv)\)
```

Task. Systematically follow the scheme just presented in order to define a Functor instance for square matrices. I.e., derive a function mapSquare such that you can define

```
instance Functor Square where
    fmap \(=\) mapSquare
```

This instance requires Square to be defined in eta-reduced form in the beginning, because Haskell does not allow partially applied type synonyms.
$6(20 \%)$. Consider the following datatype:

$$
\begin{aligned}
\text { data GP } a= & \text { End } a \\
\mid & \text { Get }(\text { Int } \rightarrow \text { GP a) } \\
& \text { Put Int }(G P a)
\end{aligned}
$$

A value of type GP can be used to describe programs that read and write integer values and return a final result of type a. Such a program can end immediately (End). If it reads an integer, the rest of the program is described as a function depending on this integer (Get). If the program writes an integer (Put), the value of that integer and the rest of the program are recorded.

The following expression describes a program that continuously reads integers and prints them:

$$
\text { echo }=\text { Get }(\lambda n \rightarrow \text { Put } n \text { echo })
$$

Task. Write a function

$$
\text { run :: GP } a \rightarrow I O a
$$

that can run a GP-program in the IO monad. A Get should read an integer from the console, and Put should write an integer to the console.

Here is an example run from GHCi :

```
>>> run echo
?42
42
?28
28
?1
1
?-5
-5
? Interrupted.
>>>
```

[To better distinguish inputs from outputs, this version of run prints a question mark when expecting an input.]
Task. Write a GP-program add that reads two integers, writes the sum of the two integers, and ultimately returns ().
Task. Write a GP-program accum that reads an integer. If the integer is 0 , it returns the current total. If the integer is not 0 , it adds the integer to the current total, prints the current total, and starts from the beginning.
Task. Instead of running a GP-program in the $I O$ monad, we can also simulate the behaviour of such a program by providing a (possibly infinite) list of input values. Write a function

$$
\text { simulate }:: G P a \rightarrow[\text { Int }] \rightarrow(a,[\text { Int }])
$$

that takes such a list of input values and returns the final result plus the (possibly infinite) list of all the output values generated.

A map function for GP can be defined as follows:

```
instance Functor GP where
    fmap f (End x) = End (fx)
    fmap f (Get g) = Get (fmap f\circg)
    fmapf (Put n x) = Put n (fmapf x)
```

Task. Define sensible instances of Monad and MonadState for GP. How is the behaviour of the MonadState instance for GP different from the usual State type?
$7(20 \%)$. Consider the following module:
import Control.Monad.Reader
import System.Random

```
one:: Int
one \(=1\)
two :: Int
two \(=2\)
randomN \(::(\) RandomGen \(g) \Rightarrow\) Int \(\rightarrow g \rightarrow\) Int
randomN \(n g=(f s t(n e x t g)\) 'mod' \((\) two \(* n+\) one \())-n\)
sizedInt \(=\mathbf{d o}\)
    \(n \leftarrow\) ask
    \(g \leftarrow\) lift ask
    return (randomN \(n g\) )
```

What is the most general type of sizedInt? (Note that type inference may not work for sizedInt, but you should be able to explain the error message by now and know how to fix it. Note further that the most general type will only be accepted by GHC in a type signature when FlexibleContexts are enabled.)

Assuming this most general type, perfom an evidence translation for all the overloading involved in the functions randomN and sizedInt. First, define the record types for the classes involved. You can ignore the fact that literals and arithmetic operations are overloaded and just use one and two as monomorphic integers. You only have to include those methods in the records that are actually used in the program above. Hoever, you should consider the desugaring (you may simplify and ignore the let statements for the patterns) of the do notation to the monad operations, as well as the overloaded ask and lift functions. In order to define the record types correctly, you must enable the PolymorphicComponents or RankNTypes language extensions to allow polymorphic fields in datatypes.

Then translate random N and sizedInt similar to the translation on the slides. You are allowed to introduce local abbreviations using let and where for often-used expressions. The resulting program must, of course, still be type correct in Haskell.

