INFOAFP Assignments

AFP Assignment 4

Deadline: Jan 11, 2013

General remarks

e Mail your solution to doaitse@swierstra.net, with in the subject “Assign-2-4:
namel and name2” and containg a zip file with name 2012-2-jnamel;-jname2;.

e Team size: preferably 2, but 1 is possible.

e For programs: Programs that are not type correct may not be graded. Program-
ming style influences the grade.

e For text: Submit plain text or PDF, not HTML or Word.

¢ Gathering information on the internet is okay, but copying entire solutions from
the internet (or elsewhere) is not allowed.

e You can make a Cabal package again, or just submit a zip file.
1 (10%). Here is a nested datatype for square matrices:

type Squarea = Square’ Nil a

data Square’ t a = Zero (t (t a)) | Succ (Square’ (Cons t) a)
data Nila = Nil

data Cons t a = Cons a (t a)

Give Haskell code that represents the following two square matrices as elements of the
Square datatype:

123
< (1) (1) > and | 4 5 6
7 89
Note: you don’t have to define any functions for the Square datatype. Defining sensible

functions for Square (even show) is not entirely trivial and might be the topic of a later
assignment.


doaitse@swierstra.net

2 (10%). Write a function
forceBoolList :: [Bool| — r — 1

that completely forces a list of Boolean values without using seq. Note that pattern
matching drives evaluation.
Explain why the function forceBoolList has the type as specified above and not:

forceBoolList :: [Bool| — [Bool |
and why seq is defined as it is, and

force::a —a
forcea = seqaa

is useless.

3 (10%). Define a function count such that the following program is well-typed

test :: [Int]
test = [count,count 12 3, count "" [True, False] id (+)]

and evaluates to [0,0,0]. In other words, count should accept an arbitrary number of
arguments (of arbitrary types), and just always return 0.

Then redefine the function count such that test evaluates to [0, 3,4], i.e., count should
return the number of arguments.

Please submit both versions of the function.

Hint: no language extensions are required to solve this exercise.

4 (10%). A curious fact is that Haskell’s type system (even that of Haskell without
extensions) has exponential space and time complexity. However, the worst case rarely
occurs in practice such that the run-time behaviour of the type checker generally is
acceptable. Define a family of Haskell expressions such that the type (i.e., the size of the
type expression) grows exponentially in the size of the program. Note that if the type
is highly repetitive, the type can internally be represented using sharing. However,
different type variables cannot be shared. So, to get a truly large type, you have to
try to get as many different type variables as possible. If you find yoursolution on the
internet explain how it works!

5 (20%). Recall the datatype of square matrices:
type Square = Square’ Nil
data Square’ ta = Zero (t (t a)) | Succ (Square’ (Cons t) a)

data Nila = Nil
data Cons ta = Cons a (t a)

Note that we have eta-reduced the definition of Square. This turns out to be necessary
in the end where we will mention it again.



Let’s investigate how we can derive an equality function on square matrices. We do
so very systematically by deriving an equality function for each of the four types. We
follow a simple, yet powerful principle: type abstraction corresponds to term abstrac-
tion, and type application corresponds to term application.

What does this mean? If a type f is parameterized over an argument g, then in gen-
eral, we have to know how equality is defined on a in order to define equality on f a.
Therefore we define

eqNil :: (a — a — Bool) — (Nil a — Nil a — Bool)
eqNil eqA Nil Nil = True

In this case, the a is not used in the definition of Nil, so it is not surprising that we do
not use egA in the definition of egNil. But what about Cons? The datatype Cons has two
arguments ¢ and 4, so we expect two arguments to be passed to eqCons, something like

eqCons eqT eqA (Cons x xs) (Cons y ys) = eqAxy A ...

But what should the type of eqT be? The t is of kind * — *, so it can’t be t — ¢ — Bool.
We can argue that we should use t 2 — t a — Bool, because we use t applied to a
in the definition of Cons. However, a better solution is to recognise that, being a type
constructor of kind * — *, an equality function on t should take an equality function on
its argument as a parameter. And, moreover, it does not matter what this parameter is!
A function like egNil is polymorphic in type g, so let us require that eqT is polymorphic
in the argument type as well:

eqCons :: (Vb.(b — b — Bool) — (t b — t b — Bool)) —
(a — a — Bool) —
(Cons ta — Cons t a — Bool)
eqCons eqT eqA (Cons x xs) (Cons y ys) = eqA x y A eqT egA xs ys

Now you can see how we apply eqT to egA when we want equality at type t a — the type
application corresponds to term application.

Task. A type with a V on the inside requires the extension RankNTypes to be enabled.
Try to understand what the difference is between a function of the type of eqCons and a
function with the same type but the V omitted. Can you omit the V in the case of egCons
and does the function still work?

Now, on to Square’. The type of eqSquare’ follows exactly the same idea as the type of
eqCons:

eqSquare’ :: (Vb.(b — b — Bool) — (tb — t b — Bool)) —
(a — a — Bool) —
(Square’ t a — Square’ t a — Bool)

We now for the first time have more than one constructor, so we actually have to give
multiple cases. Let us first consider comparing two applications of Zero:



eqSquare’ eqT eqA (Zero xs) (Zero ys) = eqT (eqT eqA) xs ys

Note how again the structure of the definition follows the structure of the type. We
have a value of type t (t a). We compare it using eqT, passing it an equality function for
values of type t a. How? By using eqT egA.

The remaining cases are as follows:

eqSquare’ eqT eqA (Succ xs) (Succ ys) = eqSquare’ (eqCons eqT) eqA xs ys
eqSquare’ eqT eqA _ _ = False

The idea is the same — let the structure of the recursive calls follow the structure of the
type.
Task. Again, try removing the V from the type of eqSquare’. Does the function still
typecheck? Try to explain!

Now we’re done:

eqSquare :: (a — a — Bool) — Square a — Square a — Bool
eqSquare = eqSquare’ eqNil

Test the function. We can now also give an Eq instance for Square — this requires the
minor language extension TypeSynonymInstances, because for some stupid reason,
Haskell 98 does not allow type synonyms like Square to be used in instance declara-
tions:

instance Eq a = Eq (Square a) where
(=) = eqSquare (=)

Task. Systematically follow the scheme just presented in order to define a Functor in-
stance for square matrices. Le., derive a function mapSquare such that you can define

instance Functor Square where
fmap = mapSquare

This instance requires Square to be defined in eta-reduced form in the beginning, be-
cause Haskell does not allow partially applied type synonyms.

6 (20%). Consider the following datatype:

data GPa =Enda
| Get (Int — GPa)
| Put Int (GP a)

A value of type GP can be used to describe programs that read and write integer values
and return a final result of type a. Such a program can end immediately (End). If it
reads an integer, the rest of the program is described as a function depending on this
integer (Get). If the program writes an integer (Put), the value of that integer and the
rest of the program are recorded.



The following expression describes a program that continuously reads integers and
prints them:

echo = Get (An — Put n echo)

Task. Write a function
run::GPa — 10 a

that can run a GP-program in the IO monad. A Get should read an integer from the
console, and Put should write an integer to the console.
Here is an example run from GHCi:

>>> run echo
742

42

728

28

71

1

? =5

-5

? Interrupted.
>>>

[To better distinguish inputs from outputs, this version of run prints a question mark
when expecting an input. ]

Task. Write a GP-program add that reads two integers, writes the sum of the two inte-
gers, and ultimately returns ().

Task. Write a GP-program accum that reads an integer. If the integer is 0, it returns the
current total. If the integer is not 0, it adds the integer to the current total, prints the
current total, and starts from the beginning.

Task. Instead of running a GP-program in the IO monad, we can also simulate the
behaviour of such a program by providing a (possibly infinite) list of input values.
Write a function

simulate :: GP a — [Int] — (a, [Int])

that takes such a list of input values and returns the final result plus the (possibly infi-
nite) list of all the output values generated.
A map function for GP can be defined as follows:

instance Functor GP where
fmap f (End x) = End (f x)
fmap f (Get g) = Get (fmap f og)
fmap f (Put n x) = Put n (fmap f x)



Task. Define sensible instances of Monad and MonadState for GP. How is the behaviour
of the MonadState instance for GP different from the usual State type?

7 (20%). Consider the following module:

import Control.Monad.Reader
import System.Random

one :: Int

one =1

two :: Int

two = 2

randomN :: (RandomGen §) = Int — g — Int
randomN n g = (fst (next §) ‘mod’ (two x n + one)) — n

sizedInt = do
n < ask
g < lift ask
return (randomN n g)

What is the most general type of sizedInt? (Note that type inference may not work for
sizedInt, but you should be able to explain the error message by now and know how to
fix it. Note further that the most general type will only be accepted by GHC in a type
signature when FlexibleContexts are enabled.)

Assuming this most general type, perfom an evidence translation for all the overload-
ing involved in the functions randomN and sizedInt. First, define the record types for the
classes involved. You can ignore the fact that literals and arithmetic operations are over-
loaded and just use one and two as monomorphic integers. You only have to include
those methods in the records that are actually used in the program above. Hoever,
you should consider the desugaring (you may simplify and ignore the let statements
for the patterns) of the do notation to the monad operations, as well as the overloaded
ask and lift functions. In order to define the record types correctly, you must enable
the PolymorphicComponents or RankNTypes language extensions to allow polymorphic
fields in datatypes.

Then translate randomN and sizedInt similar to the translation on the slides. You are
allowed to introduce local abbreviations using let and where for often-used expres-
sions. The resulting program must, of course, still be type correct in Haskell.



