
A review of “Push-Pull Functional Reactive
Programming”

J.P. Pizani Flor1

1 Department of Information and Computing Sciences, Utrecht University - The Netherlands
e-mail: j.p.pizaniflor@students.uu.nl

1 Introduction

The paper “Push-Pull Functional Reactive Programming”, by Conal Elliott, discusses Func-
tional Reactive Programming (FRP), a technique developed around 1996 and which can be
applied to the design of Graphical User Interfaces in a purely functional fashion, and is
highly expressive and elegant. However, the FRP paradigm had not found (until then) an
efficient implementation.

On the way to implement FRP more efficiently, the author first redefines and orga-
nizes FRP semantics in terms of very well-known type classes (Functor, Applicative and
Monad). Then the central FRP concepts of Behavior and Event are given new definitions
and are made instances of these type classes. Finally, using these new definitions a more
efficient, push-pull (hybrid between data-driven and demand driven) implementation for
FRP is derived.

2 FRP Fundamentals

Functional Programming Programming (FRP) is in short the functional embodiment of
Reactive Programming, a paradigm of programming that sees computation through the es-
tablishment of dataflows and the propagation of changes in values through these dataflows.
One good example of a reactive programming setting is a spreadsheet program, where a
change in the value of one cell might cause reactions, triggering the values of other cells
and so forth, in a cascade of change propagation. One application realm which is said to fit
FRP very well is the programming of Graphical User Interfaces (GUIs).

FRP derives its expressiveness from 2 fundamental concepts, which can be embodied in
types: a type with dynamic values, i.e, values over time, and a type representing an “event
source”, which is just a (infinite) stream of values, paired with the point in time when they
occur. Elements of the first datatype (dynamic values) are traditionally called behaviors and
elements of the second datatype are called events. One example of a behaviour would be
the position of an object in an animation. When in the context of a GUI, a simple example
of an event source would be the user’s mouse clicks.

3 Packaging FRP in standard typeclasses

In the original formulation of FRP there was a family of functions (liftn) that “lifts” a
function over values to a function over behaviors. We can define lift1 with an instance
of the Functor typeclass, which – considering the semantic domain of behavior to be a
function of time – has the following definition:

instance Functor ((->) t) where
fmap f g = f . g

The denotational semantics of fmap (and of every other operation involving behaviors)
can be defined with the help of the function “at”. The “semantic instance” for Functor
bellow is not a real instance, but establishes a law which any implementation must comply
with, and is:



instance Functor Behavior where -- semantic instance
at (fmap f b) = fmap f (at b)

With the Functor instance for behaviors, we can write lift1. With an additional instance
for Applicative, it is also possible to define any of the functions in the family liftn. As the
semantic domain of behaviors is a function of time, the Applicative instance of functions is
helpful when defining the semantics of behaviors.

instance Applicative ((->) t) where
pure = const
f <*> g = \t -> (f t)(g t)

instance Applicative Behavior where -- semantic instance
at (pure a) = pure a
at (bf <*> bx) = at bf <*> at bx

In this way the denotational semantics of a behavior and operations over behaviors
are nicely composed using instances of standard Haskell typeclasses, and the semantics is
precisely specified without being mixed with implementation concerns. This is an impor-
tant point made by the author, as this freedom allows the more efficient implementation
presented on this paper.

In the same way done with behaviors, the concept of Event (or event source) can also be
package in instances of standard typeclasses. The monoid instance for Event is analogous
to the list monoid, and the monoid functions “mempty” and “mappend” replace classic
FRP’s “neverE” and “(.|.)”, which are the never-occurring event and an operation to merge
two event sources. In the semantic monoid instance for Event it is also made clear that
time-ordering is preserved in the merging operation. The functor instance for Event is also
straightforward, and the semantic instance expresses that mapping a function over an event
changes only the values, leaving occurrence times intact:

instance Functor Event where -- semantic instance
occs (fmap f e) = map (\\(t, v) -> (t, f v)) (occs e)

The monad instance for Event is more interesting, and we can come to the need of a
monad instance by thinking about applications where there is a Event-valued event source,
Event (Event a). Such an event source can be used to model scenarios where some events
might cause a new event source to “come alive”. In the paper the example is given of an
Asteroids game, where hitting an asteroid might cause it to break in multiple pieces, which
collisions must be tracked – thus, one event is able to “spawn” an event source.

Usually monad instances are defined by writing the functions return and bind, but in
this case a different approach is taken: a monad instance can equivalently be defined by
the functions fmap and join. The Functor instance already takes care of fmap, and the
definition of join below “flattens” a nested Event, making sure that the inner events do not
occur before the outer Event brought that source to life. The denotational semantics of join
is again defined in terms of the occs function:

join :: Event (Event a) -> Event a
occs (join ee) = foldr merge [] . map delayOccs . occs ee

4 Problems in current implementations

The main goal of the paper is to provide a more efficient implementation for FRP. The
redefinition of FRP concepts in terms of standard typeclasses, along with the precise defi-
nition of its denotational semantics was only a means to achieve this goal. Now, with this
precisely-defined semantics in hand, we can attack the following problems:



– Merging two event sources involves comparing the occurrence times in both of them
(to maintain time-ordering). This can cause the handling of two events to happen only
when the later of the two arrives. This can be solved by embedding partial information
in the values used as time, and is achieved in this paper with the abstraction called
“future values”

– The semantics of the switcher function involve searching an event source for events
which occurrence time match certain criteria. This search becomes costlier as time
goes on. In most use cases of FRP, time evolves in a monotonically increasing way,
and exploring this fact can improve implementation efficiency.

– The definition of behaviors as functions impose an inefficient implementation. In the
paper, a new representation is introduced for behaviors, making explicit the non-reactive
and constant phases.

5 Future values and future times

To simplify the semantics of events and improve its implementation, as well as provide a
better representation for time, the concept of “future values” is introduced. A future value
is just a value with an associated time (in which it is bound to be “available”. By taking the
semantics of a future value to be a pair, the functor instance is just a partial applied pairing
and the semantic function is a functor morphism (a function that preserves the structure of
the functor).

type F a = (T, a) -- T must satisfy some pre-requisites defined later
force :: Future a -> F a

instance Functor ((,) t) where
fmap f (t, v) = (t, f v) -- straightforward functor instance

instance Functor Future where -- semantic instance
force (fmap f u) = fmap f (force u)

The Applicative instance for Future is also somewhat straightforward, but has an addi-
tional requirement: the time type, T, must be a monoid, so that we can use mempty as the
time of (pure a), and mappend to combine the times of 2 future values. Furthermore, the
definition of mempty must be a lower bound for T (T must be Bounded), and mappend must
choose the maximum between two times. Besides that, the definition holds no surprise, and
the semantics is defined so that force is an Applicative morphism.

Further instances of Monad and Monoid are given for future values in the paper, along
with corresponding semantics. It is interesting to note that the semantics given might be
directly used as implementation if the type of future times chosen satisfies the following
properties:

– Is ordered and bounded, i.e, a member of the typeclasses Ord and Bounded
– Is a monoid in which mempty is minBound and mappend is max.
– The structure of the type must reveal partial information on times, so that comparisons

can be performed even when the times are not yet fully known.

These three requirements can be embodied in three newtypes, with Max and AddBounds
having pretty straightforward Monoid, Ord and Bounded instances, respectively. The inner-
most newtype in this onion-like structure (Improving) is describe in more detail later, and
provides partial information in time representation.

type FTime = Max (AddBounds (Improving Time))



6 Separating the reactive and non-reactive parts of behaviors

One of the biggest problems posed by the author FRP implementations is the demand-
driven model, caused by the implementation of (reactive) behaviors simply as a function
of time. However, this is not the only possible implementation: as noticed by the author,
a behavior has several non-reactive phases, punctuated by events. Then, if we can view
behaviors through a datatype that makes this distinction explicit, we can exploit this in an
implementation (for example, only one sample is needed to represent a constant phase).
The new representation proposed for (reactive) behaviors is built on top of two concepts,
reactive values and time functions, each embodied in a Haskell datatype.

Reactive values are discrete “step” functions, with time as their domain, and are defined
by an initial value and some discrete changes, represented exactly by an FRP Event.

data Reactive a = a ‘Stepper‘ Event a

Reactive values have pretty straightforward instances for Functor, Applicative and Monad,
and its semantic function (rat, which translates a reactive value into a reactive behavior) is
a morphism on the Functor, Applicative and Monad instances.

Now, in-between the moments of discrete change, the value of a behavior can change
according to a non-reactive (and possibly continuous) function of time. Even though we
might represent the concept of a function directly as a Haskell function, this is not very
useful. The authors chose to create a datatype of time functions, in which two cases are
distinguished: the case in which the function is constant and the case in which it’s not (this
allows for optimization in the common use case of constant functions):

data Fun t a = K a | Fun (t -> a)

Off course there are also neat instances of Functor, Applicative and Monad for the
Fun datatype, and its semantic function (apply, which just corresponds to usual function
application) is a morphism over the instance of all these type classes.

Having these two component in hand (reactive values and time functions), (reactive)
behaviors can be given a new definition:

type Behavior = Reactive . Fun Time -- the dot is type-level composition, as below
newtype (h . g) a = O (h (g a))

This means that behaviors are, in essence, reactive values in which the values them-
selves are time functions. In the common case of step functions, for example, each time
function is simply a constant. Instances of Functor and Applicative are given for the type-
level composition operator, which (together with the instances for Reactive and Fun) give
us Functor and Applicative functionality for free for this new behavior representation.

7 Events redefined and monotonic time sampling

After the definitions of future values (a value and a time when it will occur) and reactive
values (an initial value and a sequence of discrete changes), we can define Event quite
elegantly by using these two concepts:

newtype Event a = Ev (Future (Reactive a))

That means that an Event is a time and a value (the first occurrence) and a sequence
of discrete changes. This corresponds intuitively with the original definition of Events, in
terms of lists of occurrences, but solves a subtle problem which impacts performance: By
using a list of occurrences as a model for Event, we had to test the list for emptiness when
merging two Events. This test results in a Bool, which can provide no partial information
and thus must wait before all occurrences arrive before yielding a result.



After this redefinition of Event, the paper goes on to discuss a very important optimiza-
tion for implement FRP efficiently: monotonic sampling. The key observation is that, even
though the semantics of FRP don’t restrict behaviors – and they can be applied to time
values in any order (they are just a function of time) – in real-world situations behaviors
are evaluated with monotonically increasing times as arguments. Thus, making this usage
pattern explicit and exploiting it might result in bug efficiency gains.

The paper goes on to discuss how to render behaviors forward in time. For this we
first need functions that take “sinks” (functions that have IO () as counter-domain) and
consume Reactive values and Events:

sinkR :: Sink a -> Reactive a -> IO b
sinkE :: Sink a -> Event a -> IO b

Their implementation is simple, and they are mutually recursive: sinkR immediately
renders the initial value and then proceeds to render the nested Event (the “tail”). The
function sinkE waits (blocks) until the first occurrence time t0 and then proceeds to render
the nested Reactive value.

The whole “puzzle” on how to render a behavior forward in time is almost complete,
there being only a single missing piece – how to render a time function. With this piece
in place, an implementation of how to render a behavior forward in time finally comes
together:

sinkN :: Sink a -> Behavior a -> IO b
sinkN snk (O rf) = newTFunSink snk >>= flip sinkR rf

We first create a sink for time functions, then use sinkR to render each of the time func-
tions in the sequence (the Reactive sequence). And how does this sink for time functions
behave? Well, if the function is constant, its value is rendered just once (using the snk pa-
rameter). If the function is truly time-dependent, a thread is spawned which samples and
renders its value periodically.

8 Partial information on occurrence times

If we refer back to the end of section 5, a mention is made to a type constructor Improving,
in the definition of the type of future times. Applying this constructor to a time type yields
a type containing partial information, and thus allowing for comparisons between future
times to evaluate before either of them has fully arrived.

The name of the type constructor mentioned in section 5 (Improving) is not a coin-
cidence, as the abstraction used by the author to solve this problem is that of Improving
values, invented by Warren Burton in 1989. An improving value can be seen as a sequence
of lower bounds ending up in an exact value (in our case a time).

The author further improves on improving values (no pun intended) by establishing a
method with which to compare two future times. It is assumed that we have a function
that can compare an exact value with an improving value. Then faced with the comparison
between two future times ta ≤ tb we can do it in two ways:

1. Extract the exact time from ta and compare it with tb
2. Extract the exact time from tb and compare it with ta

Now, these methods will result in the same value, but not at the same time. The problem
is that if ta ≤ tb then the first method will be quicker, otherwise the second. How to solve
this? Well, both approaches are attempted in parallel and whichever one finishes first is
returned. This parallel implementation is done by using Concurrent Haskell and a MVar.


	A review of ``Push-Pull Functional Reactive Programming''

