
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2010-2011, periode 2

Andres Löh and Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

November 13, 2012



[Faculty of Science
Information and Computing Sciences]

1-1

1. Introduction



[Faculty of Science
Information and Computing Sciences]

1-2

1.1 What is AFP?



[Faculty of Science
Information and Computing Sciences]

1-3

Topics

I Lambda calculus

I Evaluation strategies, eager and lazy evaluation

I Types and type inference

I Data structures

I Effects in functional programming languages

I Interfacing with other languages

I Design patterns and common abstractions

I Modularity and reuse

I Domain-specific languages

I Type-level programming



[Faculty of Science
Information and Computing Sciences]

1-4

Language of choice: Haskell

Prerequisites

I Familiarity with Haskell and GHC
(course: “Functional Programming”)

I Helpful: familiarity with higher-order functions and folds
(course: “Grammars and Parsing / Languages and
Compilers”)

I Helpful: familiarity with type systems
(course: “Implementation of Programming Languages”)



[Faculty of Science
Information and Computing Sciences]

1-5

Goals

At the end of the course, you should be

I able to use a wide range of Haskell tools and libraries,

I know how to structure and write large programs,

I proficient in the theoretical underpinnings of FP such as
lambda calculus and type systems,

I able to understand formal texts and research papers on FP
language concepts,

I familiar with current FP research.



[Faculty of Science
Information and Computing Sciences]

1-6

This lecture



[Faculty of Science
Information and Computing Sciences]

1-7

1.2 Administration



[Faculty of Science
Information and Computing Sciences]

1-8

Wiki

http://www.cs.uu.nl/wiki/Afp

I Check the Wiki page regularly. Unfortunately system
management is moving our servers today, so it will be
temporarily inaccessible.

I If you do not have a wiki account, create one; we will use
it for the non-public parts of the site.

I Mail me your wiki name.

http://www.cs.uu.nl/wiki/Afp


[Faculty of Science
Information and Computing Sciences]

1-9

Sessions

Lectures:

I Tue, 9-10.45, BBL-077, lecture

I Tue, 11-12.45, BBL-103, joint discussion about papers
read, working on project

I Thu, 15.15-17, BBL-077, lecture

The last two hours on Tuesday are classified as “werkcollege”,
but we will use it for various purposes, in particular to explain
more practical aspects of the course material or to discuss
assignments and project progress and discussing papers read.

Participation in all sessions is required.



[Faculty of Science
Information and Computing Sciences]

1-10

Course components

Four components:

I Lectures, Exam (50%)

I Weekly assignments (20%)

I Programming task (20%)

I Active Participation (10%)



[Faculty of Science
Information and Computing Sciences]

1-11

Lectures and exam

I Lectures usually have a specific topic.

I Often based on one or more research papers.

I Papers should be read prior to the lecture.

I The exam will be about the topics covered in the lectures
and the papers

I In the exam, you will be allowed to consult the slides from
the lectures and the research papers we have discussed.



[Faculty of Science
Information and Computing Sciences]

1-12

Assignments

I Weekly assignments (not all weeks), both practical and
theoretical.

I Team size: 1 or 2.

I Theoretical assignments may serve as an indicator for the
kind of questions being asked in the exam.

I Use all options for help: Tuesday morning “werkcolleges”,
Wiki.

I Assignments come available on Thursday and have to be
handed in before the Friday one week later.

http://www.cs.uu.nl/wiki/Afp/Assignments

http://www.cs.uu.nl/wiki/Afp/Assignments


[Faculty of Science
Information and Computing Sciences]

1-13

Programming Task, paper and Final presentation

I Team size: 2 to 3.

I Task are found at http://www.cs.uu.nl/wiki/bin/
view/Afp/ProgrammingTask.

I Again, style counts. Use version control, use testing. Write
elegant and concise code. Write documentation.

I Grading: difficulty, the code, amount of supervision
required, final presentation, paper.

http://www.cs.uu.nl/wiki/bin/view/Afp/ProgrammingTask
http://www.cs.uu.nl/wiki/bin/view/Afp/ProgrammingTask


[Faculty of Science
Information and Computing Sciences]

1-14

Software

I GHC (current platform version)!

I Use the Haskell Platform (libraries, Cabal, Haddock, Alex,
Happy)!

I recommended: git, svn, darcs

I I prefer to use Mac OS, but I will try to help with other
platforms as far as I can.

I Task: Get a work environment until the end of the week;
try to install wxHaskell.



[Faculty of Science
Information and Computing Sciences]

1-15

1.3 Course overview



[Faculty of Science
Information and Computing Sciences]

1-16

Overall structure

I Basics and fundamentals

I Patterns and libraries

I Language and types

There is some overlap between the blocks.



[Faculty of Science
Information and Computing Sciences]

1-17

Basics and fundamentals

Everything you need to know about developing Haskell projects.

I Debugging and testing

I Simple programming techniques

I (Typed) lambda calculus

I Evaluation and profiling

Knowledge you are expected to apply in the programming task.



[Faculty of Science
Information and Computing Sciences]

1-18

Patterns and libraries

Using Haskell for real-world problems.

I (Functional) data structures

I Foreign Function Interface

I Concurrency

I Monads, Applicative Functors

I Combinator libraries

I Domain-specific languages

Knowledge that may be helpful to the programming task.



[Faculty of Science
Information and Computing Sciences]

1-19

Language and types

Advanced concepts of functional programming languages.

I Type inference
I Advanced type classes

I multiple parameters
I functional dependencies
I associated types

I Advanced data types
I kinds
I existentials
I polymorphic fields
I GADTs

I Dependently typed programming (Agda)

I Curry-Howard (propositions as types)



[Faculty of Science
Information and Computing Sciences]

1-20

Literature

I The Haskell Report

I Real World Haskell

I Fun of Programming

I Purely Functional Data Structures

I Types and Programming Languages

I AFP summer school lecture notes

I papers, tutorials, blogs, TMR, movies

See also

http://www.cs.uu.nl/wiki/Afp/CourseLiterature

http://www.cs.uu.nl/wiki/Afp/CourseLiterature


[Faculty of Science
Information and Computing Sciences]

1-21

1.4 Extra activities



[Faculty of Science
Information and Computing Sciences]

1-22

Dutch HUG

Dutch Haskell Users’ Group

Talking about Haskell in an informal atmosphere. Drinks.
Sometimes with presentations



[Faculty of Science
Information and Computing Sciences]

1-23

Next lecture

I Thursday 15-17: Testing Haskell with QuickCheck.

I Read: Koen Claessen, John Hughes. QuickCheck: A
Lightweight Tool for Random Testing of Haskell Programs.

I http://www.cs.uu.nl/wiki/Afp/CourseLiterature

http://www.cs.uu.nl/wiki/Afp/CourseLiterature


[Faculty of Science
Information and Computing Sciences]

1-24

1.5 Modules



[Faculty of Science
Information and Computing Sciences]

1-25

Question

Why modules?



[Faculty of Science
Information and Computing Sciences]

1-26

Goals of the Haskell module system

I Units of separate compilation (but: JHC, EHC, . . . )

I Namespace management

There is no language concept of interfaces/signatures in Haskell.



[Faculty of Science
Information and Computing Sciences]

1-26

Goals of the Haskell module system

I Units of separate compilation (but: JHC, EHC, . . . )

I Namespace management

There is no language concept of interfaces/signatures in Haskell.



[Faculty of Science
Information and Computing Sciences]

1-27

Syntax

module M (D (. .), f, g) where

import Data.List (unfoldr)
import qualified Data.Map as M
import Control.Monad hiding (mapM)

I Hierarchical modules

I Export list

I Import list, hiding list

I Qualified, unqualified

I Renaming of modules



[Faculty of Science
Information and Computing Sciences]

1-27

Syntax

module M (D (. .), f, g) where

import Data.List (unfoldr)
import qualified Data.Map as M
import Control.Monad hiding (mapM)

I Hierarchical modules

I Export list

I Import list, hiding list

I Qualified, unqualified

I Renaming of modules



[Faculty of Science
Information and Computing Sciences]

1-28

Module Main

I If the module header is omitted, the module is
automatically named Main.

module Main where . . .

I Each full Haskell program has to have a module Main that
defines a function

main :: IO ()



[Faculty of Science
Information and Computing Sciences]

1-29

Hierarchical modules

Module names consist of at least one identifier starting with an
uppercase letter, where each identifier is separated from the rest
by a period.

I This former extension to Haskell 98 has been formalized in
an Addendum to the Haskell 98 Report and is now widely
used.

I Implementations expect a module X.Y.Z to be named
X/Y/Z.hs or X/Y/Z.lhs.

I There are no relative module names – every module is
always referred to by a unique name.



[Faculty of Science
Information and Computing Sciences]

1-30

Hierarchical modules (contd.)

Ratio Data.Ratio

Complex Data.Complex

Ix Data.Ix

Array Data.Array

List Data.List

Maybe Data.Maybe

Char Data.Char

Monad Control.Monad

IO System.IO

Directory System.Directory

System System.Exit, System.Environment, System.Cmd

Time System.Time

Locale System.Locale

CPUTime System.CPUTime

Random System.Random



[Faculty of Science
Information and Computing Sciences]

1-31

Hierarchical modules (contd.)

Most of Haskell 98 standard libraries have been extended and
placed in the module hierarchy.

Good practice

Use the hierarchical modules where possible. In most cases, the
only top-level module your programs should refer to is Prelude.



[Faculty of Science
Information and Computing Sciences]

1-32

Importing modules

I The import declarations can only appear in the module
header, i.e., after the module declaration but before any
other declarations.

I A module can be imported multiple times in different ways.

I If a module is imported qualified, only the qualified names
are brought into scope. Otherwise, the qualified and
unqualified names are brought into scope.

I A module can be renamed using as. Then, the qualified
names that are brought into scope are using the new
modid.

I Name clashes are reported lazily.



[Faculty of Science
Information and Computing Sciences]

1-33

Prelude

I The module Prelude is imported implicitly as if

import Prelude

has been specified.

I An explicit import declaration for Prelude overrides that
behaviour –

import qualified Prelude

causes all names from Prelude to be available only in their
qualified form.



[Faculty of Science
Information and Computing Sciences]

1-34

Module dependencies

I Modules are allowed to be mutually recursive.

I This is not supported well by GHC, and therefore somewhat
discouraged.

Question: Why might it be difficult?



[Faculty of Science
Information and Computing Sciences]

1-34

Module dependencies

I Modules are allowed to be mutually recursive.

I This is not supported well by GHC, and therefore somewhat
discouraged. Question: Why might it be difficult?



[Faculty of Science
Information and Computing Sciences]

1-35

Good practice

I Use qualified names instead of pre- and suffixes to
disambiguate.

I Use renaming of modules to shorten qualified names.

I Avoid hiding.

I Recall that you can import the same module multiple
times.



[Faculty of Science
Information and Computing Sciences]

1-36

1.6 Haskell packages



[Faculty of Science
Information and Computing Sciences]

1-37

Packages

I Packages are collections of modules that are distributed
together.

I Packages are not part of the Haskell standard.

I Packages are versioned and can depend on other packages.

I Packages contain modules. Some of those modules may be
hidden.



[Faculty of Science
Information and Computing Sciences]

1-38

The GHC package manager

I The GHC package manager is called ghc-pkg.

I The set of packages GHC knows about is stored in a
package configuration database, usually called
package.conf.

I There may be multiple package configuration databases:
I one global per installation of GHC
I one local per user
I more local databases for special purposes



[Faculty of Science
Information and Computing Sciences]

1-39

Listing known packages

$ ghc-pkg list

/usr/lib/ghc-6.8.2/package.conf:

Cabal-1.2.3.0, GLUT-2.1.1.1, HDBC-1.1.3, HTTP-3001.0.0,

HUnit-1.2.0.0, OpenGL-2.2.1.1, QuickCheck-1.1.0.0, X11-1.4.1,

array-0.1.0.0, base-3.0.1.0, binary-0.4.1, bytestring-0.9.0.1,

cairo-0.9.12.1, containers-0.1.0.1, cpphs-1.5, directory-1.0.0.0,

fgl-5.4.1.1, filepath-1.1.0.0, gconf-0.9.12.1, (ghc-6.8.2),

glade-0.9.12.1, glib-0.9.12.1, gtk-0.9.12.1, gtkglext-0.9.12.1,

haddock-2.0.0.0, haskell-src-1.0.1.1, haskell98-1.0.1.0,

hpc-0.5.0.0, html-1.0.1.1, hxt-7.3, mozembed-0.9.12.1, mtl-1.1.0.0,

network-2.1.0.0, old-locale-1.0.0.0, old-time-1.0.0.0,

packedstring-0.1.0.0, parallel-1.0.0.0, parsec-2.1.0.0,

pretty-1.0.0.0, process-1.0.0.0, random-1.0.0.0, readline-1.0.1.0,

rts-1.0, soegtk-0.9.12.1, sourceview-0.9.12.1, svgcairo-0.9.12.1,

template-haskell-2.2.0.0, time-1.1.2.0, unix-2.3.0.0, uulib-0.9.2,

xmonad-0.5, zlib-0.4.0.1

/home/andres/.ghc/i386-linux-6.8.2/package.conf:

binary-0.4.1, vty-3.0.0, zlib-0.4.0.2

I Parenthesized packages are hidden.

I Exposed packages are usually available automatically.

I Packages can explicitly be requested by passing a
-package flag to the compiler.



[Faculty of Science
Information and Computing Sciences]

1-40

Package descriptions

$ ghc-pkg describe containers

name: containers

version: 0.2.0.0

license: BSD3

copyright:

maintainer: libraries@haskell.org

stability:

homepage:

package-url:

description: This package contains efficient general-purpose implementations

of various basic immutable container types. The declared cost of

each operation is either worst-case or amortized, but remains

valid even if structures are shared.

category:

author:

...



[Faculty of Science
Information and Computing Sciences]

1-41

Package descriptions (contd.)

exposed-modules: Data.Graph Data.Sequence Data.Tree Data.IntMap

Data.IntSet Data.Map Data.Set

hidden-modules:

import-dirs: /Library/Frameworks/GHC.framework/Versions/7.0.3-i386/usr/lib/ghc-7.0.3/containers-0.4.0.0

library-dirs: /Library/Frameworks/GHC.framework/Versions/7.0.3-i386/usr/lib/ghc-7.0.3/containers-0.4.0.0

hs-libraries: HScontainers-0.4.0.0

extra-libraries:

extra-ghci-libraries:

include-dirs:

includes:

depends: array-0.3.0.2-ecfce597e0f16c4cd1df0e1d22fd66d4

base-4.3.1.0-167743fc0dd86f7f2a24843a933b9dce

hugs-options:

cc-options:

ld-options:

framework-dirs:

frameworks:

haddock-interfaces: /Library/Frameworks/GHC.framework/Versions/7.0.3-i386/usr/share/doc/ghc/html/libraries/containers-0.!

!4.0.0/containers.haddock

haddock-html: /Library/Frameworks/GHC.framework/Versions/7.0.3-i386/usr/share/doc/ghc/html/libraries/containers-0.4.0.0



[Faculty of Science
Information and Computing Sciences]

1-42

More about GHC packages

I The GHC package manager can also be used to register,
unregister and update packages, but this is usually done
via Cabal (next in this lecture).

I The presence of packages can cause several modules of the
same name to be involved in the compilation of a single
program (different packages, different versions of a
package).

I In the presence of packages, an entity is no longer uniquely
determined by its name and the module it is defined in, but
additionally needs the package name and version.



[Faculty of Science
Information and Computing Sciences]

1-43

1.7 Cabal



[Faculty of Science
Information and Computing Sciences]

1-44

Goals of Cabal

I A build system for Haskell applications and libraries, which
is easy to use.

I Specifically tailored to the needs of a “normal” Haskell
package.

I Tracks dependencies between Haskell packages.

I A unified package description format that can be used by a
database.

I Platform-independent, Compiler-independent.

I Generic support for preprocessors, inter-module
dependencies, etc. (make replacement).

Cabal is under active development (constraint solver).



[Faculty of Science
Information and Computing Sciences]

1-45

Cabal

I Cabal is itself packaged using Cabal.

I Cabal is integrated into the set of packages shipped with
GHC, so if you have GHC, you have Cabal as well.

Homepage

http://haskell.org/cabal/

http://haskell.org/cabal/


[Faculty of Science
Information and Computing Sciences]

1-46

A Cabal package description

Name: QuickCheck

Version: 2.0

Cabal-Version: >= 1.2

Build-type: Simple

License: BSD4

License-file: LICENSE

Copyright: Koen Claessen <koen@cs.chalmers.se>

Author: Koen Claessen <koen@cs.chalmers.se>

Maintainer: Koen Claessen <koen@cs.chalmers.se>

Homepage: http://www.haskell.org/QuickCheck/

Description:

QuickCheck is a library for random testing of program properties.

flag splitBase

Description: Choose the new smaller, split-up base package.

library

Build-depends: mtl

if flag(splitBase)

Build-depends: base >= 3, random

else

Build-depends: base < 3

Exposed-Modules:

Test.QuickCheck, Test.QuickCheck.Arbitrary, Test.QuickCheck.Function,

Test.QuickCheck.Gen, Test.QuickCheck.Monadic, Test.QuickCheck.Property,

Test.QuickCheck.Test

Other-Modules:

Test.QuickCheck.Exception, Test.QuickCheck.Text



[Faculty of Science
Information and Computing Sciences]

1-47

A Setup file

import Distribution.Simple

main = defaultMain

In most cases, this together with a Cabal file is sufficient (and
often not even needed with cabal install. If you need to do extra
stuff (for instance, install some additional files that have
nothing to do with Haskell), there are variants of defaultMain
that offer hooks.



[Faculty of Science
Information and Computing Sciences]

1-48

Using Cabal

I $ runghc Setup configure

Resolves dependencies. You can specify via --prefix

where you want the package installed, and --user is the
user-specific package configuration database should be
used.

I $ runghc Setup build

Builds the package.

I $ runghc Setup install

Installs the package and registers it as a GHC package if
required.



[Faculty of Science
Information and Computing Sciences]

1-49

HackageDB

I Online Cabal package database.

I Everybody can upload their Cabal-based Haskell packages.

I Automated building of packages.

I Allows automatic online access to Haddock documentation.

http://hackage.haskell.org/

http://hackage.haskell.org/


[Faculty of Science
Information and Computing Sciences]

1-50

cabal-install

I A frontend to Cabal.

I Resolves dependencies of packages automatically, then
downloads and installs all of them.

I Once cabal-install is present, installing a new library is
usually as easy as:

$ cabal update

$ cabal install <packagename>

I You can also run cabal install within a directory
containing a .cabal file.


