

Advanced Functional Programming

2010-2011, periode 2

Jan Rochel

Department of Information and Computing Sciences
Utrecht University

November 13, 2012

2. Haskell and the λ -Calculus

[Faculty of Science Information and Computing Sciences]

An Example

Program definition:

```
\begin{array}{ll} \mathsf{main} &= \mathsf{print} \; (\mathsf{gcd} \; 15 \; 12) \\ \mathsf{print} \; \mathsf{x} &= \mathsf{putStrLn} \; (\mathsf{show} \; \mathsf{x}) \\ \mathsf{gcd} \; \mathsf{x} \; \mathsf{y} &= \mathsf{gcd}' \; (\mathsf{abs} \; \mathsf{x}) \; (\mathsf{abs} \; \mathsf{y}) \\ \mathsf{gcd}' \; \mathsf{a} \; 0 &= \mathsf{a} \\ \mathsf{gcd}' \; \mathsf{a} \; \mathsf{b} &= \mathsf{gcd}' \; \mathsf{b} \; (\mathsf{rem} \; \mathsf{a} \; \mathsf{b}) \\ \dots \end{array}
```

Evaluation:

```
\begin{array}{l} \mathsf{main} \to \mathsf{print} \; (\mathsf{gcd} \; 15 \; 12) \\ \to \mathsf{putStrLn} \; (\mathsf{show} \; (\mathsf{gcd} \; 15 \; 12)) \\ \to \mathsf{putStrLn} \; (\mathsf{show} \; (\mathsf{gcd'} \; (\mathsf{abs} \; 15) \; (\mathsf{abs} \; 12))) \\ \to \dots \\ \to 3 \end{array}
```

Term Rewriting

Definition: A term rewriting system (TRS) consists of a

- ▶ signature Σ : function symbols $\{F, G, \dots\}$ of fixed arity
- set of Variables $V = \{a, b, c, \dots\}$
- ▶ set of terms $Ter(\Sigma)$ over Σ and V. Example: F(a, G(G(b, c), d), H)
- set rewriting rules of the form $l \to r$ with $l, r \in Ter(\Sigma)$ constraint: variables in r must also occur in l

Example as a TRS

Rewrite rules:

```
\begin{array}{ll} \mathsf{Main} & \to \mathsf{Print} \; (\mathsf{Gcd} \; (15,12)) \\ \mathsf{Print} \; (\mathsf{x}) & \to \mathsf{PutStrLn} \; (\mathsf{Show} \; (\mathsf{x})) \\ \mathsf{Gcd} \; (\mathsf{x},\mathsf{y}) & \to \mathsf{Gcd}' \; (\mathsf{Abs} \; (\mathsf{x}), \mathsf{Abs} \; (\mathsf{y}) \\ \mathsf{Gcd}' \; (\mathsf{a},\mathsf{b}) & \to \dots \\ \mathsf{Abs} \; (\mathsf{x}) & \to \dots \end{array}
```

A reduction to a normal form:

```
\begin{array}{l} \mathsf{Main} \to \mathsf{Print} \; (\mathsf{Gcd} \; (15,12)) \\ \to \mathsf{PutStrLn} \; (\mathsf{Show} \; (\mathsf{Gcd} \; (15,12))) \\ \to \mathsf{PutStrLn} \; (\mathsf{Show} \; (\mathsf{Gcd'} \; (\mathsf{Abs} \; (15), \mathsf{Abs} \; (12)))) \\ \to \dots \\ \to 3 \end{array}
```


Some Terminology and Notation in Rewriting

- reducible expression (redex): a term that matches the left-hand side of a rewriting rule
- ▶ reduction step: application of a rule to a redex. Main → Print (gcd (15,12)) Print (gcd (15,12)) ← Main Main →* PutStrLn (Show (Gcd' (Abs (15), Abs (12))))
- normal form: term that does not contain a redex.
- strong normalisation: every reduction sequence is finite
- unique normalisation: strong normalisation to a unique normal form

Literature: Term Rewriting Systems by Terese

Higher-Order Functions

```
\begin{array}{ll} \text{main} &= \text{print (flip map } [1\mathinner{\ldotp\ldotp}] \text{ inc)} \\ \text{print } \mathsf{x} &= \text{putStrLn (show } \mathsf{x}) \\ \text{flip } \mathsf{f} \mathsf{x} \mathsf{y} &= \mathsf{f} \mathsf{y} \mathsf{x} \\ \text{inc } \mathsf{x} &= \mathsf{x} + 1 \\ \text{map} &= \ldots \end{array}
```

```
\begin{array}{ll} \mathsf{Main} & \to \mathsf{Print} \; (\mathsf{Flip} \; (\mathsf{Map}, [1\mathinner{\ldotp\ldotp}], \mathsf{Inc}) \\ \mathsf{Print} \; (\mathsf{x}) & \to \mathsf{PutStrLn} \; (\mathsf{Show} \; (\mathsf{x})) \\ \mathsf{Flip} \; (\mathsf{f}, \mathsf{x}, \mathsf{y}) & \to \mathsf{f} \; (\mathsf{y}, \mathsf{x}) \\ \mathsf{Inc} \; (\mathsf{x}) & \to \mathsf{x} + 1 \\ \mathsf{Map} \; (\mathsf{f}, \mathsf{xs}) & \to \ldots \end{array}
```

Problem: higher-order functions require partial application

The λ -Calculus

- ▶ introduced by Church in 1932
- rewriting system and simplistic programming language
- supports higher-order functions naturally
- ► Turing complete

λ-Calculus: A Higher-Order Function

$$flip f x y = f y x$$

flipabc $ightarrow^*$ acb

$$(\lambda f \times y. f y \times) a b c$$

$$\rightarrow (\lambda x y. a y \times) b c$$

$$\rightarrow (\lambda y. a y b) c$$

$$\rightarrow a c b$$

Observations:

- ▶ arguments are consumed one by one
- function definitions do not live in a separate space
- ▶ functions are gradually destroyed when applied

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

λ-Calculus: Grammar

λ -terms are of the form:

```
\begin{array}{c|cccc} e ::= x & \text{variables} \\ & e e & \text{application} \\ & \lambda x. e & \text{lambda abstraction} \end{array}
```

Examples:

$$\lambda x. x x$$

 $\lambda x. (\lambda y. x z) (\lambda x. x a)$

- ▶ application associates to the left: a b c = (a b) c
- ▶ Observation: only unary functions and unary application

λ-Calculus: flip

$$flip f x y = f y x$$

$$(\lambda f \times y. f y \times) a b c$$

$$\rightarrow (\lambda x y. a y \times) b c$$

$$\rightarrow (\lambda y. a y b) c$$

$$\rightarrow a c b$$

Representation with unary functions:

$$(\lambda f. \lambda x. \lambda y. f y x) a b c$$

$$\rightarrow (\lambda x. \lambda y. a y x) b c$$

$$\rightarrow (\lambda y. a y b) c$$

$$\rightarrow a c b$$

λ -Calculus: β -Reduction

A term of the form λx . e is called an **abstraction** or **lambda binding**; e is called the abstraction's **body**.

The central rewrite rule of the λ -calculus is β -reduction:

$$(\lambda x. e) a \rightarrow_{\beta} e [x \mapsto a]$$

An abstraction applied to an argument reduces to the abstraction's body with all *free* occurrences of the abstraction variable substituted by the argument.

$$(\lambda f. \lambda x. \lambda y. f y x) a b c$$

$$\rightarrow_{\beta} (\lambda x. \lambda y. a y x) b c$$

$$\rightarrow_{\beta} (\lambda y. a y b) c$$

$$\rightarrow_{\beta} a c b$$

Bound and free variables

- An abstraction λx . e binds its variable x in its body e.
- ▶ An occurrence of a variable that is not bound is called **free**

Examples:

- x occurs free in $\lambda y. y (\lambda z. x)$
- $\begin{tabular}{ll} (\lambda x.\,x\,z)\;y\;x\;has\;one\;bound\;and\;one\;free\;occurrence\;of\;x,\\ therefore\;(\lambda x.\,(\lambda x.\,x\,z)\;y\;x)\;a\;\rightarrow_{\beta}\;((\lambda x.\,x\,z)\;y\;a) \end{tabular}$

A term without free variables is called a **closed term** or a **combinator**.

λ -Calculus: Name Capturing and α -conversion

$$\lambda y. (\lambda x. \lambda y. x y) y$$

$$\rightarrow_{\beta} \lambda y. ((\lambda y. x y) [x \mapsto y])$$

$$=^{?} \lambda y. \lambda y. y y$$

Problem: y is **captured** by the innermost lambda binding! $[x \mapsto y]$ must be a capture-avoiding substitution which renames the abstraction variable:

$$\begin{vmatrix} \rightarrow_{\beta} \lambda y. ((\lambda y. y y) [x \mapsto y]) \\ \rightarrow_{\alpha} \lambda y. ((\lambda z. x z) [x \mapsto y]) \\ = \lambda y. \lambda z. y z \end{vmatrix}$$

 α -conversion: $\lambda x. e \rightarrow_{\alpha} \lambda y. e [x \mapsto y]$

λ -Calculus: Function Equivalence and η -Conversion

When are two λ -terms equivalent?

Every rewrite rule \rightarrow_r is a relation on terms and every relation induces an equivalence relation (symmetric, reflexive, transitive closure):

$$=_r \equiv \leftrightarrow_r^* \equiv (\leftarrow_r \cup \rightarrow_r)^*$$

- $ightharpoonup \lambda x. \lambda y. y x$ and $\lambda y. \lambda z. z$ y are α -equivalent because they can be transformed into another by α -conversion.
- ► $(\lambda y. a y) b =_{\beta} (\lambda x. x b) a$ since $(\lambda y. a y) b \to_{\beta} a b \leftarrow_{\beta} (\lambda x. x b) a$
- $(\lambda y. \lambda s. a s y) b =_{\alpha\beta} \lambda t. (\lambda x. x t b) a$

λ -Calculus: Function Equivalence and η -Conversion

 λx . (putStrLn \circ show) $x \neq_{\alpha\beta}$ putStrLn \circ show

even though if applied to the same argument they are β -equivalent.

 η -conversion: $\lambda x. e x \rightarrow_{\eta} e$ (x does not occur free in e)

$$(\lambda \mathsf{x}.\,\mathsf{e}\,\mathsf{x})\,\mathsf{z}\, o_eta\,\mathsf{e}\,\mathsf{z}$$

 λx . (putStrLn \circ show) $x =_{\alpha\beta\eta}$ putStrLn \circ show

 $\alpha\beta\eta$ -equivalence is one possible criterion for function equivalence. Point-free style programming is essentially the application of η -conversion

Example

```
\begin{array}{ll} \text{main} &= \text{print (flip map } [1\mathinner{\ldotp\ldotp}] \text{ inc)} \\ \text{print } x &= \text{putStrLn (show } x) \\ \text{flip } f \times y = f \text{ y } x \\ \text{inc } x &= x+1 \\ \text{map } f &= \ldots \end{array}
```

```
\begin{aligned} & \mathsf{main} = \mathsf{print} \; (\mathsf{flip} \; \mathsf{map} \; [1\mathinner{\ldotp\ldotp}] \; \mathsf{inc}) \\ & \mathsf{print} = \lambda \mathsf{x}. \; \mathsf{putStrLn} \; (\mathsf{show} \; \mathsf{x}) \\ & \mathsf{flip} \; = \lambda \mathsf{f}. \; \lambda \mathsf{y}. \; \lambda \mathsf{x}. \; \mathsf{f} \; \mathsf{y} \; \mathsf{x} \\ & \mathsf{inc} \; = \lambda \mathsf{x}. \; \mathsf{x} + 1 \\ & \mathsf{map} \; = \lambda \mathsf{f}. \; \ldots \end{aligned}
```

$$\begin{array}{c} (\lambda \mathsf{x.} \ \mathsf{putStrLn} \ (\mathsf{show} \ \mathsf{x})) \ ((\lambda \mathsf{f.} \ \lambda \mathsf{y.} \ \lambda \mathsf{x.} \ \mathsf{f} \ \mathsf{y} \ \mathsf{x}) \\ (\lambda \mathsf{f.} \ \lambda \mathsf{x.} \dots) \ [1 \dots] \ (\lambda \mathsf{x.} \ \mathsf{x} + 1)) \end{array}$$

Faculty of Science Information and Computing Sciences

[Faculty of Science Information and Computing Sciences]

<ロト < 部 > < 電 > < 電 > 。

◆□▶◆圖▶◆園▶◆園▶●園

Reduction Strategies

▶ Strict languages use call-by-value reduction: arguments have to be fully evaluated before a function is applied

- ▶ Non-strict (lazy) evaluation: no reductions take place within the argument of a redex, for instance
- ▶ Haskell uses call-by-name reduction: the 'leftmost outermost' redex is reduced¹, leads to weak head normal form (WHNF)2.

Information and Computing Sciences

Term is in WHNF but not in normal form

Simply-Typed λ -calculus

```
\begin{array}{c|cccc} e ::= x & \text{variables} \\ & e \ e & \text{application} \\ & & \lambda x : t. \ e & \text{lambda abstraction} \\ t ::= \tau & \text{type variable} \\ & & t \rightarrow t & \text{function type} \end{array}
```

Function types nest to the right: $\tau \to \sigma \to \rho = \tau \to (\sigma \to \rho)$

Closed terms are typed as follows:

- ▶ Every abstraction $\lambda x : \tau$. e assigns a type τ to its variable x. All free occurences of x in e have type τ . If the type of e is σ then $\lambda x : \tau$. e is of type $\tau \to \sigma$.
- In an application f x the function f must have a function type $(\tau \to \sigma)$ and the type of x must be the input type of the function (τ) . The type of f x then is σ .

Universiteit Utrecht

Recursion and Turing Completeness

The simply-typed λ -calculus is strongly normalising

- \Longrightarrow A program in simply-typed λ -calculus always halts
- \Longrightarrow The simply-typed λ -calculus is not Turing complete

There are lambda terms (fixed-point combinators) that can be used to express recursion, like the Y-combinator:

$$Y \equiv \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))$$

but they are not typeable in the simply-typed λ -calculus.

Recursion and Turing Completeness

$$\label{eq:Y} \begin{array}{l} \mathsf{Y} \equiv \lambda \mathsf{f.} \left(\lambda \mathsf{x.} \, \mathsf{f} \, \left(\mathsf{x} \, \mathsf{x} \right) \right) \\ \mathsf{fac} = \mathsf{Y} \, \left(\lambda \mathsf{fac.} \, \lambda \mathsf{n.} \, \, \text{if} \, \mathsf{n} = 0 \, \, \text{then} \, 1 \, \, \text{else} \, \, \mathsf{n} * \mathsf{fac} \, \left(\mathsf{n} - 1 \right) \right) \end{array}$$

Homework: evaluate fac 3

Haskell features a (more flexible) let construct for recursion:

let fac = λ n. if n == 0 then 1 else n * fac (n - 1) in fac

Haskell vs. the simply-typed λ -Calculus

Haskell is essentially λ -calculus extented by **let**, data types, case discrimination, and a richer type system.

syntactic sugar	desugares to
operators	functions
function parameters	lambda abstractions
pattern matching	case discrimination
guards	case discrimination
if-then-else	case discrimination on Bools
list comprehensions	map, concat, filter
do notation	(⋙) and lambda abstractions
where	let
top-level-bindings	let
class polymorphism	higher-order functions

[Faculty of Science Information and Computing Sciences]