[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Advanced Functional Programming
2010-2011, periode 2
Jan Rochel

Department of Information and Computing Sciences
Utrecht University

November 13, 2012

2. Haskell and the)\-Calculus

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

An Example

Program definition:

main = print (gcd 15 12)
print x = putStrLn (show x)
gcd xy = ged’ (abs x) (abs y)
gcd' a0 =a

gcd’ ab =ged b (rem ab)

Evaluation:

main — print (gcd 15 12)
— putStrLn (show (ged 15 12))
I
oS
N

— putStrLn (show (gcd’ (abs 15) (abs 12)))

: —3
.ﬂ\\‘ [Faculty of Science
% Universiteit Utrecht Information and Computing Sciences]
29 K

Term Rewriting

Definition: A term rewriting system (TRS) consists of a

» signature 3: function symbols {F, G, ...} of fixed arity
» set of Variables V' = {a,b,c,...}
> set of terms T'er(X) over ¥ and V.

Example: F(a,G(G(b,c),d), H)

» set rewriting rules of the form [— r with I,r € Ter(X)
constraint: variables in r must also occur in [

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

2-3

Example as a TRS

Rewrite rules:

Main — Print (Ged (15,12))
Print (x) — PutStrLn (Show (x))
Ged (x,y) — Ged’ (Abs (x), Abs (y)
Ged’ (a,b) — ...

Abs (x) — ...

A reduction to a normal form:

Main — Print (Ged (15,12))
— PutStrLn (Show (Gced (15,12)))
— PutStrLn (Show (Ged’ (Abs (15), Abs (12))))

—3
gg\\‘wﬁ)é 5 . . [Facul.ty of S'cience
= S Universiteit Utrecht Information and Computing Sciences]

2.4 {%ﬂ!“\

Some Terminology and Notation in Rewriting

» reducible expression (redex): a term that matches the
left-hand side of a rewriting rule

» reduction step: application of a rule to a redex.

Main — Print (gcd (15,12))

Print (gcd (15,12)) < Main

Main —* PutStrLn (Show (Ged’ (Abs (15), Abs (12))))
» normal form: term that does not contain a redex.
» strong normalisation: every reduction sequence is finite

> unique normalisation: strong normalisation to a unique
normal form

Literature: Term Rewriting Systems by Terese

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
25 N

Higher-Order Functions

main = print (flip map [1..] inc)

print x = putStrLn (show x)

flipf xy="fyx

incx =x+1

map =...

Main — Print (Flip (Map, [1..], Inc)
Print (x) — PutStrLn (Show (x))

Flip (f,x,y) — f (y,x)

Inc (x) —+x+1

Map (f,xs) — ...

Problem: higher-order functions require partial application

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
26 NS

A-Calculus

v

introduced by Church in 1932
rewriting system and simplistic programming language

v

v

supports higher-order functions naturally

v

Turing complete

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

A-Calculus: A Higher-Order Function
| flipfxy=~fyx
| fipabc —*ach

(Mxy.fyx)abc
— (Axy.ayx)bc
— (A\y.ayb)c
—+ach

Observations:

> arguments are consumed one by one
» function definitions do not live in a separate space

» functions are gradually destroyed when applied M
aculty of cience

i Universiteit Utrecht Information and Computing Sciences]

2.8 %AAL\\’

A-Calculus: Grammar

A-terms are of the form:

=X variables

| ee application

| Ax.e lambda abstraction
Examples:

AX. X X

Ax. (Ay.x z) (Ax.x a)

» application associates to the left: abc=(ab)c

» Observation: only unary functions and unary application

*&\ ﬁ/) . . . [Facul_ty of S'ciem:e

? &) § Universiteit Utrecht Information and Computing Sciences]

TN
2-9

alculus: flip
| flipf xy=~fyx

(Mxy.fyx)abc
— (Axy.ayx)bc
— (Ay.ayb)c
—ach

Representation with unary functions:

(M. Ax. Ady.fyx)abc
— (Ax.Ady.ayx)bc

— (Ay.ayb)c
—ach
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

A-Calculus: -Reduction

A term of the form Ax. e is called an abstraction or lambda
binding; e is called the abstraction’s body.

The central rewrite rule of the A-calculus is B-reduction:
| (Ax.e)a =3 e [x— a

An abstraction applied to an argument reduces to the
abstraction's body with all free occurrences of the abstraction
variable substituted by the argument.

(M. Ax Ay.fyx)abc
—5 (Ax.Ay.ayx)bc
—3g (Ay.ayb)c
—pgach

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

2-11

Bound and free variables

» An abstraction Ax.e binds its variable x in its body e.

» An occurrence of a variable that is not bound is called free

Examples:

» x occurs free in Ay.y (Az.x)

» (Ax.x z) y x has one bound and one free occurrence of x,
therefore (Ax. (Ax.xz) yx)a —g ((Ax.xz)y a)

A term without free variables is called a closed term or a
combinator.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

2-12

A-Calculus: Name Capturing and a-conversion

Ay. (A Ay.xy)y
=g Ay. (Ay.xy) [x—=y])
£
=" AY.Ay.yy

Problem: y is captured by the innermost lambda binding!
[x — y] must be a capture-avoiding substitution which renames
the abstraction variable:

—5 AY- ((Ay.yy) [x—=y])
—a AY. (Az.x2) [x = y])
= Ay.)\z.yz

a-conversion: Ax.e —4 Ay.e [x — Y]

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

2-13

A-Calculus: Function Equivalence and 7-Conversion

When are two A-terms equivalent?

Every rewrite rule —,. is a relation on terms and every relation
induces an equivalence relation (symmetric, reflexive, transitive
closure):

= = ©F = (U=

r

> Ax.Ay.y x and Ay. Az.z y are a-equivalent because they
can be transformed into another by a-conversion.

» (Ay.ay) b =5 (MAx.xb)a
since (\y.ay)b =g ab <3 (Ax.xb)a

> (Ay.Xs.asy) b =43 At. (Ax.xtb)a

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
214 NS

A-Calculus: Function Equivalence and 7-Conversion

| Ax. (putStrLn o show) x #,5 putStrLn o show

even though if applied to the same argument they are
[b-equivalent.

n-conversion: Ax.e X —, e (x does not occur free in e)

| (Ax.ex)z =g ez

| Ax. (putStrLn o show) x =g, putStrLn o show

afn-equivalence is one possible criterion for function
equivalence. Point-free style programming is essentially the
application of n-conversion

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
215 NS

Example

2-16

KN

main = print (flip map [1..] inc)
print x = putStrLn (show x)

flipf xy=~fyx

inc x =x-+1

mapf =...

main = print (flip map [1..] inc)
print = Ax. putStrLn (show x)
flip = AM.Ay. Xx.fyx

inc =Ax.x+1

map = M. ...

(Ax. putStrLn (show x)) ((Af. Ay. Ax. fy x)
(M2) [1..] (Axx+1)) (Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

mple in Syntax-Tree Notation

i i
/@ AX
AN
putStrLn - @ (@] .
ARV - TN
ow x M| \f@ 1
VRNUAN
Ay
I
/@\
/@ X
Universiteit Utrecht f \y [Faculty of Science

Information and Computing Sciences]

o = = z E 9DQAC¢

mple in Syntax-Tree Notation

|
@
X @
@ |
SN — M
puttrLn @ 1.&
dom N N
ow X Ay @
L/
@ y X
@/\x
/\
AMOY

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mple in Syntax-Tree Notation

@
)\x/ \@
| Ay/ \
putSr{n @ @)\lx
N A
show X @ [1
ANVAN

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

ample in Syntax-Tree Notation
|

(@]
/ e

| / AN

1.]
/N / \
putSrLn /@)\f AX
show x . é@
/ \
/ \,
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

ample in Syntax-Tree Notation
l
@
/N
putSrLn @
/
show @
AN

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Reduction Strategies

» Strict languages use call-by-value reduction: arguments
have to be fully evaluated before a function is applied

|
@

AX reduce here firs

» Non-strict (lazy) evaluation: no reductions take place
within the argument of a redex, for instance

» Haskell uses call-by-name reduction: the ‘leftmost
outermost’ redex is reduced!, leads to weak head normal
form (WHNF)?.

_‘\\‘Wﬁ’ _ [Faculty of Science
%U% U}lm{enUtf&ILHCthnS under lambda take place Information and Computing Sciences]
2-18 N 25therwise reduction leads to head normal form (HNF)

ample: Non-Strict Evaluation

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ample: Non-Strict Evaluation

Az a ¢
V4
[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

mple: Non-Strict Evaluation
|
/ @\
/@\
Y
I
4

b
|

c

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

ample: Non-Strict Evaluation
|

Term is in WHNF but not in normal form

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Simply-Typed \-calculus

en=x variables

| ee application

| Ax:t.e lambda abstraction
tu=1 type variable

| t—t function type

Function types nest to the right: 7 — 0 = p=7 — (0 — p)

Closed terms are typed as follows:

» Every abstraction \x: 7. e assigns a type 7 to its variable x.
All free occurences of x in e have type 7. If the type of e is
o then Ax:T.eis of type 7 — 0.

> In an application f x the function f must have a function
type (7 — o) and the type of x must be the input type of
the function (7). The type of f x then is o.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
2-20 N

Recursion and Turing Completeness

The simply-typed A-calculus is strongly normalising
—> A program in simply-typed A-calculus always halts
—> The simply-typed A-calculus is not Turing complete

There are lambda terms (fixed-point combinators) that can
be used to express recursion, like the Y-combinator:

| Y =M. O F (x%) (A f (x X))

but they are not typeable in the simply-typed A-calculus.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

2-21

ecursion and Turing Completeness

Y = M. (M. f (xx)) (Ax.f (xx))
fac =Y (AMac. An. if n==0 then 1 else n * fac (n — 1))

Homework: evaluate fac 3

Haskell features a (more flexible) let construct for recursion:

| let fac = An. if n==0 then 1 else n x fac (n — 1) in fac

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

2-23

Haskell vs. the simply-typed)\-Calculus

Haskell is essentially A-calculus extented by let, data types,
case discrimination, and a richer type system.

syntactic sugar desugares to

operators functions
function parameters | lambda abstractions

pattern matching case discrimination
guards case discrimination
if-then-else case discrimination on Bools

list comprehensions | map, concat, filter

do notation (>=) and lambda abstractions
where let
top-level-bindings let

class polymorphism | higher-order functions

&\\V’B}) {Faeulty of Science
% 8 = Universiteit Utrecht Information and Computing Sciences]

K
L

	Haskell and the -Calculus

