
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2010-2011, periode 2

Jan Rochel

Department of Information and Computing Sciences
Utrecht University

November 13, 2012

[Faculty of Science
Information and Computing Sciences]

2-1

2. Haskell and the λ-Calculus

[Faculty of Science
Information and Computing Sciences]

2-2

An Example

Program definition:

main = print (gcd 15 12)
print x = putStrLn (show x)
gcd x y = gcd′ (abs x) (abs y)
gcd′ a 0 = a
gcd′ a b = gcd′ b (rem a b)
. . .

Evaluation:

main→ print (gcd 15 12)
→ putStrLn (show (gcd 15 12))
→ putStrLn (show (gcd′ (abs 15) (abs 12)))
→ . . .
→ 3

[Faculty of Science
Information and Computing Sciences]

2-3

Term Rewriting

Definition: A term rewriting system (TRS) consists of a

I signature Σ: function symbols {F,G, . . . } of fixed arity

I set of Variables V = {a, b, c, . . . }
I set of terms Ter(Σ) over Σ and V .

Example: F (a,G(G(b, c), d), H)

I set rewriting rules of the form l→ r with l, r ∈ Ter(Σ)
constraint: variables in r must also occur in l

[Faculty of Science
Information and Computing Sciences]

2-4

Example as a TRS

Rewrite rules:

Main → Print (Gcd (15, 12))
Print (x) → PutStrLn (Show (x))
Gcd (x, y) → Gcd′ (Abs (x),Abs (y)
Gcd′ (a, b)→ . . .
Abs (x) → . . .

A reduction to a normal form:

Main→ Print (Gcd (15, 12))
→ PutStrLn (Show (Gcd (15, 12)))
→ PutStrLn (Show (Gcd′ (Abs (15),Abs (12))))
→ . . .
→ 3

[Faculty of Science
Information and Computing Sciences]

2-5

Some Terminology and Notation in Rewriting

I reducible expression (redex): a term that matches the
left-hand side of a rewriting rule

I reduction step: application of a rule to a redex.
Main→ Print (gcd (15, 12))
Print (gcd (15, 12)) ← Main
Main →∗ PutStrLn (Show (Gcd′ (Abs (15),Abs (12))))

I normal form: term that does not contain a redex.

I strong normalisation: every reduction sequence is finite

I unique normalisation: strong normalisation to a unique
normal form

Literature: Term Rewriting Systems by Terese

[Faculty of Science
Information and Computing Sciences]

2-6

Higher-Order Functions

main = print (flip map [1 . .] inc)
print x = putStrLn (show x)
flip f x y = f y x
inc x = x + 1
map = . . .

Main → Print (Flip (Map, [1 . .], Inc)
Print (x) → PutStrLn (Show (x))
Flip (f, x, y)→ f (y, x)
Inc (x) → x + 1
Map (f, xs) → . . .

Problem: higher-order functions require partial application

[Faculty of Science
Information and Computing Sciences]

2-7

The λ-Calculus

I introduced by Church in 1932

I rewriting system and simplistic programming language

I supports higher-order functions naturally

I Turing complete

[Faculty of Science
Information and Computing Sciences]

2-8

λ-Calculus: A Higher-Order Function

flip f x y = f y x

flip a b c →∗ a c b

(λf x y. f y x) a b c
→ (λx y. a y x) b c
→ (λy. a y b) c
→ a c b

Observations:

I arguments are consumed one by one

I function definitions do not live in a separate space

I functions are gradually destroyed when applied

[Faculty of Science
Information and Computing Sciences]

2-9

λ-Calculus: Grammar

λ-terms are of the form:

e ::= x variables
| e e application
| λx. e lambda abstraction

Examples:

λx. x x
λx. (λy. x z) (λx. x a)

I application associates to the left: a b c = (a b) c

I Observation: only unary functions and unary application

[Faculty of Science
Information and Computing Sciences]

2-10

λ-Calculus: flip

flip f x y = f y x

(λf x y. f y x) a b c
→ (λx y. a y x) b c
→ (λy. a y b) c
→ a c b

Representation with unary functions:

(λf. λx. λy. f y x) a b c
→ (λx. λy. a y x) b c
→ (λy. a y b) c
→ a c b

[Faculty of Science
Information and Computing Sciences]

2-11

λ-Calculus: β-Reduction

A term of the form λx. e is called an abstraction or lambda
binding; e is called the abstraction’s body.

The central rewrite rule of the λ-calculus is β-reduction:

(λx. e) a →β e [x 7→ a]

An abstraction applied to an argument reduces to the
abstraction’s body with all free occurrences of the abstraction
variable substituted by the argument.

(λf. λx. λy. f y x) a b c
→β (λx. λy. a y x) b c
→β (λy. a y b) c
→β a c b

[Faculty of Science
Information and Computing Sciences]

2-12

Bound and free variables

I An abstraction λx. e binds its variable x in its body e.

I An occurrence of a variable that is not bound is called free

Examples:

I x occurs free in λy. y (λz. x)

I (λx. x z) y x has one bound and one free occurrence of x,
therefore (λx. (λx. x z) y x) a →β ((λx. x z) y a)

A term without free variables is called a closed term or a
combinator.

[Faculty of Science
Information and Computing Sciences]

2-13

λ-Calculus: Name Capturing and α-conversion

λy. (λx. λy. x y) y
→β λy. ((λy. x y) [x 7→ y])

=? λy. λy. y y

Problem: y is captured by the innermost lambda binding!
[x 7→ y] must be a capture-avoiding substitution which renames
the abstraction variable:

→β λy. ((λy. y y) [x 7→ y])
→α λy. ((λz. x z) [x 7→ y])
= λy. λz. y z

α-conversion: λx. e →α λy. e [x 7→ y]

[Faculty of Science
Information and Computing Sciences]

2-14

λ-Calculus: Function Equivalence and η-Conversion

When are two λ-terms equivalent?

Every rewrite rule →r is a relation on terms and every relation
induces an equivalence relation (symmetric, reflexive, transitive
closure):
=r ≡ ↔∗r ≡ (←r ∪ →r)

∗

I λx. λy. y x and λy. λz. z y are α-equivalent because they
can be transformed into another by α-conversion.

I (λy. a y) b =β (λx. x b) a
since (λy. a y) b →β a b ←β (λx. x b) a

I (λy. λs. a s y) b =αβ λt. (λx. x t b) a

[Faculty of Science
Information and Computing Sciences]

2-15

λ-Calculus: Function Equivalence and η-Conversion

λx. (putStrLn ◦ show) x 6=αβ putStrLn ◦ show

even though if applied to the same argument they are
β-equivalent.

η-conversion: λx. e x →η e (x does not occur free in e)

(λx. e x) z →β e z

λx. (putStrLn ◦ show) x =αβη putStrLn ◦ show

αβη-equivalence is one possible criterion for function
equivalence. Point-free style programming is essentially the
application of η-conversion

[Faculty of Science
Information and Computing Sciences]

2-16

Example

main = print (flip map [1 . .] inc)
print x = putStrLn (show x)
flip f x y = f y x
inc x = x + 1
map f = . . .

main = print (flip map [1 . .] inc)
print = λx. putStrLn (show x)
flip = λf. λy. λx. f y x
inc = λx. x + 1
map = λf. . . .

(λx. putStrLn (show x)) ((λf. λy. λx. f y x)
(λf. λx. . . .) [1 . .] (λx. x + 1))

[Faculty of Science
Information and Computing Sciences]

2-17

Example in Syntax-Tree Notation

@

λx

@

putStrLn @

show x

@

@

@

λ f

λx

λy

@

@

f y

x

λ f

...

[1..]

λx

@

@

+ x

1

[Faculty of Science
Information and Computing Sciences]

2-17

Example in Syntax-Tree Notation

@

λx

@

putStrLn @

show x

@

@

λx

λy

@

@

λ f

...

y

x

[1..]

λx

@

@

+ x

1

[Faculty of Science
Information and Computing Sciences]

2-17

Example in Syntax-Tree Notation

@

λx

@

putStrLn @

show x

@

λy

@

@

λ f

...

y

[1..]

λx

@

@

+ x

1

[Faculty of Science
Information and Computing Sciences]

2-17

Example in Syntax-Tree Notation

@

λx

@

putStrLn @

show x

@

@

λ f

...

λx

@

@

+ x

1

[1..]

[Faculty of Science
Information and Computing Sciences]

2-17

Example in Syntax-Tree Notation

@

putStrLn @

show @

@

λ f

...

λx

@

@

+ x

1

[1..]

[Faculty of Science
Information and Computing Sciences]

2-18

Reduction Strategies

I Strict languages use call-by-value reduction: arguments
have to be fully evaluated before a function is applied

@

λx reduce here first

I Non-strict (lazy) evaluation: no reductions take place
within the argument of a redex, for instance

I Haskell uses call-by-name reduction: the ‘leftmost
outermost’ redex is reduced1, leads to weak head normal
form (WHNF)2.

1also: no reductions under lambda take place
2otherwise reduction leads to head normal form (HNF)

[Faculty of Science
Information and Computing Sciences]

2-19

Example: Non-Strict Evaluation

@

@

λy

@

λx

x

y

@

λz

z

a

@

λx

c

b

[Faculty of Science
Information and Computing Sciences]

2-19

Example: Non-Strict Evaluation

@

@

λx

x

@

λz

z

a

@

λx

c

b

[Faculty of Science
Information and Computing Sciences]

2-19

Example: Non-Strict Evaluation

@

@

λz

z

a

@

λx

c

b

[Faculty of Science
Information and Computing Sciences]

2-19

Example: Non-Strict Evaluation

@

a @

λx

c

b

Term is in WHNF but not in normal form

[Faculty of Science
Information and Computing Sciences]

2-20

Simply-Typed λ-calculus

e ::= x variables
| e e application
| λx : t. e lambda abstraction

t ::= τ type variable
| t→ t function type

Function types nest to the right: τ → σ → ρ = τ → (σ → ρ)

Closed terms are typed as follows:

I Every abstraction λx : τ. e assigns a type τ to its variable x.
All free occurences of x in e have type τ . If the type of e is
σ then λx : τ. e is of type τ → σ.

I In an application f x the function f must have a function
type (τ → σ) and the type of x must be the input type of
the function (τ). The type of f x then is σ.

[Faculty of Science
Information and Computing Sciences]

2-21

Recursion and Turing Completeness

The simply-typed λ-calculus is strongly normalising
=⇒ A program in simply-typed λ-calculus always halts
=⇒ The simply-typed λ-calculus is not Turing complete

There are lambda terms (fixed-point combinators) that can
be used to express recursion, like the Y-combinator:

Y ≡ λf. (λx. f (x x)) (λx. f (x x))

but they are not typeable in the simply-typed λ-calculus.

[Faculty of Science
Information and Computing Sciences]

2-22

Recursion and Turing Completeness

Y ≡ λf. (λx. f (x x)) (λx. f (x x))

fac = Y (λfac. λn. if n = = 0 then 1 else n ∗ fac (n− 1))

Homework: evaluate fac 3

Haskell features a (more flexible) let construct for recursion:

let fac = λn. if n = = 0 then 1 else n ∗ fac (n− 1) in fac

[Faculty of Science
Information and Computing Sciences]

2-23

Haskell vs. the simply-typed λ-Calculus

Haskell is essentially λ-calculus extented by let, data types,
case discrimination, and a richer type system.

syntactic sugar desugares to

operators functions

function parameters lambda abstractions

pattern matching case discrimination

guards case discrimination

if-then-else case discrimination on Bools

list comprehensions map, concat, filter

do notation (>>=) and lambda abstractions

where let

top-level-bindings let

class polymorphism higher-order functions

	Haskell and the -Calculus

