Advanced Functional Programming

 2012-2013, periode 2Doaitse Swierstra
Department of Information and Computing Sciences Utrecht University

November 19, 2011

2. Correctness and Testing

What is testing about?

- Gain confidence in the correctness of your program.
- Show that common cases work correctly.
- Show that corner cases work correctly.
- Testing cannot (generally) prove the absence of bugs.

Correctness

- When is a program correct?

Correctness

- When is a program correct?
- What is a specification?
- How to establish a relation between the specification and the implementation?
- What about bugs in the specification?

This lecture

- Equational reasoning with Haskell programs
- QuickCheck, an automated testing library/tool for Haskell

Goals

- Understand how to prove simple properties using equational reasoning.
- Understand how to define QuickCheck properties and how to use QuickCheck.
- Understand how QuickCheck works and how to make QuickCheck usable for your own larger programs.

2.1 Equational reasoning

Referential transparency

- "Equals can be substituted for equals"
- In other words: if an expression has a value in a context, we can replace it with any other expression that has the same value in the context without affecting the meaning of the program.
- When we deal with infinite structures: two things are equivalent if we cannot find out about their difference:

Referential transparency

- "Equals can be substituted for equals"
- In other words: if an expression has a value in a context, we can replace it with any other expression that has the same value in the context without affecting the meaning of the program.
- When we deal with infinite structures: two things are equivalent if we cannot find out about their difference:
ones $=1$: ones
ones $^{\prime}=1: 1:$ ones $^{\prime}$

Referential transparency (contd.)

SML is (like most languages) not referentially transparent:

```
let val x =ref 0
    funf n = (x:= !x+n; !x)
in f 1+f 2
end
```

The expression evaluates to 4 .

Referential transparency (contd.)

SML is (like most languages) not referentially transparent:

```
let val x = ref 0
    funf n = (x:= !x+n; !x)
in f 1+f 2
end
```

The expression evaluates to 4 . The value of f 1 is 1 . But

```
let val x = ref 0
    fun f n = (x := !x + n; !x)
```

in $1+\mathrm{f} 2$
end
evaluates to 3 .

Referential transparency (contd.)

Also
let val $x=\operatorname{ref} 0$ fun $\mathrm{f} \mathrm{n}=(\mathrm{x}:=!\mathrm{x}+\mathrm{n} ;!\mathrm{x})$
in $f 1+f 1$
cannot be replaced by

$$
\begin{aligned}
& \text { let val } \begin{aligned}
\mathrm{x} & =\text { ref } 0 \\
\text { fun } \mathrm{f} n & =(\mathrm{x}:=!\mathrm{x}+\mathrm{n} ;!\mathrm{x}) \\
\text { val } \mathrm{r} & =\mathrm{f} 1
\end{aligned} \\
& \text { in } \mathrm{r}+\mathrm{r}
\end{aligned}
$$

Referential transparency in Haskell

- Haskell is referentially transparent.
- The SML example breaks down because Haskell has no untracked side-effects.

```
do
    x}\leftarrow\mathrm{ newIORef 0
let f n = do modifyIORef x (+n); readIORef x
r}\leftarrow\textrm{f}
s}\leftarrow\textrm{f}
return (r + s)
```

The type of f is $\operatorname{Int} \rightarrow$ IO Int, not Int \rightarrow Int as in SML.

Referential transparency in Haskell (contd.)

- Because of referential transparency, the definitions of functions give us rules for reasoning about Haskell programs.
- Properties regarding datatypes can be proved using induction:
| data [a] = []|a: [a]
To prove $\forall(\mathrm{xs}::$ [a]).P xs, we prove
- P []
- \forall (x:: a) (xs :: [a]).P xs $\rightarrow \mathrm{P}(x: x s)$

Equational reasoning example

```
length :: [a] }->\mathrm{ Int
length [] =0
length (x:xs) = 1 + length xs
isort :: Ord a = [a] }->\mathrm{ [a]
isort [] = []
isort (x : xs) = insert x (isort xs)
```

length :: [a] \rightarrow Int
length [] $=0$
length $(\mathrm{x}: \mathrm{xs})=1+$ length xs
isort :: Ord a $\Rightarrow[\mathrm{a}] \rightarrow[\mathrm{a}]$
isort [] $=$ [] isort (x:xs) $=$ insert \times (isort $x s$)
insert :: Ord $a \Rightarrow a \rightarrow[a] \rightarrow[a]$
insert $x[]=[x]$
insert \times (y : ys)
$x \leqslant y \quad=x: y: y s$
otherwise $=y$: insert x ys

Equational reasoning example

```
length :: [a] }->\mathrm{ Int
length [] =0
length (x:xs) = 1 + length xs
isort :: Ord a = [a] }->\mathrm{ [a]
isort [] = []
isort (x : xs) = insert x (isort xs)
isort (x:xs) \(=\) insert \(\times\) (isort xs )
```

insert :: Ord $a \Rightarrow a \rightarrow[a] \rightarrow[a]$
insert $\times[]=[x]$
insert x (y : ys)
$x \leqslant y \quad=x: y: y s$
otherwise $=y$: insert \times ys

Theorem (Sorting preserves length)
$\forall(\mathrm{xs}::[\mathrm{a}])$.length (isort xs$) \equiv$ length xs

Equational reasoning example

```
length :: [a] }->\mathrm{ Int
length [] =0
length (x:xs) = 1 + length xs
isort :: Ord a = [a] }->\mathrm{ [a]
isort [] = []
isort (x : xs) = insert x (isort xs)
isort (x:xs) \(=\) insert \(\times\) (isort xs)
```

insert :: Ord $a \Rightarrow a \rightarrow[a] \rightarrow[a]$ insert $\times[]=[x]$
insert x (y : ys)
$x \leqslant y \quad=x: y: y s$
otherwise $=y$: insert \times ys

Theorem (Sorting preserves length)
$\forall(\mathrm{xs}::[\mathrm{a}])$.length (isort xs $) \equiv$ length xs
Lemma
$\forall(x:: a)$ (ys :: [a]).length (insert x ys) $\equiv 1+$ length ys

Proof of the Lemma

Lemma
$\forall(x:: a)(y s::[a])$.length (insert $x y s) \equiv 1+$ length $y s$
Proof by induction on the list.
Case []:

$$
\begin{aligned}
& \text { length (insert } x[]) \\
\equiv & \{\text { Definition of insert }\} \\
& \text { length }[x] \\
\equiv & \{\text { Definition of length }\} \\
& 1+\text { length }[]
\end{aligned}
$$

Proof of the Lemma (contd.)

Lemma
$\forall(x:: a)$ (ys :: [a]).length (insert $\mathrm{x} y \mathrm{y}$) $\equiv 1+$ length ys
Case y : ys, case $x \leqslant y$:

$$
\begin{aligned}
& \text { length }(\text { insert } x(y: y s)) \\
\equiv & \{\text { Definition of insert }\} \\
& \text { length }(x: y: y s) \\
\equiv & \{\text { Definition of length }\} \\
& 1+\text { length }(\mathrm{y}: \mathrm{ys})
\end{aligned}
$$

Proof of the Lemma (contd.)

Lemma

$\forall(x:: a)(y s ~:: ~[a])$.length (insert $\times \mathrm{ys}) \equiv 1+$ length ys
Case y : ys, case $x>y$:

$$
\begin{aligned}
&\text { length (insert } x(\mathrm{y}: \mathrm{ys})) \\
& \equiv\{\text { Definition of insert }\} \\
& \text { length }(\mathrm{y}: \text { insert } \mathrm{x} \text { ys }) \\
& \equiv\{\text { Definition of length }\} \\
&1+\text { length (insert } \times \text { ys }) \\
& \equiv\{\text { Induction hypothesis }\} \\
& 1+(1+\text { length ys }) \\
& \equiv\{\text { Definition of length }\} \\
& 1+\text { length }(\mathrm{y}: \mathrm{ys})
\end{aligned}
$$

Proof of the Theorem

Theorem
$\forall(x s::[a])$.length (isort $x s) \equiv$ length xs
Proof by induction on the list.
Case []:

$$
\begin{aligned}
& \text { length (isort []) } \\
\equiv & \{\text { Definition of isort }\} \\
& \text { length [] }
\end{aligned}
$$

Proof of the Theorem (contd.)

Theorem

$\forall(\mathrm{xs}::[\mathrm{a}])$.length (isort xs$) \equiv$ length xs
Case x:xs:
length (isort (x:xs))
$\equiv \quad\{$ Definition of isort $\}$ length (insert x (isort xs))
\equiv \{ Lemma \}
$1+$ length (isort xs)
\equiv \{Induction hypothesis \}
$1+$ length xs
$\equiv \quad\{$ Definition of length $\}$ length ($\mathrm{x}: \mathrm{xs}$)

Equational reasoning summary

- Equational reasoning can be an elegant way to prove properties of a program.
- Equational reasoning can be used to establish a relation between an "obivously correct" Haskell program (a specification) and an efficient Haskell program.
- Equational reasoning is usually quite lengthy.
- Careful with special cases (laziness):
- undefined values;
- infinite values
- It is infeasible to prove properties about every Haskell program using equational reasoning.

Other proof methods

- Type systems.
- Proof assistants.

2.2 QuickCheck

QuickCheck

- QuickCheck is a Haskell library developed by Koen Claessen and John Hughes in 2000.
- An embedded domain-specific language (EDSL) for defining properties.
- Automatic datatype-driven generation of random test data.
- Extensible by the user.
- Shrinks failing test cases.

Current sitation

- Copied to other programming languages: Common Lisp, Scheme, Erlang, Python, Ruby, SML, Clean, Java, Scala, F\#
- Erlang version is sold by a company, QuviQ, founded by the authors of QuickCheck.

Example: Sorting

An attempt at insertion sort in Haskell:

```
sort :: [lnt] -> [Int]
sort [] = []
sort (x:xs) = insert x xs
insert :: Int }->\mathrm{ [Int] }->\mathrm{ [Int]
insert x [] = [x]
insert x (y:ys)| x\leqslanty = x:ys
otherwise = y : insert x ys
```


How to specify sorting?

A good specification is

- as precise as necessary,
- no more precise than necessary.

How to specify sorting?

A good specification is

- as precise as necessary,
- no more precise than necessary.

If we want to specify sorting, we should give a specification that distinguishes sorting from all other operations, but does not force us to use a particular sorting algorithm.

A first approximation

Certainly, sorting a list should not change its length.

```
sortPreservesLength :: [Int] }->\mathrm{ Bool
sortPreservesLength xs = length xs == length (sort xs)
```


A first approximation

Certainly, sorting a list should not change its length.
sortPreservesLength :: [Int] \rightarrow Bool sortPreservesLength $\mathrm{xs}=$ length $\mathrm{xs}==$ length (sort xs)

We can test by invoking the function quickCheck:
Main〉 quickCheck sortPreservesLength
Failed! Falsifiable, after 4 tests:
$[0,3]$

Correcting the bug

$$
\begin{aligned}
& \text { sort :: [Int] } \rightarrow \text { [Int] } \\
& \text { sort [] }=[] \\
& \text { sort (x: xs) }=\text { insert } \times \text { xs } \\
& \text { insert }:: \text { Int } \rightarrow[\operatorname{Int}] \rightarrow[\operatorname{Int}] \\
& \text { insert } \mathrm{x}[] \quad=[\mathrm{x}] \\
& \text { insert } x(y \text { : } y s) \mid x \leqslant y \quad=x: y s \\
& \text { otherwise }=y \text { : insert } x \text { ys }
\end{aligned}
$$

Correcting the bug

$$
\begin{aligned}
& \text { sort :: [Int] } \rightarrow \text { [Int] } \\
& \text { sort [] }=[] \\
& \text { sort (x: xs) }=\text { insert } \times \text { xs } \\
& \text { insert }:: \operatorname{lnt} \rightarrow[\operatorname{lnt}] \rightarrow[\operatorname{lnt}] \\
& \text { insert } x[] \quad=[x] \\
& \text { insert } x \text { (} y \text { : ys) } \mid x \leqslant y \quad=x: y \text { : } y s \\
& \text { otherwise }=y \text { : insert } x \text { ys }
\end{aligned}
$$

A new attempt

Main \rangle quickCheck sortPreservesLength
OK, passed 100 tests.
Looks better. But have we tested enough?

Properties are first-class objects

$$
\begin{aligned}
& (\mathrm{f} \text { 'preserves' } \mathrm{p}) \mathrm{x}=\mathrm{px}=\mathrm{=} \mathrm{p}(\mathrm{fx}) \\
& \text { sortPreservesLength }=\text { sort 'preserves' length } \\
& \text { idPreservesLength }=\mathrm{id} \text { 'preserves' length }
\end{aligned}
$$

Main〉 quickCheck idPreservesLength OK, passed 100 tests.

Clearly, the identity function does not sort the list.

When is a list sorted?

sorted :: [lnt] \rightarrow Bool sorted [] $\quad=$ True sorted (x:xs) = ?

When is a list sorted?

sorted :: [Int] \rightarrow Bool sorted [] $\quad=$ True sorted (x:xs) = ?

When is a list sorted?

sorted :: [lnt] \rightarrow Bool sorted [] $=$ True
sorted ($\mathrm{x}:[\mathrm{l}]=$
sorted $(x: y: y s)=$

When is a list sorted?

sorted :: [lnt] \rightarrow Bool sorted [] $\quad=$ True sorted (x:[]) = True $\operatorname{sorted}(x: y: y s)=$

When is a list sorted?

```
sorted :: [lnt] }->\mathrm{ Bool
sorted [] = True
sorted (x:[]) = True
sorted (x:y : ys) = x< y \ sorted (y : ys)
```


Testing again

> sortEnsuresSorted $::[\operatorname{lnt}] \rightarrow$ Bool sortEnsuresSorted xs = sorted (sort xs)

Testing again

> sortEnsuresSorted $::[$ Int $] \rightarrow$ Bool
> sortEnsuresSorted $\times s=$ sorted (sort xs)

Or:

$$
\begin{aligned}
& (f \text { 'ensures' } p) x=p(f x) \\
& \text { sortEnsuresSorted }=\text { sort 'ensures' sorted }
\end{aligned}
$$

Testing again

sortEnsuresSorted :: [Int] \rightarrow Bool
sortEnsuresSorted xs = sorted (sort xs)
Or:
(f 'ensures' p) $\mathrm{x}=\mathrm{p}(\mathrm{f} \mathrm{x}$)
sortEnsuresSorted $=$ sort 'ensures' sorted

Main〉 quickCheck sortEnsuresSorted Falsifiable, after 5 tests:
$[5,0,-2]$
Main〉 sort $[5,0,-2]$
$[0,-2,5]$

Correcting again

$$
\begin{aligned}
& \text { sort :: [1nt] } \rightarrow \text { [} \mathrm{nt} \text {] } \\
& \text { sort [] }=[] \\
& \text { sort (x:xs) }=\text { insert } \mathrm{x} \times \mathrm{x} \\
& \text { insert }:: \text { Int } \rightarrow[\operatorname{Int}] \rightarrow[\operatorname{Int}] \\
& \text { insert } x[]=[x] \\
& \text { insert } x \text { (} y \text { : ys) } \mid x \leqslant y \quad=x: y \text { : } y s \\
& \text { otherwise }=\mathrm{y} \text { : insert } \mathrm{x} \text { ys }
\end{aligned}
$$

Correcting again

$$
\begin{aligned}
& \text { sort :: [Int] } \rightarrow \text { [Int] } \\
& \text { sort [] }=[] \\
& \text { sort }(x: x s)=\text { insert } x(\text { sort xs }) \\
& \text { insert }:: \text { Int } \rightarrow[\operatorname{Int}] \rightarrow[\operatorname{Int}] \\
& \text { insert } x[] \quad=[x] \\
& \text { insert } x \text { (} y \text { : ys) } \mid x \leqslant y \quad=x: y \text { : ys } \\
& \text { otherwise }=y \text { : insert } x \text { ys }
\end{aligned}
$$

Correcting again

```
sort :: [Int] -> [Int]
sort [] = []
sort (x:xs) = insert x (sort xs)
insert :: Int }->\mathrm{ [Int] }->\mathrm{ [Int]
insert x []
= [x]
insert x (y:ys)| x\leqslanty = x:y:ys
otherwise = y : insert x ys
```

Main〉 quickCheck sortEnsuresSorted Falsifiable, after 7 tests:
[4, 2, 2]

Another bug?

Main〉 quickCheck sortEnsuresSorted Falsifiable, after 7 tests:
[4, 2, 2]
Main〉 sort $[4,2,2]$
$[2,2,4]$
But this is correct. So what went wrong?

Another bug？

Main〉 quickCheck sortEnsuresSorted Falsifiable，after 7 tests：
［4，2，2］
Main〉 sort $[4,2,2]$
［2，2，4］
But this is correct．So what went wrong？
Main〉 sorted $[2,2,4]$
False

Specifications can have bugs, too!

sorted :: [Int] \rightarrow Bool sorted [] = True sorted (x:[]) = True $\operatorname{sorted}(x: y: y s)=x<y \wedge \operatorname{sorted}(y: y s)$

Specifications can have bugs, too!

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{sorted}::[\operatorname{lnt}] \rightarrow & \text { Bool } \\
& =\text { True } \\
\operatorname{sorted}[] & \\
\operatorname{sorted}(x:[]) & =\text { True } \\
\operatorname{sorted}(x: y: y s) & =x \leqslant y \wedge \operatorname{sorted}(y: y s)
\end{array}
\end{array}
$$

Are we done yet?

Is sorting specified completely by saying that

- sorting preserves the length of the input list,
- the resulting list is sorted?

No, not quite

```
evilNoSort :: [Int] -> [Int]
evilNoSort xs = replicate (length xs) 0
```

This function fulfills both specifications, but still does not sort.
We need to make the relation between the input and output lists precise: both should contain the same elements - or one should be a permutation of the other.

Specifying sorting

f 'permutes' xs $=\mathrm{fxs}$ 'elem' permutations xs sortPermutes xs $=$ sort 'permutes' $x s$

Our sorting function now fulfills the specification.

Using QuickCheck

To use QuickCheck in your program:
import Test.QuickCheck
The simplest interface is to use
quickCheck :: Testable prop \Rightarrow prop \rightarrow IO ()
class Testable prop where property :: prop \rightarrow Property
instance Testable Bool
instance (Arbitrary a, Show a, Testable prop) \Rightarrow
Testable (a \rightarrow prop)

Recap: Classes and instances

- Classes declare predicates on types.

> class Testable prop where property :: prop \rightarrow Property

Here, any type can either be Testable or not.

- If a predicate holds for a type, this implies that the class methods are supported by the type.
For any type prop such that Testable prop, there is a method property :: prop \rightarrow Property.
Outside of a class declaration, Haskell denotes this type as
property :: Testable prop \Rightarrow prop \rightarrow Property

Recap: Classes and instances (contd.)

- Instances declare which types belong to a predicate.
instance Testable Bool
instance (Arbitrary a, Show a, Testable prop) \Rightarrow Testable (a \rightarrow prop)

Booleans are in Testable. Functions, i.e., values of type a \rightarrow prop, are in Testable if prop is Testable and a is in Arbitrary and in Show.

- Instance declarations have to provide implementations of the class methods (in this case, of property), as a proof that the predicate does indeed hold for the type.
- Other functions that use class methods inherit the class constraints:
quickCheck :: Testable prop \Rightarrow prop $\rightarrow \mathrm{IO}()$

Nullary properties

instance Testable Bool

> sortAscending :: Bool
> sortAscending $=$ sort $[2,1]==[1,2]$
> $\operatorname{sortDescending~}::$ Bool
> sortDescending $=\operatorname{sort}[2,1]=[2,1]$

Running QuickCheck:
Main〉 quickCheck sortAscending +++ OK, passed 100 tests.
Main〉 quickCheck sortDescending *** Failed! Falsifiable (after 1 test):

Nullary properties (contd.)

- Nullary properties are static properties.
- QuickCheck can be used for unit testing.
- By default, QuickCheck tests 100 times (which is wasteful for static properties, but configurable).

Functional properties

> instance (Arbitrary a, Show a, Testable prop) \Rightarrow
> Testable (a prop)
sortPreservesLength :: $([\operatorname{lnt}] \rightarrow[\operatorname{lnt}]) \rightarrow[\operatorname{lnt}] \rightarrow$ Bool sortPreservesLength isort $\mathrm{xs}=$ length (isort xs$)==$ length xs

Main〉 quickCheck (sortPreservesLength isort) +++ OK, passed 100 tests.

Read parameterized properties as universally quantified.
QuickCheck automatically generates lists of integers.

Another sorting function

import Data.Set
setSort $=$ toList \circ fromList

Another sorting function

import Data.Set
setSort $=$ toList \circ fromList

Main〉 quickCheck (sortPreservesLength setSort) *** Failed! Falsifiable (after 6 tests and 2 shrinks): $[1,1]$

Another sorting function

import Data.Set
setSort $=$ toList \circ fromList

Main〉 quickCheck (sortPreservesLength setSort) *** Failed! Falsifiable (after 6 tests and 2 shrinks): $[1,1]$

- The function setSort eliminates duplicate elements, therefore a list with duplicate elements causes the test to fail.
- QuickCheck shows evidence of the failure, and tries to present minimal test cases that fail (shrinking).

How to fully specify sorting

Property 1
A sorted list should be ordered:
sortOrders :: [Int] \rightarrow Bool sortOrders xs = ordered (sort xs)
ordered :: Ord a $\Rightarrow[\mathrm{a}] \rightarrow$ Bool
ordered [] = True
ordered $[x] \quad=$ True
ordered $(x: y: y s)=x \leqslant y \wedge \operatorname{ordered}(y: y s)$

How to fully specify sorting (contd.)

Property 2

A sorted list should have the same elements as the original list:

$$
\begin{aligned}
& \text { sortPreservesElements :: }[\text { lnt }] \rightarrow \text { Bool } \\
& \text { sortPreservesElements xs }=\text { sameElements xs }(\text { sort } x s) \\
& \text { sameElements }:: \text { Eq } a \Rightarrow[a] \rightarrow[a] \rightarrow \text { Bool } \\
& \text { sameElements xs ys }=\text { null }(x s \backslash \backslash \text { ys }) \wedge \text { null }(y s \backslash x s)
\end{aligned}
$$

More information about test data

| collect :: (Testable prop, Show a$) \Rightarrow \mathrm{a} \rightarrow$ prop \rightarrow Property
The function collect gathers statistics about test cases. This information is displayed when a test passes:

More information about test data

collect :: (Testable prop, Show a) $\Rightarrow \mathrm{a} \rightarrow$ prop \rightarrow Property
The function collect gathers statistics about test cases. This information is displayed when a test passes:

Main \rangle let $p=$ sortPreservesLength isort
Main〉 quickCheck ($\lambda \times s \rightarrow$ collect (null $x s$) ($p \times s$))
+++ OK, passed 100 tests:
92\% False
8\% True

More information about test data (contd.)

$$
\begin{aligned}
& \text { Main }\rangle \text { quickCheck (} \lambda \times s \rightarrow \text { collect (length xs 'div' } 10)(\mathrm{p} \times s)) \\
& +++ \text { OK, passed } 100 \text { tests: } \\
& 31 \% 0 \\
& 24 \% 1 \\
& 16 \% 2 \\
& 9 \% 4 \\
& 9 \% 3 \\
& 4 \% 8 \\
& 4 \% 6 \\
& 2 \% 5 \\
& 1 \% 7
\end{aligned}
$$

More information about test data (contd.)

In the extreme case, we can show the actual data that is tested:
Main \rangle quickCheck ($\lambda \times s \rightarrow$ collect $\times s(p \times s)$) +++ OK, passed 100 tests:
6\% []
$1 \%[9,4,-6,7]$
$1 \%[9,-1,0,-22,25,32,32,0,9, \ldots$

Question

Why is it important to have access to the test data?

Implications

The function insert preserves an ordered list:
implies :: Bool \rightarrow Bool \rightarrow Bool
implies $x y=n o t \times \vee y$

Problematic:

insertPreservesOrdered :: Int \rightarrow [Int] Bool
insertPreservesOrdered $\times \times s=$ ordered xs 'implies' ordered (insert $\mathrm{x} \times \mathrm{s}$)

Implications (contd.)

Main〉 quickCheck insertPreservesOrdered +++ OK, passed 100 tests.

Implications（contd．）

Main〉quickCheck insertPreservesOrdered ＋＋＋OK，passed 100 tests．

But：

Main〉 let iPO＝insertPreservesOrdered
Main〉 quickCheck（ $\lambda \times \times s \rightarrow$ collect（ordered xs ）（iPO $\times \mathrm{xs}$ ））
＋＋＋OK，passed 100 tests．
88\％False 12\％True

Only 12 lists have really been tested！

Implications (contd.)

The solution is to use the QuickCheck implication operator:
$(\Longrightarrow)::$ (Testable prop) \Rightarrow Bool \rightarrow prop \rightarrow Property instance Testable Property

The type Property allows to encode not only True or False, but also to reject the test case.
iPO :: Int \rightarrow [Int $] \rightarrow$ Property
iPO \times xs $=$ ordered $\times s \Longrightarrow$ ordered (insert $\times x s$)
Now we get:
Main〉 quickCheck ($\lambda \times \mathrm{xs} \rightarrow$ collect (ordered xs) (iPO $\times \mathrm{xs}$)) *** Gave up! Passed only 43 tests (100% True).

Configuring QuickCheck

quickCheckWith ::

$$
\begin{aligned}
(\text { Testable prop }) & \Rightarrow \text { Int } \quad-- \text { maximum number tests } \\
& \rightarrow \text { Int } \quad-- \text { maximum number attempts } \\
& \rightarrow \text { Int } \quad-- \text { maximum size } \\
& \rightarrow \text { prop } \\
& \rightarrow \text { IO Bool }
\end{aligned}
$$

quickCheck $\mathrm{p}=$ do quickCheckWith 100500100 p return ()

- Increasing the number of attempts might work.
- Better solution: use a custom generator (discussed next).

Generators

- Generators belong to an abstract data type Gen. Think of Gen as a restricted version of IO. The only effect available to us is access to random numbers.
- We can define our own generators using another domain-specific language. We can define default generators for new datatypes by defining instances of class Arbitrary:
class Arbitrary a where
arbitrary :: Gen a
shrink :: a \rightarrow [a]

Combinators for generators

```
choose :: Random a }=>(\textrm{a},\textrm{a})->\mathrm{ Gen a
oneof :: [Gen a] }->\mathrm{ Gen a
frequency :: [(Int, Gen a)] }->\mathrm{ Gen a
elements :: [a] }->\mathrm{ Gen a
sized : :( Int }->\mathrm{ Gen a) }->\mathrm{ Gen a
```


Simple generators

instance Arbitrary Bool where arbitrary = elements [False, True]
instance (Arbitrary a, Arbitrary b) \Rightarrow Arbitrary (a, b) where arbitrary $=$ do
$x \leftarrow$ arbitrary
$y \leftarrow \operatorname{arbitrary}$
return (x, y)
data Dir = North | East | South | West deriving Ord instance Arbitrary Dir where arbitrary $=$ choose (North, West)

Generating numbers

- A simple possibility:
instance Arbitrary Int where arbitrary $=$ choose $(-20,20)$
- Better:
instance Arbitrary Int where arbitrary $=\operatorname{sized}(\lambda n \rightarrow$ choose $(-n, n))$
- QuickCheck automatically increases the size gradually, up to the configured maximum value.

Generating trees

A bad approach to generating more complex values is a frequency table:

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
instance Arbitrary a }=>\mathrm{ Arbitrary (Tree a) where
    arbitrary =
        frequency [(1, liftM Leaf arbitrary),
        (2, liftM2 Node arbitrary arbitrary)]
```

Here:

$$
\begin{array}{ll}
\text { liftM }::(\mathrm{a} \rightarrow \mathrm{~b}) & \rightarrow \text { Gen } \mathrm{a} \rightarrow \text { Gen } \mathrm{b} \\
\text { liftM2 }::(\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c}) \rightarrow \text { Gen } \mathrm{a} \rightarrow \text { Gen } \mathrm{b} \rightarrow \text { Gen } \mathrm{c}
\end{array}
$$

Generating trees

A bad approach to generating more complex values is a frequency table:

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
instance Arbitrary a }=>\mathrm{ Arbitrary (Tree a) where
    arbitrary =
        frequency [(1, liftM Leaf arbitrary),
        (2,liftM2 Node arbitrary arbitrary)]
```

Here:

```
liftM :: (a->b) }->\mathrm{ Gen a }->\mathrm{ Gen b
liftM2 :: (a->b coc) }->\mathrm{ Gen a }->\mathrm{ Gen b }->\mathrm{ Gen c
Termination is unlikely!
```


Generating trees (contd.)

```
instance Arbitrary a }=>\mathrm{ Arbitrary (Tree a) where
    arbitrary = sized arbitraryTree
arbitraryTree :: Arbitrary a }=>\mathrm{ Int }->\mathrm{ Gen (Tree a)
arbitraryTree 0 = liftM Leaf arbitrary
arbitraryTree n = frequency [(1, liftM Leaf arbitrary),
                                    (4, liftM2 Node t t)]
    where t = arbitraryTree (n 'div' 2)
```

Why a non-zero probability for Leaf in the second case of arbitraryTree?

Shrinking

The other method in Arbitrary is
| shrink :: (Arbitrary a) $\Rightarrow \mathrm{a} \rightarrow$ [a]

- Maps each value to a number of structurally smaller values.
- Default definition returns [] and is always safe.
- When a failing test case is discovered, shrink is applied repeatedly until no smaller failing test case can be obtained.

Defining Arbitrary generically

- Both arbitrary and shrink are examples of datatype-generic functions - they can be defined for (almost) any Haskell datatype in a systematic way.
- Haskell does not provide any way to denote such an algorithm.
- Many extensions and tools do (cf. course on Generic Programming in block 4).

GHCi pitfall

All lists are ordered?
Main〉 quickCheck ordered
+++ OK, passed 100 tests.

GHCi pitfall

All lists are ordered?
Main〉 quickCheck ordered +++ OK, passed 100 tests.

Use type signatures in GHCi to make sure a sensible type is used!
 Main〉 quickCheck (ordered :: [Int] Bool) *** Failed! Falsifiable (after 3 tests and 2 shrinks): $[0,-1]$

Loose ends

- Haskell can deal with infinite values, and so can QuickCheck. However, properties must not inspect infinitely many values. For instance, we cannot compare two infinite values for equality and still expect tests to terminate. Solution: Only inspect finite parts.

Loose ends

- Haskell can deal with infinite values, and so can QuickCheck. However, properties must not inspect infinitely many values. For instance, we cannot compare two infinite values for equality and still expect tests to terminate. Solution: Only inspect finite parts.
- QuickCheck can generate functional values automatically, but this requires defining an instance of another class CoArbitrary. Also, showing functional values is problematic.

Loose ends

- Haskell can deal with infinite values, and so can QuickCheck. However, properties must not inspect infinitely many values. For instance, we cannot compare two infinite values for equality and still expect tests to terminate. Solution: Only inspect finite parts.
- QuickCheck can generate functional values automatically, but this requires defining an instance of another class CoArbitrary. Also, showing functional values is problematic.
- QuickCheck has facilities for testing properties that involve IO, but this is more difficult than testing pure properties.

Next lecture

- Today (maybe late): First set of weekly assignments.
- Tuesday: Parsing paper, since many projects depend on it (read at least first half)
- Thursday wc: Programming project discussions, work on exercises

