
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

November 19, 2011

[Faculty of Science
Information and Computing Sciences]

2-1

2. Correctness and Testing

[Faculty of Science
Information and Computing Sciences]

2-2

What is testing about?

I Gain confidence in the correctness of your program.

I Show that common cases work correctly.

I Show that corner cases work correctly.

I Testing cannot (generally) prove the absence of bugs.

[Faculty of Science
Information and Computing Sciences]

2-3

Correctness

I When is a program correct?

I What is a specification?

I How to establish a relation between the specification and
the implementation?

I What about bugs in the specification?

[Faculty of Science
Information and Computing Sciences]

2-3

Correctness

I When is a program correct?

I What is a specification?

I How to establish a relation between the specification and
the implementation?

I What about bugs in the specification?

[Faculty of Science
Information and Computing Sciences]

2-4

This lecture

I Equational reasoning with Haskell programs

I QuickCheck, an automated testing library/tool for Haskell

[Faculty of Science
Information and Computing Sciences]

2-5

Goals

I Understand how to prove simple properties using
equational reasoning.

I Understand how to define QuickCheck properties and how
to use QuickCheck.

I Understand how QuickCheck works and how to make
QuickCheck usable for your own larger programs.

[Faculty of Science
Information and Computing Sciences]

2-6

2.1 Equational reasoning

[Faculty of Science
Information and Computing Sciences]

2-7

Referential transparency

I “Equals can be substituted for equals”

I In other words: if an expression has a value in a context,
we can replace it with any other expression that has the
same value in the context without affecting the meaning of
the program.

I When we deal with infinite structures: two things are
equivalent if we cannot find out about their difference:

ones = 1 : ones
ones′ = 1 : 1 : ones′

[Faculty of Science
Information and Computing Sciences]

2-7

Referential transparency

I “Equals can be substituted for equals”

I In other words: if an expression has a value in a context,
we can replace it with any other expression that has the
same value in the context without affecting the meaning of
the program.

I When we deal with infinite structures: two things are
equivalent if we cannot find out about their difference:

ones = 1 : ones
ones′ = 1 : 1 : ones′

[Faculty of Science
Information and Computing Sciences]

2-8

Referential transparency (contd.)

SML is (like most languages) not referentially transparent:

let val x = ref 0
fun f n = (x := !x + n; !x)

in f 1 + f 2
end

The expression evaluates to 4.

The value of f 1 is 1. But

let val x = ref 0
fun f n = (x := !x + n; !x)

in 1 + f 2
end

evaluates to 3.

[Faculty of Science
Information and Computing Sciences]

2-8

Referential transparency (contd.)

SML is (like most languages) not referentially transparent:

let val x = ref 0
fun f n = (x := !x + n; !x)

in f 1 + f 2
end

The expression evaluates to 4. The value of f 1 is 1. But

let val x = ref 0
fun f n = (x := !x + n; !x)

in 1 + f 2
end

evaluates to 3.

[Faculty of Science
Information and Computing Sciences]

2-9

Referential transparency (contd.)

Also

let val x = ref 0
fun f n = (x := !x + n; !x)

in f 1 + f 1

cannot be replaced by

let val x = ref 0
fun f n = (x := !x + n; !x)
val r = f 1

in r + r

[Faculty of Science
Information and Computing Sciences]

2-10

Referential transparency in Haskell

I Haskell is referentially transparent.

I The SML example breaks down because Haskell has no
untracked side-effects.

do
x← newIORef 0
let f n = do modifyIORef x (+n); readIORef x
r ← f 1
s ← f 2
return (r + s)

The type of f is Int→ IO Int, not Int→ Int as in SML.

[Faculty of Science
Information and Computing Sciences]

2-11

Referential transparency in Haskell (contd.)

I Because of referential transparency, the definitions of
functions give us rules for reasoning about Haskell
programs.

I Properties regarding datatypes can be proved using
induction:

data [a] = [] | a : [a]

To prove ∀(xs :: [a]).P xs, we prove
I P []
I ∀(x :: a) (xs :: [a]).P xs→ P (x : xs)

[Faculty of Science
Information and Computing Sciences]

2-12

Equational reasoning example

length :: [a]→ Int
length [] = 0
length (x : xs) = 1 + length xs

isort :: Ord a⇒ [a]→ [a]
isort [] = []
isort (x : xs) = insert x (isort xs)

insert :: Ord a⇒ a→ [a]→ [a]
insert x [] = [x]
insert x (y : ys)
| x 6 y = x : y : ys
| otherwise = y : insert x ys

Theorem (Sorting preserves length)

∀(xs :: [a]).length (isort xs) ≡ length xs

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

[Faculty of Science
Information and Computing Sciences]

2-12

Equational reasoning example

length :: [a]→ Int
length [] = 0
length (x : xs) = 1 + length xs

isort :: Ord a⇒ [a]→ [a]
isort [] = []
isort (x : xs) = insert x (isort xs)

insert :: Ord a⇒ a→ [a]→ [a]
insert x [] = [x]
insert x (y : ys)
| x 6 y = x : y : ys
| otherwise = y : insert x ys

Theorem (Sorting preserves length)

∀(xs :: [a]).length (isort xs) ≡ length xs

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

[Faculty of Science
Information and Computing Sciences]

2-12

Equational reasoning example

length :: [a]→ Int
length [] = 0
length (x : xs) = 1 + length xs

isort :: Ord a⇒ [a]→ [a]
isort [] = []
isort (x : xs) = insert x (isort xs)

insert :: Ord a⇒ a→ [a]→ [a]
insert x [] = [x]
insert x (y : ys)
| x 6 y = x : y : ys
| otherwise = y : insert x ys

Theorem (Sorting preserves length)

∀(xs :: [a]).length (isort xs) ≡ length xs

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

[Faculty of Science
Information and Computing Sciences]

2-13

Proof of the Lemma

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

Proof by induction on the list.

Case []:

length (insert x [])

≡ { Definition of insert }
length [x]

≡ { Definition of length }
1 + length []

[Faculty of Science
Information and Computing Sciences]

2-14

Proof of the Lemma (contd.)

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

Case y : ys, case x 6 y:

length (insert x (y : ys))

≡ { Definition of insert }
length (x : y : ys)

≡ { Definition of length }
1 + length (y : ys)

[Faculty of Science
Information and Computing Sciences]

2-15

Proof of the Lemma (contd.)

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

Case y : ys, case x> y:

length (insert x (y : ys))
≡ { Definition of insert }

length (y : insert x ys)
≡ { Definition of length }

1 + length (insert x ys)
≡ { Induction hypothesis }

1 + (1 + length ys)
≡ { Definition of length }

1 + length (y : ys)

[Faculty of Science
Information and Computing Sciences]

2-16

Proof of the Theorem

Theorem

∀(xs :: [a]).length (isort xs) ≡ length xs

Proof by induction on the list.

Case []:

length (isort [])

≡ { Definition of isort }
length []

[Faculty of Science
Information and Computing Sciences]

2-17

Proof of the Theorem (contd.)

Theorem

∀(xs :: [a]).length (isort xs) ≡ length xs

Case x : xs:

length (isort (x : xs))
≡ { Definition of isort }

length (insert x (isort xs))
≡ { Lemma }

1 + length (isort xs)
≡ { Induction hypothesis }

1 + length xs
≡ { Definition of length }

length (x : xs)

[Faculty of Science
Information and Computing Sciences]

2-18

Equational reasoning summary

I Equational reasoning can be an elegant way to prove
properties of a program.

I Equational reasoning can be used to establish a relation
between an “obivously correct” Haskell program (a
specification) and an efficient Haskell program.

I Equational reasoning is usually quite lengthy.
I Careful with special cases (laziness):

I undefined values;
I infinite values

I It is infeasible to prove properties about every Haskell
program using equational reasoning.

[Faculty of Science
Information and Computing Sciences]

2-19

Other proof methods

I Type systems.

I Proof assistants.

[Faculty of Science
Information and Computing Sciences]

2-20

2.2 QuickCheck

[Faculty of Science
Information and Computing Sciences]

2-21

QuickCheck

I QuickCheck is a Haskell library developed by Koen
Claessen and John Hughes in 2000.

I An embedded domain-specific language (EDSL) for
defining properties.

I Automatic datatype-driven generation of random test data.

I Extensible by the user.

I Shrinks failing test cases.

[Faculty of Science
Information and Computing Sciences]

2-22

Current sitation

I Copied to other programming languages: Common Lisp,
Scheme, Erlang, Python, Ruby, SML, Clean, Java, Scala,
F#

I Erlang version is sold by a company, QuviQ, founded by
the authors of QuickCheck.

[Faculty of Science
Information and Computing Sciences]

2-23

Example: Sorting

An attempt at insertion sort in Haskell:

sort :: [Int]→ [Int]
sort [] = []
sort (x : xs) = insert x xs

insert :: Int→ [Int]→ [Int]
insert x [] = [x]
insert x (y : ys) | x 6 y = x : ys

| otherwise = y : insert x ys

[Faculty of Science
Information and Computing Sciences]

2-24

How to specify sorting?

A good specification is

I as precise as necessary,

I no more precise than necessary.

If we want to specify sorting, we should give a specification that
distinguishes sorting from all other operations, but does not
force us to use a particular sorting algorithm.

[Faculty of Science
Information and Computing Sciences]

2-24

How to specify sorting?

A good specification is

I as precise as necessary,

I no more precise than necessary.

If we want to specify sorting, we should give a specification that
distinguishes sorting from all other operations, but does not
force us to use a particular sorting algorithm.

[Faculty of Science
Information and Computing Sciences]

2-25

A first approximation

Certainly, sorting a list should not change its length.

sortPreservesLength :: [Int]→ Bool
sortPreservesLength xs = length xs = = length (sort xs)

We can test by invoking the function quickCheck:

Main〉 quickCheck sortPreservesLength
Failed! Falsifiable, after 4 tests:
[0, 3]

[Faculty of Science
Information and Computing Sciences]

2-25

A first approximation

Certainly, sorting a list should not change its length.

sortPreservesLength :: [Int]→ Bool
sortPreservesLength xs = length xs = = length (sort xs)

We can test by invoking the function quickCheck:

Main〉 quickCheck sortPreservesLength
Failed! Falsifiable, after 4 tests:
[0, 3]

[Faculty of Science
Information and Computing Sciences]

2-26

Correcting the bug

sort :: [Int]→ [Int]
sort [] = []
sort (x : xs) = insert x xs

insert :: Int→ [Int]→ [Int]
insert x [] = [x]
insert x (y : ys) | x 6 y = x : ys

| otherwise = y : insert x ys

[Faculty of Science
Information and Computing Sciences]

2-26

Correcting the bug

sort :: [Int]→ [Int]
sort [] = []
sort (x : xs) = insert x xs

insert :: Int→ [Int]→ [Int]
insert x [] = [x]
insert x (y : ys) | x 6 y = x : y : ys

| otherwise = y : insert x ys

[Faculty of Science
Information and Computing Sciences]

2-27

A new attempt

Main〉 quickCheck sortPreservesLength
OK, passed 100 tests.

Looks better. But have we tested enough?

[Faculty of Science
Information and Computing Sciences]

2-28

Properties are first-class objects

(f ‘preserves‘ p) x = p x = = p (f x)

sortPreservesLength = sort ‘preserves‘ length

idPreservesLength = id ‘preserves‘ length

Main〉 quickCheck idPreservesLength
OK, passed 100 tests.

Clearly, the identity function does not sort the list.

[Faculty of Science
Information and Computing Sciences]

2-29

When is a list sorted?

sorted :: [Int]→ Bool
sorted [] = True
sorted (x : xs) = ?

[Faculty of Science
Information and Computing Sciences]

2-29

When is a list sorted?

sorted :: [Int]→ Bool
sorted [] = True
sorted (x : xs) = ?

[Faculty of Science
Information and Computing Sciences]

2-29

When is a list sorted?

sorted :: [Int]→ Bool
sorted [] = True
sorted (x : []) = ?
sorted (x : y : ys) = ?

[Faculty of Science
Information and Computing Sciences]

2-29

When is a list sorted?

sorted :: [Int]→ Bool
sorted [] = True
sorted (x : []) = True
sorted (x : y : ys) = ?

[Faculty of Science
Information and Computing Sciences]

2-29

When is a list sorted?

sorted :: [Int]→ Bool
sorted [] = True
sorted (x : []) = True
sorted (x : y : ys) = x< y ∧ sorted (y : ys)

[Faculty of Science
Information and Computing Sciences]

2-30

Testing again

sortEnsuresSorted :: [Int]→ Bool
sortEnsuresSorted xs = sorted (sort xs)

Or:

(f ‘ensures‘ p) x = p (f x)
sortEnsuresSorted = sort ‘ensures‘ sorted

Main〉 quickCheck sortEnsuresSorted
Falsifiable, after 5 tests:
[5, 0,−2]
Main〉 sort [5, 0,−2]
[0,−2, 5]

[Faculty of Science
Information and Computing Sciences]

2-30

Testing again

sortEnsuresSorted :: [Int]→ Bool
sortEnsuresSorted xs = sorted (sort xs)

Or:

(f ‘ensures‘ p) x = p (f x)
sortEnsuresSorted = sort ‘ensures‘ sorted

Main〉 quickCheck sortEnsuresSorted
Falsifiable, after 5 tests:
[5, 0,−2]
Main〉 sort [5, 0,−2]
[0,−2, 5]

[Faculty of Science
Information and Computing Sciences]

2-30

Testing again

sortEnsuresSorted :: [Int]→ Bool
sortEnsuresSorted xs = sorted (sort xs)

Or:

(f ‘ensures‘ p) x = p (f x)
sortEnsuresSorted = sort ‘ensures‘ sorted

Main〉 quickCheck sortEnsuresSorted
Falsifiable, after 5 tests:
[5, 0,−2]
Main〉 sort [5, 0,−2]
[0,−2, 5]

[Faculty of Science
Information and Computing Sciences]

2-31

Correcting again

sort :: [Int]→ [Int]
sort [] = []
sort (x : xs) = insert x xs

insert :: Int→ [Int]→ [Int]
insert x [] = [x]
insert x (y : ys) | x 6 y = x : y : ys

| otherwise = y : insert x ys

Main〉 quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4, 2, 2]

[Faculty of Science
Information and Computing Sciences]

2-31

Correcting again

sort :: [Int]→ [Int]
sort [] = []
sort (x : xs) = insert x (sort xs)

insert :: Int→ [Int]→ [Int]
insert x [] = [x]
insert x (y : ys) | x 6 y = x : y : ys

| otherwise = y : insert x ys

Main〉 quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4, 2, 2]

[Faculty of Science
Information and Computing Sciences]

2-31

Correcting again

sort :: [Int]→ [Int]
sort [] = []
sort (x : xs) = insert x (sort xs)

insert :: Int→ [Int]→ [Int]
insert x [] = [x]
insert x (y : ys) | x 6 y = x : y : ys

| otherwise = y : insert x ys

Main〉 quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4, 2, 2]

[Faculty of Science
Information and Computing Sciences]

2-32

Another bug?

Main〉 quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4, 2, 2]

Main〉 sort [4, 2, 2]
[2, 2, 4]

But this is correct. So what went wrong?

Main〉 sorted [2, 2, 4]
False

[Faculty of Science
Information and Computing Sciences]

2-32

Another bug?

Main〉 quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4, 2, 2]

Main〉 sort [4, 2, 2]
[2, 2, 4]

But this is correct. So what went wrong?

Main〉 sorted [2, 2, 4]
False

[Faculty of Science
Information and Computing Sciences]

2-33

Specifications can have bugs, too!

sorted :: [Int]→ Bool
sorted [] = True
sorted (x : []) = True
sorted (x : y : ys) = x< y ∧ sorted (y : ys)

[Faculty of Science
Information and Computing Sciences]

2-33

Specifications can have bugs, too!

sorted :: [Int]→ Bool
sorted [] = True
sorted (x : []) = True
sorted (x : y : ys) = x 6 y ∧ sorted (y : ys)

[Faculty of Science
Information and Computing Sciences]

2-34

Are we done yet?

Is sorting specified completely by saying that

I sorting preserves the length of the input list,

I the resulting list is sorted?

[Faculty of Science
Information and Computing Sciences]

2-35

No, not quite

evilNoSort :: [Int]→ [Int]
evilNoSort xs = replicate (length xs) 0

This function fulfills both specifications, but still does not sort.

We need to make the relation between the input and output
lists precise: both should contain the same elements – or one
should be a permutation of the other.

[Faculty of Science
Information and Computing Sciences]

2-36

Specifying sorting

f ‘permutes‘ xs = f xs ‘elem‘ permutations xs

sortPermutes xs = sort ‘permutes‘ xs

Our sorting function now fulfills the specification.

[Faculty of Science
Information and Computing Sciences]

2-37

Using QuickCheck

To use QuickCheck in your program:

import Test.QuickCheck

The simplest interface is to use

quickCheck :: Testable prop⇒ prop→ IO ()

class Testable prop where
property :: prop→ Property

instance Testable Bool
instance (Arbitrary a,Show a,Testable prop)⇒

Testable (a→ prop)

[Faculty of Science
Information and Computing Sciences]

2-38

Recap: Classes and instances

I Classes declare predicates on types.

class Testable prop where
property :: prop→ Property

Here, any type can either be Testable or not.

I If a predicate holds for a type, this implies that the class
methods are supported by the type.
For any type prop such that Testable prop, there is a
method property :: prop→ Property.
Outside of a class declaration, Haskell denotes this type as

property :: Testable prop⇒ prop→ Property

[Faculty of Science
Information and Computing Sciences]

2-39

Recap: Classes and instances (contd.)

I Instances declare which types belong to a predicate.

instance Testable Bool
instance (Arbitrary a, Show a,Testable prop)⇒

Testable (a→ prop)

Booleans are in Testable.
Functions, i.e., values of type a→ prop, are in Testable if
prop is Testable and a is in Arbitrary and in Show.

I Instance declarations have to provide implementations of
the class methods (in this case, of property), as a proof
that the predicate does indeed hold for the type.

I Other functions that use class methods inherit the class
constraints:

quickCheck :: Testable prop⇒ prop→ IO ()

[Faculty of Science
Information and Computing Sciences]

2-40

Nullary properties

instance Testable Bool

sortAscending :: Bool
sortAscending = sort [2, 1] = = [1, 2]

sortDescending :: Bool
sortDescending = sort [2, 1] = = [2, 1]

Running QuickCheck:

Main〉 quickCheck sortAscending
+++ OK, passed 100 tests.

Main〉 quickCheck sortDescending
*** Failed! Falsifiable (after 1 test):

[Faculty of Science
Information and Computing Sciences]

2-41

Nullary properties (contd.)

I Nullary properties are static properties.

I QuickCheck can be used for unit testing.

I By default, QuickCheck tests 100 times (which is wasteful
for static properties, but configurable).

[Faculty of Science
Information and Computing Sciences]

2-42

Functional properties

instance (Arbitrary a,Show a,Testable prop)⇒
Testable (a→ prop)

sortPreservesLength :: ([Int]→ [Int])→ [Int]→ Bool
sortPreservesLength isort xs = length (isort xs) = = length xs

Main〉 quickCheck (sortPreservesLength isort)
+++ OK, passed 100 tests.

Read parameterized properties as universally quantified.
QuickCheck automatically generates lists of integers.

[Faculty of Science
Information and Computing Sciences]

2-43

Another sorting function

import Data.Set

setSort = toList ◦ fromList

Main〉 quickCheck (sortPreservesLength setSort)
*** Failed! Falsifiable (after 6 tests and 2 shrinks):
[1, 1]

I The function setSort eliminates duplicate elements,
therefore a list with duplicate elements causes the test to
fail.

I QuickCheck shows evidence of the failure, and tries to
present minimal test cases that fail (shrinking).

[Faculty of Science
Information and Computing Sciences]

2-43

Another sorting function

import Data.Set

setSort = toList ◦ fromList

Main〉 quickCheck (sortPreservesLength setSort)
*** Failed! Falsifiable (after 6 tests and 2 shrinks):
[1, 1]

I The function setSort eliminates duplicate elements,
therefore a list with duplicate elements causes the test to
fail.

I QuickCheck shows evidence of the failure, and tries to
present minimal test cases that fail (shrinking).

[Faculty of Science
Information and Computing Sciences]

2-43

Another sorting function

import Data.Set

setSort = toList ◦ fromList

Main〉 quickCheck (sortPreservesLength setSort)
*** Failed! Falsifiable (after 6 tests and 2 shrinks):
[1, 1]

I The function setSort eliminates duplicate elements,
therefore a list with duplicate elements causes the test to
fail.

I QuickCheck shows evidence of the failure, and tries to
present minimal test cases that fail (shrinking).

[Faculty of Science
Information and Computing Sciences]

2-44

How to fully specify sorting

Property 1

A sorted list should be ordered:

sortOrders :: [Int]→ Bool
sortOrders xs = ordered (sort xs)

ordered :: Ord a⇒ [a]→ Bool
ordered [] = True
ordered [x] = True
ordered (x : y : ys) = x 6 y ∧ ordered (y : ys)

[Faculty of Science
Information and Computing Sciences]

2-45

How to fully specify sorting (contd.)

Property 2

A sorted list should have the same elements as the original list:

sortPreservesElements :: [Int]→ Bool
sortPreservesElements xs = sameElements xs (sort xs)

sameElements :: Eq a⇒ [a]→ [a]→ Bool
sameElements xs ys = null (xs \\ ys) ∧ null (ys \\ xs)

[Faculty of Science
Information and Computing Sciences]

2-46

More information about test data

collect :: (Testable prop,Show a)⇒ a→ prop→ Property

The function collect gathers statistics about test cases. This
information is displayed when a test passes:

Main〉 let p = sortPreservesLength isort
Main〉 quickCheck (λxs→ collect (null xs) (p xs))
+++ OK, passed 100 tests:
92% False

8% True

[Faculty of Science
Information and Computing Sciences]

2-46

More information about test data

collect :: (Testable prop,Show a)⇒ a→ prop→ Property

The function collect gathers statistics about test cases. This
information is displayed when a test passes:

Main〉 let p = sortPreservesLength isort
Main〉 quickCheck (λxs→ collect (null xs) (p xs))
+++ OK, passed 100 tests:
92% False

8% True

[Faculty of Science
Information and Computing Sciences]

2-47

More information about test data (contd.)

Main〉 quickCheck (λxs→ collect (length xs ‘div‘ 10) (p xs))
+++ OK, passed 100 tests:
31% 0
24% 1
16% 2

9% 4
9% 3
4% 8
4% 6
2% 5
1% 7

[Faculty of Science
Information and Computing Sciences]

2-48

More information about test data (contd.)

In the extreme case, we can show the actual data that is tested:

Main〉 quickCheck (λxs→ collect xs (p xs))
+++ OK, passed 100 tests:
6% []
1% [9, 4,−6, 7]
1% [9,−1, 0,−22, 25, 32, 32, 0, 9, . . .
. . .

Question

Why is it important to have access to the test data?

[Faculty of Science
Information and Computing Sciences]

2-49

Implications

The function insert preserves an ordered list:

implies :: Bool→ Bool→ Bool
implies x y = not x ∨ y

Problematic:

insertPreservesOrdered :: Int→ [Int]→ Bool
insertPreservesOrdered x xs =

ordered xs ‘implies‘ ordered (insert x xs)

[Faculty of Science
Information and Computing Sciences]

2-50

Implications (contd.)

Main〉 quickCheck insertPreservesOrdered
+++ OK, passed 100 tests.

But:

Main〉 let iPO = insertPreservesOrdered
Main〉 quickCheck (λx xs→ collect (ordered xs) (iPO x xs))
+++ OK, passed 100 tests.
88% False
12% True

Only 12 lists have really been tested!

[Faculty of Science
Information and Computing Sciences]

2-50

Implications (contd.)

Main〉 quickCheck insertPreservesOrdered
+++ OK, passed 100 tests.

But:

Main〉 let iPO = insertPreservesOrdered
Main〉 quickCheck (λx xs→ collect (ordered xs) (iPO x xs))
+++ OK, passed 100 tests.
88% False
12% True

Only 12 lists have really been tested!

[Faculty of Science
Information and Computing Sciences]

2-51

Implications (contd.)

The solution is to use the QuickCheck implication operator:

(=⇒) :: (Testable prop)⇒ Bool→ prop→ Property

instance Testable Property

The type Property allows to encode not only True or False, but
also to reject the test case.

iPO :: Int→ [Int]→ Property
iPO x xs = ordered xs =⇒ ordered (insert x xs)

Now we get:

Main〉 quickCheck (λx xs→ collect (ordered xs) (iPO x xs))
*** Gave up! Passed only 43 tests (100% True).

[Faculty of Science
Information and Computing Sciences]

2-52

Configuring QuickCheck

quickCheckWith ::
(Testable prop)⇒ Int -- maximum number tests

→ Int -- maximum number attempts
→ Int -- maximum size
→ prop
→ IO Bool

quickCheck p =
do

quickCheckWith 100 500 100 p
return ()

I Increasing the number of attempts might work.

I Better solution: use a custom generator (discussed next).

[Faculty of Science
Information and Computing Sciences]

2-53

Generators

I Generators belong to an abstract data type Gen. Think of
Gen as a restricted version of IO. The only effect available
to us is access to random numbers.

I We can define our own generators using another
domain-specific language. We can define default generators
for new datatypes by defining instances of class Arbitrary:

class Arbitrary a where
arbitrary :: Gen a
shrink :: a→ [a]

[Faculty of Science
Information and Computing Sciences]

2-54

Combinators for generators

choose :: Random a⇒ (a, a)→ Gen a
oneof :: [Gen a]→ Gen a
frequency :: [(Int,Gen a)]→ Gen a
elements :: [a]→ Gen a
sized :: (Int→ Gen a)→ Gen a

[Faculty of Science
Information and Computing Sciences]

2-55

Simple generators

instance Arbitrary Bool where
arbitrary = elements [False,True]

instance (Arbitrary a,Arbitrary b)⇒ Arbitrary (a, b) where
arbitrary = do

x← arbitrary
y← arbitrary
return (x, y)

data Dir = North | East | South |West deriving Ord
instance Arbitrary Dir where

arbitrary = choose (North,West)

[Faculty of Science
Information and Computing Sciences]

2-56

Generating numbers

I A simple possibility:

instance Arbitrary Int where
arbitrary = choose (−20, 20)

I Better:

instance Arbitrary Int where
arbitrary = sized (λn→ choose (−n, n))

I QuickCheck automatically increases the size gradually, up
to the configured maximum value.

[Faculty of Science
Information and Computing Sciences]

2-57

Generating trees

A bad approach to generating more complex values is a
frequency table:

data Tree a = Leaf a | Node (Tree a) (Tree a)

instance Arbitrary a⇒ Arbitrary (Tree a) where
arbitrary =

frequency [(1, liftM Leaf arbitrary),
(2, liftM2 Node arbitrary arbitrary)]

Here:

liftM :: (a→ b) → Gen a→ Gen b
liftM2 :: (a→ b→ c)→ Gen a→ Gen b→ Gen c

Termination is unlikely!

[Faculty of Science
Information and Computing Sciences]

2-57

Generating trees

A bad approach to generating more complex values is a
frequency table:

data Tree a = Leaf a | Node (Tree a) (Tree a)

instance Arbitrary a⇒ Arbitrary (Tree a) where
arbitrary =

frequency [(1, liftM Leaf arbitrary),
(2, liftM2 Node arbitrary arbitrary)]

Here:

liftM :: (a→ b) → Gen a→ Gen b
liftM2 :: (a→ b→ c)→ Gen a→ Gen b→ Gen c

Termination is unlikely!

[Faculty of Science
Information and Computing Sciences]

2-58

Generating trees (contd.)

instance Arbitrary a⇒ Arbitrary (Tree a) where
arbitrary = sized arbitraryTree

arbitraryTree :: Arbitrary a⇒ Int→ Gen (Tree a)
arbitraryTree 0 = liftM Leaf arbitrary
arbitraryTree n = frequency [(1, liftM Leaf arbitrary),

(4, liftM2 Node t t)]
where t = arbitraryTree (n ‘div‘ 2)

Why a non-zero probability for Leaf in the second case of
arbitraryTree?

[Faculty of Science
Information and Computing Sciences]

2-59

Shrinking

The other method in Arbitrary is

shrink :: (Arbitrary a)⇒ a→ [a]

I Maps each value to a number of structurally smaller values.

I Default definition returns [] and is always safe.

I When a failing test case is discovered, shrink is applied
repeatedly until no smaller failing test case can be
obtained.

[Faculty of Science
Information and Computing Sciences]

2-60

Defining Arbitrary generically

I Both arbitrary and shrink are examples of datatype-generic
functions – they can be defined for (almost) any Haskell
datatype in a systematic way.

I Haskell does not provide any way to denote such an
algorithm.

I Many extensions and tools do (cf. course on Generic
Programming in block 4).

[Faculty of Science
Information and Computing Sciences]

2-61

GHCi pitfall

All lists are ordered?

Main〉 quickCheck ordered
+++ OK, passed 100 tests.

Use type signatures in GHCi to make sure a sensible type is
used!

Main〉 quickCheck (ordered :: [Int]→ Bool)
*** Failed! Falsifiable (after 3 tests and 2 shrinks):
[0,−1]

[Faculty of Science
Information and Computing Sciences]

2-61

GHCi pitfall

All lists are ordered?

Main〉 quickCheck ordered
+++ OK, passed 100 tests.

Use type signatures in GHCi to make sure a sensible type is
used!

Main〉 quickCheck (ordered :: [Int]→ Bool)
*** Failed! Falsifiable (after 3 tests and 2 shrinks):
[0,−1]

[Faculty of Science
Information and Computing Sciences]

2-62

Loose ends

I Haskell can deal with infinite values, and so can
QuickCheck. However, properties must not inspect
infinitely many values. For instance, we cannot compare
two infinite values for equality and still expect tests to
terminate. Solution: Only inspect finite parts.

I QuickCheck can generate functional values automatically,
but this requires defining an instance of another class
CoArbitrary. Also, showing functional values is
problematic.

I QuickCheck has facilities for testing properties that involve
IO, but this is more difficult than testing pure properties.

[Faculty of Science
Information and Computing Sciences]

2-62

Loose ends

I Haskell can deal with infinite values, and so can
QuickCheck. However, properties must not inspect
infinitely many values. For instance, we cannot compare
two infinite values for equality and still expect tests to
terminate. Solution: Only inspect finite parts.

I QuickCheck can generate functional values automatically,
but this requires defining an instance of another class
CoArbitrary. Also, showing functional values is
problematic.

I QuickCheck has facilities for testing properties that involve
IO, but this is more difficult than testing pure properties.

[Faculty of Science
Information and Computing Sciences]

2-62

Loose ends

I Haskell can deal with infinite values, and so can
QuickCheck. However, properties must not inspect
infinitely many values. For instance, we cannot compare
two infinite values for equality and still expect tests to
terminate. Solution: Only inspect finite parts.

I QuickCheck can generate functional values automatically,
but this requires defining an instance of another class
CoArbitrary. Also, showing functional values is
problematic.

I QuickCheck has facilities for testing properties that involve
IO, but this is more difficult than testing pure properties.

[Faculty of Science
Information and Computing Sciences]

2-63

Next lecture

I Today (maybe late): First set of weekly assignments.

I Tuesday: Parsing paper, since many projects depend on it
(read at least first half)

I Thursday wc: Programming project discussions, work on
exercises

	Correctness and Testing
	Equational reasoning
	QuickCheck

