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4. Monads and monad transformers
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Intro: some example monads

To warm up a bit, we discuss and partially recall some
interesting examples of monadic structures.
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4.1 Maybe
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The Maybe type

data Maybe a = Nothing
| Just a

The Maybe datatype is often used to encode failure or an
exceptional value:

lookup :: (Eq a)⇒ a→ [(a, b)]→ Maybe b
find :: (a→ Bool)→ [a]→ Maybe a
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Encoding exceptions using Maybe

Assume that we have a Zipper-like data structure with the
following operations:

up, down, right :: Loc→ Maybe Loc
update :: (Int→ Int)→ Loc→ Loc

Given a location l1, we want to move up, right, down, and
update the resulting position with using update (+1) . . .
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Encoding exceptions using Maybe (contd.)

case up l1 of
Nothing→ Nothing
Just l2 → case right l2 of

Nothing→ Nothing
Just l3 → case down l3 of

Nothing→ Nothing
Just l4 → Just (update (+1) l4)

In essence, we need

I a way to sequence function calls and use their results if
successful

I a way to modify or produce successful results.
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Encoding exceptions using Maybe (contd.)
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Encoding exceptions using Maybe (contd.)

case up l1 of
Nothing→ Nothing
Just l2 → case right l2 of

Nothing→ Nothing
Just l3 → case down l3 of

Nothing→ Nothing
Just l4 → Just (update (+1) l4)

In essence, we need

I a way to sequence function calls and use their results if
successful

I a way to modify or produce successful results.
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Encoding exceptions using Maybe (contd.)

case up l1 of
Nothing→ Nothing
Just l2 → case right l2 of

Nothing→ Nothing
Just l3 → case down l3 of

Nothing→ Nothing
Just l4 → Just (update (+1) l4)

Sequencing:

(>>=) :: Maybe a→ (a→ Maybe b)→ Maybe b
f >>= g = case f of

Nothing→ Nothing
Just x → g x
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Encoding exceptions using Maybe (contd.)

up l1 >>=

λ l2 → case right l2 of
Nothing→ Nothing
Just l3 → case down l3 of

Nothing→ Nothing
Just l4 → Just (update (+1) l4)

Sequencing:

(>>=) :: Maybe a→ (a→ Maybe b)→ Maybe b
f >>= g = case f of

Nothing→ Nothing
Just x → g x
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Encoding exceptions using Maybe (contd.)

up l1 >>=

λ l2 → right l2 >>=

λ l3 → case down l3 of
Nothing→ Nothing
Just l4 → Just (update (+1) l4)

Sequencing:

(>>=) :: Maybe a→ (a→ Maybe b)→ Maybe b
f >>= g = case f of

Nothing→ Nothing
Just x → g x
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Encoding exceptions using Maybe (contd.)

up l1 >>=

λ l2 → right l2 >>=

λ l3 → down l3 >>=

λ l4 → Just (update (+1) l4)

Sequencing:

(>>=) :: Maybe a→ (a→ Maybe b)→ Maybe b
f >>= g = case f of

Nothing→ Nothing
Just x → g x
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Sequencing and embedding

up l1 >>=
λl2 → right l2 >>=

λl3 → down l3 >>=
λl4 → Just (update (+1) l4)

(>>=) :: Maybe a→ (a→ Maybe b)→ Maybe b
f >>= g = case f of

Nothing→ Nothing
Just x → g x

return :: a→ Maybe a
return x = Just x

return l1 >>= up>>= right>>= down>>= return ◦ update (+1)
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Observation

Code looks a bit like imperative code. Compare:

up l1 >>= λl2 →
right l2 >>= λl3 →
down l3 >>= λl4 →
return (update (+1) l4)

l2 := up l1;
l3 := right l2;
l4 := down l3;
return update l4

I In the imperative language, the occurrence of possible
exceptions is a side effect.

I Haskell is more explicit because we use the Maybe type
and the appropriate sequencing operation.
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4.2 State
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Maintaining state explicitly

I We pass state to a function as an argument.

I The function modifies the state and produces it as a result.

I If the function computes in addition to modifying the
state, we must return a tuple (or a special-purpose
datatype with multiple fields).

This motivates the following type synonym definition:

type State s a = s→ (a, s)
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Using state

There are many situations where maintaining state is useful:

I using a random number generator

type Random a = State StdGen a

I using a counter to generate unique labels

type Counter a = State Int a

I maintaining the complete current configuration of an
application (or a game) using a user-defined datatype

data ProgramState = . . .
type Program a = State ProgramState a
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Encoding state passing

λs1 → let (lvl , s2) = generateLevel s1
(lvl′ , s3) = generateStairs lvl s2
(ms , s4) = placeMonsters lvl′ s3

in (combine lvl′ ms , s4)

Again, we need

I a way to sequence function calls and use their results

I a way to modify or produce successful results.
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Bind and return for state

λs1 → let (lvl , s2) = generateLevel s1
(lvl′ , s3) = generateStairs lvl s2
(ms , s4) = placeMonsters lvl′ s3

in (combine lvl′ ms, s4)

(>>=) :: State s a→ (a→ State s b)→ State s b
f >>= g = λs→ let (x, s′) = f s in g x s′

return :: a→ State s a
return x = λs→ (x, s)
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Bind and return for state

generateLevel >>= λlvl→
λs2 → let (lvl′ , s3) = generateStairs lvl s2

(ms , s4) = placeMonsters lvl′ s3
in (combine lvl′ ms, s4)

(>>=) :: State s a→ (a→ State s b)→ State s b
f >>= g = λs→ let (x, s′) = f s in g x s′

return :: a→ State s a
return x = λs→ (x, s)
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Bind and return for state
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Observation

Again, the code looks a bit like imperative code. Compare:

generateLevel >>= λlvl→
generateStairs lvl >>= λlvl′ →
placeMonsters lvl′ >>= λms→
return (combine lvl′ ms)

lvl := generateLevel;
lvl′ := generateStairs lvl;
ms := placeMonsters lvl′;
return combine lvl′ ms

I In the imperative language, the occurrence of memory
updates (random numbers) is a side effect.

I Haskell is more explicit because we use the State type and
the appropriate sequencing operation.
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“Primitive” operations for state handling

We can completely hide the implementation of State if we
provide the following two operations as an interface:

get :: State s s
get = λs→ (s, s)

put :: s→ State s ()
put s = λ → ((), s)

inc :: State Int ()
inc =

get>>= λs→ put (s + 1)



[Faculty of Science
Information and Computing Sciences]

4-17

4.3 List
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Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

map length (concat (map words (concat (map lines txts))))

Easier to understand with a list comprehension:

[ length w | t← txts, l← lines t,w← words l ]

We can also define sequencing and embedding, i.e., (>>=) and
return:

(>>=) :: [a]→ (a→ [b ])→ [b ]
xs>>= f = concat (map f xs)

return :: a→ [a]
return x = [x ]
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Using bind and return for lists

map length (concat (map words (concat (map lines txts))))

txts >>= λt→
lines t >>= λl→
words l>>= λw→
return (length w)

t := txts
l := lines t
w := words l
return length w

I Again, we have a similarity to imperative code.

I In the imperative language, we have implicit
nondeterminism (one or all of the options are chosen).

I In Haskell, we are explicit by using the list datatype and
explicit sequencing using (>>=).
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Intermediate Summary

At least three types with (>>=) and return:

I for Maybe, (>>=) sequences operations that may trigger
exceptions and shortcuts evaluation once an exception is
encountered; return embeds a function that never throws
an exception;

I for State, (>>=) sequences operations that may modify
some state and threads the state through the operations;
return embeds a function that never modifies the state;

I for [ ], (>>=) sequences operations that may have multiple
results and executes subsequent operations for each of the
previous results; return embeds a function that only ever
has one result.

There is a common interface here!
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4.4 The Monad class



[Faculty of Science
Information and Computing Sciences]

4-22

Monad class

class Monad m where
return :: a → m a
(>>=) :: m b→ (b→ m a)→ m a

I The name “monad” is borrowed from category theory.

I A monad is an algebraic structure similar to a monoid.

I Monads have been popularized in functional programming
via the work of Moggi and Wadler.
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Instances

instance Monad Maybe where
. . .

instance Monad [ ] where
. . .

newtype State s a = State {runState :: s→ (a, s)}
instance Monad (State s) where
. . .
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Excursion: type constructors

I The class Monad ranges not over ordinary types, but over
type constructors, i.e., parameterized types.

I Such classes are also called constructor classes.

I There are types of types, called kinds.

I Types of kind ∗ are inhabited by values. Examples: Bool,
Int, Char.

I Types of kind ∗ → ∗ have one parameter of kind ∗. The
Monad class ranges over such types. Examples: [ ], Maybe.

I Applying a type constructor of kind ∗ → ∗ to a type of kind
∗ yields a type of kind ∗. Examples: [ Int], Maybe Char.

I The kind of State is ∗ → ∗ → ∗. For any type s, State s is
of kind ∗ → ∗ and can thus be an instance of class Monad.
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Monad laws

I Every instance of the monad class should have the
following properties:

I return is the unit of (>>=)

return a>>= f ≡ f a
m>>= return ≡ m

I associativity of (>>=)

(m>>= f)>>= g ≡ m>>= (λx→ f x>>= g)
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Monad laws for Maybe

return a>>= f
≡ { Definition of (>>=) }

case return a of
Nothing→ Nothing
Just x → f x

≡ { Definition of return }
case Just a of

Nothing→ Nothing
Just x → f x

≡ { case }
f a
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Monad laws for Maybe (contd.)

m>>= return
≡ { Definition of (>>=) }

case m of
Nothing→ Nothing
Just x → return x

≡ { Definition of return }
case m of

Nothing→ Nothing
Just x → Just x

≡ { case }
m
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Monad laws for Maybe (contd.)

Lemma

∀(f :: a→ Maybe b).Nothing >>= f ≡ Nothing

Proof

Nothing >>= f
≡ { Definition of (>>=) }

case Nothing of
Nothing→ Nothing
Just x → f x

≡ { case }
Nothing
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Monad laws for Maybe (contd.)

(m>>= f)>>= g ≡ m>>= (λx→ f x>>= g)

Case distinction on m. Case m is Nothing:

(Nothing >>= f)>>= g
≡ { Lemma }

Nothing >>= g
≡ { Lemma }

Nothing
≡ { Lemma }

Nothing >>= (λx→ f x>>= g)
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Monad laws for Maybe (contd.)

(Just y >>= f)>>= g
≡ { Definition of (>>=) }

(case Just y of
Nothing→ Nothing
Just x → f x)>>= g

≡ { case }
f y >>= g

≡ { beta-expansion }
(λx→ f x>>= g) y

≡ { case }
case Just y of

Nothing→ Nothing
Just x → (λx→ f x>>= g) x

≡ { definition of (>>=) }
Just y >>= (λx→ f x>>= g)
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Additional monad operations

Class Monad contains two additional methods, but with default
methods:

class Monad m where
. . .
(>>) :: m a→ m b→ m b
m>> n = m>>= λ → n

fail :: String→ m a
fail s = error s

While the presence of (>>) can be justified for efficiency
reasons, fail should really be in a different class.
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do notation

Like list comprehensions, do notation is a form of syntactic
sugar. Unlike list comprehensions, do notation is not restricted
to a single datatype, but applicable to all monads:

do {e} ≡ e
do {e; stmts} ≡ e>> do {stmts}
do {p← e; stmts} ≡ let ok p = do {stmts}

ok = fail "error"
in e>>= ok

do { let decls; stmts} ≡ let decls in do {stmts}
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Monadic application

ap :: (Monad m)⇒ m (a→ b)→ m a→ m b
ap f x = do

f ′ ← f
x′ ← x
return (f ′ x′)

Without do notation:

ap f x = f >>= λf ′ →
x>>= λx′ →
return (f ′ x′)
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More on do notation

I Use it, it is usually more concise.

I Never forget that it is just syntactic sugar. Use (>>=) and
(>>) directly when it is more convenient.

I Remember that return is just a normal function:
I Not every do-block ends with a return.
I return can be used in the middle of a do-block, and it

doesn’t “jump” anywhere.

I Not every monad computation has to be in a do-block. In
particular do e is the same as e.

I On the other hand, you may have to “repeat” the do in
some places, for instance in the branches of an if.
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Lifting functions to monads

liftM :: (Monad m)⇒ (a→ b) → m a→ m b
liftM2 :: (Monad m)⇒ (a→ b→ c)→ m a→ m b→ m c
. . .

liftM f x = return f ‘ap‘ x
liftM2 f x y = return f ‘ap‘ x ‘ap‘ y
. . .

Question

What is liftM (+1) [1 . . 5]?

Answer

Same as map (+1) [1 . . 5]. The function liftM generalizes map
to arbitrary monads.
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Excursion: functors

Structures that allow mapping have their own class:

class Functor f where
fmap :: (a→ b)→ f a→ f b

instance Functor Maybe
instance Functor [ ]

I All containers, in particular all trees can be made an
instance of functor.

I Every monad is a functor morally (liftM), but not
necessarily in Haskell.

I Not all functors are monads.

I Why isn’t simply map overloaded?
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Monadic map

mapM :: (Monad m)⇒ (a→ m b)→ [a]→ m [b]
mapM :: (Monad m)⇒ (a→ m b)→ [a]→ m ()

mapM f [ ] = return [ ]
mapM f (x : xs) = liftM2 (:) (f x) (mapM f xs)

mapM f [ ] = return ()
mapM f (x : xs) = f x>>mapM f xs

Question

Why not always use mapM and ignore the result?
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Sequencing monadic actions

sequence :: (Monad m)⇒ [m a]→ m [a]
sequence :: (Monad m)⇒ [m a]→ m ()

sequence = foldr (liftM2 (:)) (return [ ])
sequence = foldr (>>) (return ())
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Monadic fold

foldM :: (Monad m)⇒ (a→ b→ m a)→ a→ [b]→ m a
foldM op e [ ] = return e
foldM op e (x : xs) = do r← op e x

foldM f r xs

Question

Is this the same as defining the second case using

foldM op e (x : xs) = do r← op e x
s← foldM f r xs
return s

And why is foldM less essential than mapM or sequence ?
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More monadic operations

Browse Control.Monad:

filterM :: (Monad m)⇒ (a→ m Bool)→ [a]→ m [a]
replicateM :: (Monad m)⇒ Int→ m a→ m [a]
replicateM :: (Monad m)⇒ Int→ m a→ m ()
join :: (Monad m)⇒ m (m a)→ m a
when :: (Monad m)⇒ Bool→ m ()→ m ()
unless :: (Monad m)⇒ Bool→ m ()→ m ()
forever :: (Monad m)⇒ m a→ m ()

. . . and more!



[Faculty of Science
Information and Computing Sciences]

4-41

4.5 IO is a monad
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The IO monad

The well-known built-in type constructor IO is another type
with actions that need sequencing and ordinary functions that
can be embedded.

The IO monad is special in several ways:

I IO is a primitive type, and (>>=) and return for IO are
primitive functions,

I there is no (politically correct) function runIO :: IO a→ a,
whereas for most other monads there is a corresponding
function,

I values of IO a denote side-effecting programs that can be
executed by the run-time system.

Note that the specialty of IO has really not much to do with
being a monad.
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IO, internally

Main〉 : i IO
newtype IO a

= GHC.IOBase.IO (GHC.Prim.State # GHC.Prim.RealWorld
→ (# GHC.Prim.State # GHC.Prim.RealWorld, a #))

-- Defined in GHC.IOBase
Main〉 : i GHC.Prim.RealWorld
data GHC.Prim.RealWorld -- Defined in GHC.Prim

Internally, GHC models IO as a state monad having the “real
world” as state!
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The role of IO in Haskell
More and more features have been integrated into IO, for
instance:

I classic file and terminal IO

putStr, hPutStr

I references

newIORef, readIORef,writeIORef

I access to the system

getArgs, getEnvironment, getClockTime

I exceptions

throwIO, catch

I concurrency

forkIO
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The role of IO in Haskell (contd.)

I Because of its special status, the IO monad provides a safe
and convenient way to express all these constructs in
Haskell. Haskell’s purity (referential transparency) is not
compromised, and equational reasoning can be used to
reason about IO programs.

I A program that involves IO in its type can do everything.
The absence of IO tells us a lot, but its presence does not
allow us to judge what kind of IO is performed.

I It would be nice to have more fine-grained control on the
effects a program performs.

I For some, but not all effects in IO, we can use or build
specialized monads.
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Next lecture

I Next topic: Monad transformers
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