

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Advanced Functional Programming 2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences Utrecht University

Nov 19, 2012

4. Monads and monad transformers

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Intro: some example monads

To warm up a bit, we discuss and partially recall some interesting examples of monadic structures.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

4.1 Maybe

Universiteit Utrecht

The Maybe type

The Maybe datatype is often used to encode failure or an exceptional value:

```
\begin{array}{l} \mathsf{lookup} :: (\mathsf{Eq} \; \mathsf{a}) \Rightarrow \mathsf{a} \rightarrow [(\mathsf{a},\mathsf{b})] \rightarrow \mathsf{Maybe} \; \mathsf{b} \\ \mathsf{find} \quad :: (\mathsf{a} \rightarrow \mathsf{Bool}) \rightarrow [\mathsf{a}] \rightarrow \mathsf{Maybe} \; \mathsf{a} \end{array}
```


Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Encoding exceptions using Maybe

Assume that we have a Zipper-like data structure with the following operations:

 $\begin{array}{ll} \mathsf{up},\mathsf{down},\mathsf{right}::\mathsf{Loc}\to\mathsf{Maybe}\;\mathsf{Loc}\\ \mathsf{update}::&(\mathsf{Int}\to\mathsf{Int})\to\mathsf{Loc}\to\mathsf{Loc}\\ \end{array}$

Given a location $\mathsf{I}_1,$ we want to move up, right, down, and update the resulting position with using update (+1) . . .

Universiteit Utrecht

Universiteit Utrecht

```
\begin{array}{ll} \textbf{case up } \textbf{I}_1 \textbf{ of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & \text{Just } \textbf{I}_2 & \rightarrow \textbf{case right } \textbf{I}_2 \textbf{ of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & \text{Just } \textbf{I}_3 & \rightarrow \textbf{case down } \textbf{I}_3 \textbf{ of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & \text{Just } \textbf{I}_4 & \rightarrow \text{Just (update (+1) } \textbf{I}_4) \end{array}
```


Universiteit Utrecht

```
\begin{array}{ll} \textbf{case up } \textbf{I}_1 \textbf{ of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & \text{Just } \textbf{I}_2 & \rightarrow \textbf{case right } \textbf{I}_2 \textbf{ of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & \text{Just } \textbf{I}_3 & \rightarrow \textbf{case down } \textbf{I}_3 \textbf{ of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & \text{Just } \textbf{I}_4 & \rightarrow \text{Just (update (+1) } \textbf{I}_4) \end{array}
```

In essence, we need

- a way to sequence function calls and use their results if successful
- a way to modify or produce successful results.

Universiteit Utrecht

Sequencing:

$$(\Longrightarrow) :: \mathsf{Maybe} \ \mathsf{a} \to (\mathsf{a} \to \mathsf{Maybe} \ \mathsf{b}) \to \mathsf{Maybe} \ \mathsf{b}$$

$$\mathsf{f} \ggg \mathsf{g} = \mathbf{case} \ \mathsf{f} \ \mathbf{of}$$

$$\mathsf{Nothing} \to \mathsf{Nothing}$$

$$\mathsf{Just} \ \mathsf{x} \ \to \mathsf{g} \ \mathsf{x}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

up I
$$_1 \gg$$

Sequencing:

$$(\Longrightarrow) :: \mathsf{Maybe} \ a \to (a \to \mathsf{Maybe} \ b) \to \mathsf{Maybe} \ b$$

$$f \gg g = \textbf{case} \ f \ of$$

$$\mathsf{Nothing} \to \mathsf{Nothing}$$

$$\mathsf{Just} \ x \ \to g \ x$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

$$\mathsf{up} \mathsf{I}_1 \gg$$

 $\lambda \mid_2 \longrightarrow \mathsf{right} \mid_2 \gg$

 λ

$$\begin{array}{rll} \mathsf{I}_3 & \to \textbf{case} \ \mathsf{down} \ \mathsf{I}_3 & \mathsf{of} \\ & \mathsf{Nothing} \to \mathsf{Nothing} \\ & \mathsf{Just} \ \mathsf{I}_4 & \to \mathsf{Just} \ (\mathsf{update} \ (+1) \ \mathsf{I}_4) \end{array}$$

Sequencing:

$$(\Longrightarrow) :: \mathsf{Maybe} \ a \to (a \to \mathsf{Maybe} \ b) \to \mathsf{Maybe} \ b$$

$$f \gg g = \textbf{case} \ f \ of$$

$$\mathsf{Nothing} \to \mathsf{Nothing}$$

$$\mathsf{Just} \ x \ \to g \ x$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

$$\begin{array}{cccc} l_1 \gg & & \\ l_2 & \rightarrow \text{ right } l_2 \gg & & \\ & & \lambda \ l_3 & \rightarrow \text{ down } l_3 \gg & \\ & & & \lambda \ l_4 & \rightarrow \text{ Just (update (+1) } l_4) \end{array}$$

Sequencing:

up

$$\begin{array}{l} (\ggg) :: \mathsf{Maybe} \ \mathsf{a} \to (\mathsf{a} \to \mathsf{Maybe} \ \mathsf{b}) \to \mathsf{Maybe} \ \mathsf{b} \\ \mathsf{f} \ggg \mathsf{g} = \mathbf{case} \ \mathsf{f} \ \mathbf{of} \\ & \mathsf{Nothing} \to \mathsf{Nothing} \\ & \mathsf{Just} \ \mathsf{x} \quad \to \mathsf{g} \ \mathsf{x} \end{array}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Sequencing and embedding

$$\begin{array}{l} \mbox{up } \mathsf{I}_1 \gg = \\ \lambda \mathsf{I}_2 \to \mathsf{right} \ \mathsf{I}_2 \gg = \\ \lambda \mathsf{I}_3 \to \mathsf{down} \ \mathsf{I}_3 \gg = \\ \lambda \mathsf{I}_4 \to \mathsf{Just} \ (\mathsf{update} \ (+1) \ \mathsf{I}_4) \end{array}$$

Universiteit Utrecht

Sequencing and embedding

$$\begin{array}{l} \text{up } \mathsf{I}_1 \ggg \\ \lambda \mathsf{I}_2 \to \mathsf{right} \ \mathsf{I}_2 \ggg \\ \lambda \mathsf{I}_3 \to \mathsf{down} \ \mathsf{I}_3 \ggg \\ \lambda \mathsf{I}_4 \to \mathsf{return} \ (\mathsf{update} \ (+1) \ \mathsf{I}_4) \end{array}$$

$$\begin{array}{ll}(\ggg):: \mathsf{Maybe} \ a \to (a \to \mathsf{Maybe} \ b) \to \mathsf{Maybe} \ b \\ f \ggg g &= \textbf{case} \ f \ \textbf{of} \\ & \mathsf{Nothing} \to \mathsf{Nothing} \\ & \mathsf{Just} \ x &\to g \ x \end{array}$$

$$\begin{array}{l}\mathsf{return} :: a \to \mathsf{Maybe} \ a \\ \mathsf{return} \ x &= \mathsf{Just} \ x \end{array}$$

Universiteit Utrecht

Sequencing and embedding

$$\begin{array}{l} \text{up } \mathsf{I}_1 \ggg \\ \lambda \mathsf{I}_2 \to \mathsf{right} \ \mathsf{I}_2 \ggg \\ \lambda \mathsf{I}_3 \to \mathsf{down} \ \mathsf{I}_3 \ggg \\ \lambda \mathsf{I}_4 \to \mathsf{return} \ (\mathsf{update} \ (+1) \ \mathsf{I}_4) \end{array}$$

$$\begin{array}{ll} (\ggg):: \mathsf{Maybe} \ a \to (a \to \mathsf{Maybe} \ b) \to \mathsf{Maybe} \ b \\ f \ggg g &= \textbf{case} \ f \ \textbf{of} \\ & \mathsf{Nothing} \to \mathsf{Nothing} \\ & \mathsf{Just} \ x &\to g \ x \end{array}$$

$$\texttt{return} :: a \to \mathsf{Maybe} \ a \\ \texttt{return} \ x = \mathsf{Just} \ x \end{array}$$

return $I_1 \gg$ up \gg right \gg down \gg return \circ update (+1)

Universiteit Utrecht

Observation

Code looks a bit like imperative code. Compare:

 $\begin{array}{ll} \mbox{up } {l_1} & \gg \lambda {l_2} \rightarrow & & l_2 := \mbox{up } {l_1}; \\ \mbox{right } {l_2} & \gg \lambda {l_3} \rightarrow & & l_3 := \mbox{right } {l_2}; \\ \mbox{down } {l_3} & \gg \lambda {l_4} \rightarrow & & l_4 := \mbox{down } {l_3}; \\ \mbox{return } (\mbox{update } (+1) \ l_4) & & \mbox{return update } {l_4} \end{array}$

- In the imperative language, the occurrence of possible exceptions is a side effect.
- Haskell is more explicit because we use the Maybe type and the appropriate sequencing operation.

Universiteit Utrecht

4.2 State

Universiteit Utrecht

Maintaining state explicitly

- We pass state to a function as an argument.
- The function modifies the state and produces it as a result.
- If the function computes in addition to modifying the state, we must return a tuple (or a special-purpose datatype with multiple fields).

This motivates the following type synonym definition:

type State s $a = s \rightarrow (a, s)$

Universiteit Utrecht

Using state

There are many situations where maintaining state is useful:

using a random number generator

type Random a = State StdGen a

using a counter to generate unique labels

type Counter a = State Int a

 maintaining the complete current configuration of an application (or a game) using a user-defined datatype

```
data ProgramState = . . . type Program a = State ProgramState a
```


Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

Encoding state passing

$$\begin{array}{l} \lambda s_1 \rightarrow \text{let} \ (\mathsf{lvl} \ , \mathsf{s}_2) = \mathsf{generateLevel} \ \ \mathsf{s}_1 \\ (\mathsf{lvl}' \ , \mathsf{s}_3) = \mathsf{generateStairs} \ \mathsf{lvl} \ \ \mathsf{s}_2 \\ (\mathsf{ms} \ , \mathsf{s}_4) = \mathsf{placeMonsters} \ \mathsf{lvl}' \ \mathsf{s}_3 \\ \text{in} \ (\mathsf{combine} \ \mathsf{lvl}' \ \mathsf{ms} \ , \mathsf{s}_4) \end{array}$$

Universiteit Utrecht

Encoding state passing

$$\begin{split} \lambda s_1 & \rightarrow \text{let} \ (\mathsf{lvl} \ , \mathsf{s}_2) = \mathsf{generateLevel} \qquad \mathsf{s}_1 \\ (\mathsf{lvl}' \ , \mathsf{s}_3) & = \mathsf{generateStairs} \ \mathsf{lvl} \ \ \mathsf{s}_2 \\ (\mathsf{ms} \ , \mathsf{s}_4) & = \mathsf{placeMonsters} \ \mathsf{lvl}' \ \mathsf{s}_3 \\ \text{in} \ (\mathsf{combine} \ \mathsf{lvl}' \ \mathsf{ms} \ , \mathsf{s}_4) \end{split}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Encoding state passing

$$\begin{split} \lambda s_1 & \rightarrow \text{let} \; (\mathsf{lvl} \;\;, \mathsf{s}_2) = \mathsf{generateLevel} \;\;\; \mathsf{s}_1 \\ (\mathsf{lvl}' \;, \mathsf{s}_3) & = \mathsf{generateStairs} \; \mathsf{lvl} \;\; \mathsf{s}_2 \\ (\mathsf{ms} \;, \mathsf{s}_4) & = \mathsf{placeMonsters} \; \mathsf{lvl}' \;\; \mathsf{s}_3 \\ \text{in} \; (\mathsf{combine} \; \mathsf{lvl}' \;\; \mathsf{ms} \;, \mathsf{s}_4) \end{split}$$

Again, we need

- a way to sequence function calls and use their results
- ► a way to modify or produce successful results.

Universiteit Utrecht

$$\begin{array}{lll} \lambda s_1 \rightarrow & \mbox{let} \; (\mbox{IvI} \; , \; s_2) \; = \mbox{generateLevel} & s_1 \\ & (\mbox{IvI}' \; , \; s_3) \; = \mbox{generateStairs} \; \mbox{IvI} \; s_2 \\ & (\mbox{ms} \; , \; s_4) \; = \mbox{placeMonsters} \; \mbox{IvI}' \; s_3 \\ & \mbox{in} \; (\mbox{combine} \; \mbox{IvI}' \; \mbox{ms} \; , s_4) \end{array}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

$$\begin{array}{rl} & \mbox{generateLevel} & \gg \lambda \mbox{lvl} \rightarrow \\ \lambda \mbox{s}_2 \rightarrow & \mbox{let} (\mbox{lvl}' \ , \ \mbox{s}_3) \ = \mbox{generateStairs} \ \mbox{lvl} \ \ \mbox{s}_2 \\ & \mbox{(ms} \ , \ \mbox{s}_4) \ = \mbox{placeMonsters} \ \mbox{lvl}' \ \mbox{s}_3 \\ & \mbox{in} \ (\mbox{combine} \ \mbox{lvl}' \ \mbox{ms}, \ \mbox{s}_4) \end{array}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

◆□▶◆舂▶◆≧▶◆≧▶ 差 のへで

$$\begin{array}{rll} & \mbox{generateLevel} & \gg & \lambda | \mbox{vl} \rightarrow & \\ & \mbox{generateStairs |v|} & \gg & \lambda | \mbox{vl} \prime \rightarrow & \\ & \lambda \mbox{s}_3 \rightarrow & \mbox{let (ms , s_4)} & = \mbox{placeMonsters |v|}' \mbox{s}_3 & \\ & \mbox{in (combine |v|' ms, s_4)} & \end{array}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

◆□▶◆舂▶◆≧▶◆≧▶ 差 のへで

 $\begin{array}{rll} {\rm generateLevel} & \gg & \lambda {\rm lvl} \rightarrow \\ {\rm generateStairs} \; {\rm lvl} & \gg & \lambda {\rm lvl}' \rightarrow \\ {\rm placeMonsters} \; {\rm lvl}' & \gg & \lambda {\rm ms} \rightarrow \\ \lambda {\rm s}_4 \rightarrow & ({\rm combine} \; {\rm lvl}' \; {\rm ms}, {\rm s}_4) \end{array}$

$$(\gg) :: \mathsf{State s a} \to (\mathsf{a} \to \mathsf{State s b}) \to \mathsf{State s b}$$
$$\mathsf{f} \gg \mathsf{g} = \lambda \mathsf{s} \to \mathsf{let} \ (\mathsf{x},\mathsf{s}') = \mathsf{f s in g x s'}$$
$$\mathsf{return} :: \mathsf{a} \to \mathsf{State s a}$$
$$\mathsf{return} \ \mathsf{x} = \lambda \mathsf{s} \to (\mathsf{x},\mathsf{s})$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

▲□▶▲□▶▲□▶▲□▶ □ のへで

$$(\gg) :: \mathsf{State s } a \to (a \to \mathsf{State s } b) \to \mathsf{State s } b$$

$$f \gg g = \lambda s \to \mathsf{let} (x, s') = f \mathsf{s in } g \mathsf{x } \mathsf{s'}$$

$$\mathsf{return} :: a \to \mathsf{State s } a$$

$$\mathsf{return} \mathsf{x} = \lambda \mathsf{s} \to (\mathsf{x}, \mathsf{s})$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Observation

Again, the code looks a bit like imperative code. Compare:

 $\begin{array}{ll} \mbox{generateLevel} & \gg \lambda \mbox{lvl} \rightarrow & \mbox{lvl} := \mbox{generateLevel}; \\ \mbox{generateStairs lvl} & \gg \lambda \mbox{lvl'} \rightarrow & \mbox{lvl} := \mbox{generateStairs lvl}; \\ \mbox{placeMonsters lvl'} & \gg \lambda \mbox{ms} \rightarrow & \mbox{ms} := \mbox{placeMonsters lvl'}; \\ \mbox{return (combine lvl' ms)} & \mbox{return combine lvl' ms} \end{array}$

- In the imperative language, the occurrence of memory updates (random numbers) is a side effect.
- Haskell is more explicit because we use the State type and the appropriate sequencing operation.

Universiteit Utrecht

"Primitive" operations for state handling

We can completely hide the implementation of State if we provide the following two operations as an interface:

$$\begin{array}{l} \texttt{get} :: \texttt{State s s} \\ \texttt{get} = \lambda \texttt{s} \rightarrow (\texttt{s},\texttt{s}) \\ \texttt{put} :: \texttt{s} \rightarrow \texttt{State s} () \\ \texttt{put s} = \lambda_{-} \rightarrow ((),\texttt{s}) \end{array}$$

```
inc :: State Int ()
inc =
get \gg \lambda s \rightarrow put (s + 1)
```

Univ

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] < ㅁ > (라 > 4 문 > 4 문 > (문 >) 로 - 의숙은

4.3 List

Universiteit Utrecht

Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

map length (concat (map words (concat (map lines txts))))
Easier to understand with a list comprehension:

 $[\mathsf{length} \ \mathsf{w} \ | \ \mathsf{t} \leftarrow \mathsf{txts}, \mathsf{I} \leftarrow \mathsf{lines} \ \mathsf{t}, \mathsf{w} \leftarrow \mathsf{words} \ \mathsf{I}]$

We can also define sequencing and embedding, i.e., (>>=) and return:

$$(\gg) :: [a] \rightarrow (a \rightarrow [b]) \rightarrow [b]$$

xs >>= f = concat (map f xs)
return :: a \rightarrow [a]
return x = [x]

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Using bind and return for lists

map length (concat (map words (concat (map lines txts))))

• Again, we have a similarity to imperative code.

- In the imperative language, we have implicit nondeterminism (one or all of the options are chosen).
- ► In Haskell, we are explicit by using the list datatype and explicit sequencing using (≫=).

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

Intermediate Summary

At least three types with (\gg) and return:

- for Maybe, (>>=) sequences operations that may trigger exceptions and shortcuts evaluation once an exception is encountered; return embeds a function that never throws an exception;
- ▶ for State, (≫=) sequences operations that may modify some state and threads the state through the operations; return embeds a function that never modifies the state;
- ▶ for [], (≫=) sequences operations that may have multiple results and executes subsequent operations for each of the previous results; return embeds a function that only ever has one result.

Universiteit Utrecht

4.4 The Monad class

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Monad class

 $\begin{array}{class Monad m where \\ return :: a & \rightarrow m a \\ (\gg \hspace{-0.5em}) :: m b \rightarrow (b \rightarrow m a) \rightarrow m a \end{array}$

- The name "monad" is borrowed from category theory.
- A monad is an algebraic structure similar to a monoid.
- Monads have been popularized in functional programming via the work of Moggi and Wadler.

Universiteit Utrecht

Faculty of Science Information and Computing Sciences ▲□▶▲□▶▲□▶▲□▶ □ のへで

Instances

instance Monad Maybe where

instance Monad [] where

newtype State s $\mathsf{a} = \mathsf{State} \, \{ \mathsf{runState} :: \mathsf{s} \to (\mathsf{a}, \mathsf{s}) \}$ instance Monad (State s) where

Universiteit Utrecht

Excursion: type constructors

- The class Monad ranges not over ordinary types, but over type constructors, i.e., parameterized types.
- Such classes are also called constructor classes.
- ► There are types of types, called kinds.

Universiteit Utrecht

Excursion: type constructors

- The class Monad ranges not over ordinary types, but over type constructors, i.e., parameterized types.
- Such classes are also called constructor classes.
- ► There are types of types, called kinds.
- Types of kind * are inhabited by values. Examples: Bool, Int, Char.
- ► Types of kind * → * have one parameter of kind *. The Monad class ranges over such types. Examples: [], Maybe.
- ► Applying a type constructor of kind * → * to a type of kind * yields a type of kind *. Examples: [Int], Maybe Char.

Universiteit Utrecht

Excursion: type constructors

- The class Monad ranges not over ordinary types, but over type constructors, i.e., parameterized types.
- Such classes are also called constructor classes.
- ► There are types of types, called kinds.
- Types of kind * are inhabited by values. Examples: Bool, Int, Char.
- ► Types of kind * → * have one parameter of kind *. The Monad class ranges over such types. Examples: [], Maybe.
- ► Applying a type constructor of kind * → * to a type of kind * yields a type of kind *. Examples: [Int], Maybe Char.
- ► The kind of State is * → * → *. For any type s, State s is of kind * → * and can thus be an instance of class Monad.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Monad laws

- Every instance of the monad class should have the following properties:
- return is the unit of (\gg)

return a $\gg f \equiv f a$ m \gg return $\equiv m$

► associativity of (≫=)

$$(\mathsf{m} \gg \mathsf{f}) \gg \mathsf{g} \equiv \mathsf{m} \gg (\lambda \mathsf{x} \to \mathsf{f} \mathsf{x} \gg \mathsf{g})$$

Universi

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ()

Monad laws for Maybe

return a ≫ f \equiv { Definition of (\gg) } case return a of Nothing \rightarrow Nothing Just $x \rightarrow f x$ \equiv { Definition of return } case Just a of Nothing \rightarrow Nothing $\exists Just x \rightarrow f x \\ \equiv \{ case \} \}$

Univer

Universiteit Utrecht

m ≫= return $\equiv \quad \{ \text{ Definition of } (\gg) \}$ case m of Nothing \rightarrow Nothing $\mathsf{Just} \; \mathsf{x} \quad \to \mathsf{return} \; \mathsf{x}$ \equiv { Definition of return } case m of Nothing \rightarrow Nothing m

Universiteit Utrecht

Lemma

```
\forall (\mathsf{f}::\mathsf{a}\to\mathsf{Maybe}\;\mathsf{b}).\mathsf{Nothing} \ggg \mathsf{f} \equiv \mathsf{Nothing}
```

Proof

Universiteit Utrecht

$$(\mathsf{m} \ggg \mathsf{f}) \ggg \mathsf{g} \equiv \mathsf{m} \ggg (\lambda \mathsf{x} \to \mathsf{f} \mathsf{x} \ggg \mathsf{g})$$

Case distinction on m. Case m is Nothing:

Universiteit Utrecht

$$\begin{array}{l} (Just y \gg f) \gg g \\ \equiv & \{ \text{ Definition of } (\gg) \} \\ (\textbf{case Just y of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & Just x \rightarrow f x) \gg g \\ \equiv & \{ \textbf{case} \} \\ & f y \gg g \\ \equiv & \{ \text{ beta-expansion} \} \\ & (\lambda x \rightarrow f x \gg g) y \\ \equiv & \{ \text{ case } \} \\ & \textbf{case Just y of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & Just x \rightarrow (\lambda x \rightarrow f x \gg g) x \\ \equiv & \{ \text{ definition of } (\gg) \} \\ & Just y \gg (\lambda x \rightarrow f x \gg g) \end{array}$$

niversiteit Utrecht

Additional monad operations

Class Monad contains two additional methods, but with default methods:

class Monad m where

```
(\gg) :: m a \to m b \to m bm \gg n = m \gg \lambda_{-} \to nfail :: String \to m afail s = error s
```

While the presence of (\gg) can be justified for efficiency reasons, fail should really be in a different class.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] < ㅁ > (라 > 4 문 > 4 문 > (문 >) 로 - 의숙은

do notation

Like list comprehensions, **do** notation is a form of syntactic sugar. Unlike list comprehensions, **do** notation is not restricted to a single datatype, but applicable to all monads:

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・ヨト・ヨト・日本・ショー ショー

Monadic application

$$\begin{array}{l} \mathsf{ap} :: (\mathsf{Monad}\ \mathsf{m}) \Rightarrow \mathsf{m}\ (\mathsf{a} \to \mathsf{b}) \to \mathsf{m}\ \mathsf{a} \to \mathsf{m}\ \mathsf{b} \\ \mathsf{ap}\ \mathsf{f}\ \mathsf{x} = \mathbf{do} \\ & \mathsf{f}' \leftarrow \mathsf{f} \\ & \mathsf{x}' \leftarrow \mathsf{x} \\ & \mathsf{return}\ (\mathsf{f}'\ \mathsf{x}') \end{array}$$

Without **do** notation:

ap f x = f
$$\gg \lambda f' \rightarrow$$

x $\gg \lambda x' \rightarrow$
return (f' x')

Univer

Universiteit Utrecht

More on do notation

• Use it, it is usually more concise.

- ► Never forget that it is just syntactic sugar. Use (≫=) and (≫) directly when it is more convenient.
- Remember that return is just a normal function:
 - Not every do-block ends with a return.
 - return can be used in the middle of a do-block, and it doesn't "jump" anywhere.
- Not every monad computation has to be in a do-block. In particular do e is the same as e.
- On the other hand, you may have to "repeat" the do in some places, for instance in the branches of an if.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Lifting functions to monads

```
\begin{array}{ll} \mbox{lift} M & :: (\mbox{Monad}\ m) \Rightarrow (a \rightarrow b) & \rightarrow m \ a \rightarrow m \ b \\ \mbox{lift} M2 & :: (\mbox{Monad}\ m) \Rightarrow (a \rightarrow b \rightarrow c) \rightarrow m \ a \rightarrow m \ b \rightarrow m \ c \\ \hdots \\ \hdots \\ \hdots \\ \mbox{lift} M & f \ x & = return \ f \ `ap` \ x \\ \mbox{lift} M2 \ f \ x \ y & = return \ f \ `ap` \ x \ `ap` \ y \\ \hdots \\ \hdo
```

Question

```
What is lift (+1) [1..5]?
```


Universiteit Utrecht

Lifting functions to monads

```
\begin{array}{ll} \mbox{lift} M & :: (\mbox{Monad}\ m) \Rightarrow (a \rightarrow b) & \rightarrow m \ a \rightarrow m \ b \\ \mbox{lift} M2 & :: (\mbox{Monad}\ m) \Rightarrow (a \rightarrow b \rightarrow c) \rightarrow m \ a \rightarrow m \ b \rightarrow m \ c \\ \hdots \\ \hdots \\ \mbox{lift} M & f \ x & = \mbox{return}\ f \ `ap` \ x \\ \mbox{lift} M2 \ f \ x \ y = \mbox{return}\ f \ `ap` \ x \ `ap` \ y \\ \hdots \\ \hd
```

Question

```
What is lift (+1) [1..5]?
```

Answer

Same as map $(+1)\;[1\,..\,5].$ The function liftM generalizes map to arbitrary monads.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Excursion: functors

Structures that allow mapping have their own class:

class Functor f where fmap :: $(a \rightarrow b) \rightarrow f a \rightarrow f b$ instance Functor Maybe instance Functor []

- All containers, in particular all trees can be made an instance of functor.
- Every monad is a functor morally (liftM), but not necessarily in Haskell.
- Not all functors are monads.
- Why isn't simply map overloaded?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・ヨト・ヨト・日本・ショー ショー

Monadic map

 $\begin{array}{l} \mathsf{mapM} & :: (\mathsf{Monad}\ \mathsf{m}) \Rightarrow (\mathsf{a} \to \mathsf{m}\ \mathsf{b}) \to [\mathsf{a}] \to \mathsf{m}\ [\mathsf{b}] \\ \mathsf{mapM}_{-} :: (\mathsf{Monad}\ \mathsf{m}) \Rightarrow (\mathsf{a} \to \mathsf{m}\ \mathsf{b}) \to [\mathsf{a}] \to \mathsf{m}\ () \\ \mathsf{mapM}\ \mathsf{f}\ [] & = \mathsf{return}\ [] \\ \mathsf{mapM}\ \mathsf{f}\ (\mathsf{x}:\mathsf{xs}) & = \mathsf{lift}\mathsf{M2}\ (:)\ (\mathsf{f}\ \mathsf{x})\ (\mathsf{mapM}\ \mathsf{f}\ \mathsf{xs}) \\ \mathsf{mapM}_{-}\ \mathsf{f}\ [] & = \mathsf{return}\ () \\ \mathsf{mapM}_{-}\ \mathsf{f}\ (\mathsf{x}:\mathsf{xs}) & = \mathsf{f}\ \mathsf{x} \gg \mathsf{mapM}_{-}\ \mathsf{f}\ \mathsf{xs} \end{array}$

Question

Why not always use mapM and ignore the result?

Universiteit Utrecht

Sequencing monadic actions

sequence :: (Monad m)
$$\Rightarrow$$
 [m a] \rightarrow m [a]
sequence_:: (Monad m) \Rightarrow [m a] \rightarrow m ()
sequence = foldr (liftM2 (:)) (return [])
sequence_ = foldr (\gg) (return ())

Universiteit Utrecht

Monadic fold

 $\begin{array}{l} \mathsf{fold}\mathsf{M}::(\mathsf{Monad}\ \mathsf{m}) \Rightarrow (\mathsf{a} \to \mathsf{b} \to \mathsf{m}\ \mathsf{a}) \to \mathsf{a} \to [\mathsf{b}] \to \mathsf{m}\ \mathsf{a} \\ \mathsf{fold}\mathsf{M}\ \mathsf{op}\ \mathsf{e}\ [] &= \mathsf{return}\ \mathsf{e} \\ \mathsf{fold}\mathsf{M}\ \mathsf{op}\ \mathsf{e}\ (\mathsf{x}:\mathsf{xs}) = \frac{\mathsf{do}\ \mathsf{r}} \leftarrow \mathsf{op}\ \mathsf{e}\ \mathsf{x} \\ & \mathsf{fold}\mathsf{M}\ \mathsf{f}\ \mathsf{r}\ \mathsf{xs} \end{array}$

Question

Is this the same as defining the second case using

 $\begin{array}{l} \mathsf{fold}\mathsf{M} \; \mathsf{op} \; \mathsf{e} \; (\mathsf{x} : \mathsf{x}\mathsf{s}) = \mathbf{do} \; \mathsf{r} \leftarrow \mathsf{op} \; \mathsf{e} \; \mathsf{x} \\ \mathsf{s} \leftarrow \mathsf{fold}\mathsf{M} \; \mathsf{f} \; \mathsf{r} \; \mathsf{x}\mathsf{s} \\ \mathsf{return} \; \mathsf{s} \end{array}$

And why is fold M_{-} less essential than map M_{-} or sequence_?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

▲□▶▲□▶▲□▶▲□▶ □ のへで

More monadic operations

Browse Control.Monad:

 $\begin{array}{ll} \mbox{filter} M & :: (\mbox{Monad}\ m) \Rightarrow (a \rightarrow m \ \mbox{Bool}) \rightarrow [a] \rightarrow m \ [a] \\ \mbox{replicate} M & :: (\mbox{Monad}\ m) \Rightarrow \mbox{Int} \rightarrow m \ a \rightarrow m \ [a] \\ \mbox{replicate} M_- :: (\mbox{Monad}\ m) \Rightarrow \mbox{Int} \rightarrow m \ a \rightarrow m \ () \\ \mbox{join} & :: (\mbox{Monad}\ m) \Rightarrow \mbox{mond}\ m \ a) \rightarrow m \ a \\ \mbox{when} & :: (\mbox{Monad}\ m) \Rightarrow \mbox{Bool} \rightarrow m \ () \rightarrow m \ () \\ \mbox{unless} & :: (\mbox{Monad}\ m) \Rightarrow \mbox{Bool} \rightarrow m \ () \rightarrow m \ () \\ \mbox{forever} & :: (\mbox{Monad}\ m) \Rightarrow \mbox{m}\ a \rightarrow m \ () \end{array}$

...and more!

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本

4.5 IO is a monad

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

4-41

The IO monad

The well-known built-in type constructor IO is another type with actions that need sequencing and ordinary functions that can be embedded.

The IO monad is special in several ways:

- ► IO is a primitive type, and (≫=) and return for IO are primitive functions,
- ► there is no (politically correct) function runIO :: IO a → a, whereas for most other monads there is a corresponding function,
- values of IO a denote side-effecting programs that can be executed by the run-time system.

Note that the specialty of IO has really not much to do with being a monad.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロト * 得 * * ミト * ミト ・ ミー ・ の へ ()

Universiteit Utrecht

Faculty of Science Information and Computing Sciences] ・ロト・日本・ヨト・ヨト・日本・ショー ショー

Main〉: i IO **newtype** IO a = GHC.IOBase.IO (GHC.Prim.State # GHC.Prim.RealWorld \rightarrow (# GHC.Prim.State # GHC.Prim.RealWorld, a #)) -- Defined in GHC.IOBase Main : i GHC.Prim.RealWorld data GHC.Prim.RealWorld -- Defined in GHC.Prim

Internally, GHC models IO as a state monad having the "real world" as state!

The role of IO in Haskell

More and more features have been integrated into IO, for instance:

- classic file and terminal IO
 - putStr, hPutStr
- references
 - newIORef, readIORef, writeIORef
- access to the system
 - get Args, get Environment, get Clock Time
- exceptions
 - ${\sf throwIO}, {\sf catch}$
- concurrency

forkIO niversiteit Utrecht

The role of IO in Haskell (contd.)

- Because of its special status, the IO monad provides a safe and convenient way to express all these constructs in Haskell. Haskell's purity (referential transparency) is not compromised, and equational reasoning can be used to reason about IO programs.
- A program that involves IO in its type can do everything. The absence of IO tells us a lot, but its presence does not allow us to judge what kind of IO is performed.
- It would be nice to have more fine-grained control on the effects a program performs.
- For some, but not all effects in IO, we can use or build specialized monads.

Universiteit Utrecht

Next lecture

Next topic: Monad transformers

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

4-46