[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Advanced Functional Programming
2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Nov 19, 2012

4. Monads and monad transformers

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

0: some example monads

To warm up a bit, we discuss and partially recall some
interesting examples of monadic structures.

[Faculty of Science
B = Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Universiteit Utrecht

4.1 Maybe

[Faculty of Science
Information and Computing Sciences]

Maybe type

data Maybe a = Nothing
| Justa

The Maybe datatype is often used to encode failure or an
exceptional value:

lookup :: (Eq a) = a — [(a,b)] — Maybe b
find ::(a — Bool) — [a] — Maybe a

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Encoding exceptions using Maybe

4-5

Assume that we have a Zipper-like data structure with the
following operations:

up, down, right :: Loc — Maybe Loc
update :: (Int — Int) — Loc — Loc

Given a location I, we want to move up, right, down, and
update the resulting position with using update (+1) ...

&\\‘Wﬁ)) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
N

oding exceptions using Maybe (contd.)

case up |; of
Nothing — Nothing
Just s — case right |5 of
Nothing — Nothing
Just I3 — case down I3 of
Nothing — Nothing
Justly — Just (update (+1) l4)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

” oding exceptions using Maybe (contd.)

case up |; of
Nothing — Nothing
Just s — case right |5 of
Nothing — Nothing
Just I3 — case down I3 of
Nothing — Nothing
Justly — Just (update (+1) l4)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Encoding exceptions using Maybe (contd.)

case up |; of
Nothing — Nothing
Just s — case right |5 of
Nothing — Nothing
Just I3 — case down |3 of
Nothing — Nothing
Justly — Just (update (+1) ly)

In essence, we need

» a way to sequence function calls and use their results if
successful

» a way to modify or produce successful results.

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

46

Encoding exceptions using Maybe (contd.)

case up l; of
Nothing — Nothing
Justlo — caseright I of
Nothing — Nothing
Justl3 — case down I3 of
Nothing — Nothing
Justly — Just (update (+1))

Sequencing:

(>=) :: Maybe a — (a — Maybe b) — Maybe b
f >=g = casef of

Nothing — Nothing

Justx — gx

@W&) [Faculty of Science
= U = Universiteit Utrecht Information and Computing Sciences]

47 {%ﬂ!§

Encoding exceptions using Maybe (contd.)

up ly >=
Al — case right |y of
Nothing — Nothing
Justl3 — case down I3 of
Nothing — Nothing
Justly — Just (update (+1))
Sequencing:

(>=) :: Maybe a — (a — Maybe b) — Maybe b
f >=g = casef of

Nothing — Nothing

Justx — gx

@W&) [Faculty of Science
= U = Universiteit Utrecht Information and Computing Sciences]

47 {%ﬂ!§

ne oding exceptions using Maybe (contd.)

up Iy >=
Al — right ly >=
Als — case down I3 of

: Nothing — Nothing
Al Justly — Just (update (+1) ly)

%0\ Sequencing:

] (>=) :: Maybe a — (a — Maybe b) — Maybe b
| f >=g = case f of

% Nothing — Nothing

‘ Justx —gx

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

n oding exceptions using Maybe (contd.)

up by >=
Al — right ly >=

Als — down I3 >=

Alg — Just (update (+1))

Sequencing:
- ~ (>=) :: Maybe a — (a — Maybe b) — Maybe b
f >=g = case f of
Nothing — Nothing

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

uencing and embedding

up Iy >=
Ay = right Iy =

A3 — down I3 >=

Aly — Just (update (+1) l4)

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

juencing and embedding

up Iy >=
Al — right |y >=

A3 — down I3 >=

Aly — return (update (41) l4)

(>=) :: Maybe a — (a — Maybe b) — Maybe b
f>=g =casef of

Just x

Nothing — Nothing

—gx
return :: a — Maybe a
return x = Just x

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Sequencing and embedding

up Iy >=
Al — right |y >=
A3 — down I3 >=
Aly — return (update (+1) l4)

(>=) :: Maybe a — (a — Maybe b) — Maybe b
f>=g =casef of

Nothing — Nothing

Justx —gx

return :: a — Maybe a
return x = Just x

| return |y == up >= right >= down >>= return o update (+1)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

4-8

Observation

Code looks a bit like imperative code. Compare:

up l1 >= Ay — Iy := up |1;

right ls >= A3 — I3 := right lo;
down I3 >= Aly — l4 := down l3;
return (update (+1) l4) return update Iy

> In the imperative language, the occurrence of possible
exceptions is a side effect.

» Haskell is more explicit because we use the Maybe type
and the appropriate sequencing operation.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
v N

Universiteit Utrecht

4.2 State

[Faculty of Science
Information and Computing Sciences]

Maintaining state explicitly

» We pass state to a function as an argument.
» The function modifies the state and produces it as a result.

» If the function computes in addition to modifying the
state, we must return a tuple (or a special-purpose
datatype with multiple fields).

This motivates the following type synonym definition:

type Statesa =s — (a,s)

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
411 NS

Using state

There are many situations where maintaining state is useful:

» using a random number generator
| type Random a = State StdGen a

> using a counter to generate unique labels
| type Counter a = State Int a

» maintaining the complete current configuration of an
application (or a game) using a user-defined datatype

data ProgramState = . ..
type Program a = State ProgramState a

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
412 NS

oding state passing

As; — let (Ivl | sy) = generatelevel s1
(IvI" ,s3) = generateStairs Ivl sy
(ms ,s4) = placeMonsters Ivl’ s

in (combine v’ ms ,sy)

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

oding state passing

As; — let (Ivl | sy) = generatelevel s1
(IvI" ,s3) = generateStairs Ivl sy
(ms ,s4) = placeMonsters Ivl’ s3

in (combine Ivl’ ms ,sy)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

' oding state passing

As; — let (Ivl | sy) = generatelevel s1
(IvI" ,s3) = generateStairs Ivl sy
(ms ,s4) = placeMonsters Ivl’ s3

in (combine Ivl’ ms ,sy)

Again, we need

» a way to sequence function calls and use their results

» a way to modify or produce successful results.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Bind and return for state

As; — let (Ivl | so) = generatelevel s1
(IvI", s3) = generateStairs Ivl so
(ms, s4) = placeMonsters Ivl’ s

in (combine Ivl' ms, sy)

(>=) :: Statesa — (a — States b) — Statesb
f>=g =Xs—let(x,s') =fsingxs
return::a — States a

return x = As — (x,s)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

4-14

Bind and return for state

generatelevel >= Al —
Asg — let (IvI' | s3) = generateStairs Ivl sy
(ms, s4) = placeMonsters Ivl’ s
in (combine Ivl' ms, sy)

(>=) :: Statesa — (a — States b) — Statesb
f>=g =Xs—let(x,s') =fsingxs
return::a — States a

return x = As — (x,s)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

4-14

Bind and return for state

generatelevel >= Al —
generateStairs vl >= AVl —
As3 — let (ms, s4) = placeMonsters Ivl’ s3
in (combine Ivl' ms, sy)

(>=) :: Statesa — (a — States b) — Statesb
f>=g =Xs—let(x,s') =fsingxs
return::a — States a

return x = As — (x,s)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

4-14

Bind and return for state

generatelevel >= Al —

generateStairs vl >= AVl —

placeMonsters IvI' >= Ams —
Asy — (combine VI’ ms,sy)

(>=) :: Statesa — (a — States b) — Statesb
f>=g =Xs—let(x,s') =fsingxs
return::a — States a

return x = As — (x,s)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

4-14

Bind and return for state

generatelevel >= Al —

generateStairs vl >= AVl —

placeMonsters IvI' >= Ams —
return (combine Ivl’ ms)

(>=) :: Statesa — (a — States b) — Statesb
f>=g =Xs—let(x,s') =fsingxs
return::a — States a

return x = As — (x,s)

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

4-14

Observation

Again, the code looks a bit like imperative code. Compare:

generatelevel >= Alvl = | Ivl := generateLevel;
generateStairs Ivl >= Alvl' — | IvlI' := generateStairs Ivl;
placeMonsters IvI' >= Ams — | ms := placeMonsters IvI’;
return (combine Ivl’ ms) return combine Ivl’ ms

> In the imperative language, the occurrence of memory
updates (random numbers) is a side effect.

» Haskell is more explicit because we use the State type and
the appropriate sequencing operation.

5&\\“’%}) [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
415 NS

“Primitive” operations for state handling

4-16

We can completely hide the implementation of State if we
provide the following two operations as an interface:

get :: State s s

get = As — (s, s)
put ::s — State s ()
puts = A_— ((),5)

inc :: State Int ()
inc =
get >= s — put (s + 1)

@WB)) [Faculty of Science
] N Universiteit Utrecht Information and Computing Sciences]
KT

4.3 List

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

| map length (concat (map words (concat (map lines txts))))

Easier to understand with a list comprehension:

| [length w | t < txts, | < lines t,w < words ||

We can also define sequencing and embedding, i.e., (>=) and
return:

(>=)::[a] = (a = [b]) — [b]
xs >= f = concat (map f xs)
return :: a — [a]

return x = [x|

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

4-18

Using bind and return for lists

| map length (concat (map words (concat (map lines txts))))

txts S>= At — t = txts

linest >= Al — | :=lines t
words | >= \w — w := words |
return (length w) return length w

> Again, we have a similarity to imperative code.
> In the imperative language, we have implicit
nondeterminism (one or all of the options are chosen).

> In Haskell, we are explicit by using the list datatype and
explicit sequencing using (>=).

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
4-19 N

Intermediate Summary

At least three types with (>=) and return:

» for Maybe, (>>=) sequences operations that may trigger
exceptions and shortcuts evaluation once an exception is
encountered; return embeds a function that never throws
an exception;

» for State, (>=) sequences operations that may modify
some state and threads the state through the operations;
return embeds a function that never modifies the state;

» for [], (>>=) sequences operations that may have multiple
results and executes subsequent operations for each of the
previous results; return embeds a function that only ever
has one result.

... There is a common interface here!
5&\\“% [Faculty of Science

= b = Universiteit Utrecht Information and Computing Sciences]

Suz
4-20 N

4.4 The Monad class

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Monad class

class Monad m where
return :: a — m a
(>=) :mb—(b—ma)—>ma

» The name “monad” is borrowed from category theory.
» A monad is an algebraic structure similar to a monoid.

» Monads have been popularized in functional programming
via the work of Moggi and Wadler.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
4-22 NS

instance Monad Maybe where
instance Monad [] where

newtype State s a = State {runState::s — (a,s) }
instance Monad (State s) where

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

cursion: type constructors

> The class Monad ranges not over ordinary types, but over
type constructors, i.e., parameterized types.

» Such classes are also called constructor classes.

> There are types of types, called kinds.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Excursion: type constructors

» The class Monad ranges not over ordinary types, but over
type constructors, i.e., parameterized types.

» Such classes are also called constructor classes.
» There are types of types, called kinds.

» Types of kind x are inhabited by values. Examples: Bool,

Int, Char.
» Types of kind * — * have one parameter of kind *. The
Monad class ranges over such types. Examples: [], Maybe.

> Applying a type constructor of kind * — * to a type of kind
* yields a type of kind *. Examples: [Int], Maybe Char.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
4-24 NS

Excursion: type constructors

» The class Monad ranges not over ordinary types, but over
type constructors, i.e., parameterized types.

» Such classes are also called constructor classes.
» There are types of types, called kinds.
» Types of kind x are inhabited by values. Examples: Bool,

Int, Char.
» Types of kind * — * have one parameter of kind *. The
Monad class ranges over such types. Examples: [], Maybe.

> Applying a type constructor of kind * — * to a type of kind
* yields a type of kind *. Examples: [Int], Maybe Char.

» The kind of State is x — % — *. For any type s, State s is
of kind * — x and can thus be an instance of class Monad.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
4-24 NS

onad laws

» Every instance of the monad class should have the
following properties:

> return is the unit of (>=)

returna>=f=fa
m >=return = m

» associativity of (>>=)

| (m>=f)>=g=m>=(A&x—fx>=g)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

snad laws for Maybe

return a >=f
= { Definition of (>=) }
case return a of
Nothing — Nothing
Justx —fx
= { Definition of return }
case Just a of
Nothing — Nothing
Justx —fx
= {case}
fa

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

onad laws for Maybe (contd.)

m = return
= { Definition of (>=) }
case m of
Nothing — Nothing
Just x — return x
= { Definition of return }
case m of
Nothing — Nothing
Just x — Just x
= {case}
m

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

onad laws for Maybe (contd.)

Lemma

| V(f :: a — Maybe b).Nothing >= f = Nothing

Proof

Nothing >=f
= { Definition of (>=) }
case Nothing of
Nothing — Nothing
Justx —fx

= {case}
Nothing
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

onad laws for Maybe (contd.)

| (m>=f)>=g=m>=(M&x—fx>=g)

Case distinction on m. Case m is Nothing:

(Nothing >=f) >=g
= {Lemma}
Nothing >=g
= {Lemma}
Nothing
= {Lemma}
Nothing >= (Ax — f x >=g)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Monad laws for Maybe (contd.)

(Justy >=f)>=g
= { Definition of (>=) }
(case Just y of
Nothing — Nothing
Justx —fx)>=g¢g
= {case}
fys=g
= { beta-expansion }
MXx—=fx>=g)y
= {case}
case Just y of
Nothing — Nothing
Justx — (A&x— fx>=g)x
= { definition of (>=) }
Justy >= (Ax = f x>=g)

@W&) [Faculty of Science
= U = Universiteit Utrecht Information and Computing Sciences]

4-30 N

Additional monad operations

Class Monad contains two additional methods, but with default
methods:

class Monad m where

(>):ma—mb—mb
m>n=m>3=)_—n
fail :: String > m a

fail s = error s

While the presence of (>>) can be justified for efficiency
reasons, fail should really be in a different class.

[Faculty of Science

NI
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

4-31

do notation

4-32

Like list comprehensions, do notation is a form of syntactic
sugar. Unlike list comprehensions, do notation is not restricted
to a single datatype, but applicable to all monads:

do {e} =e
do {e;stmts} = e > do {stmts}
do {p « e;stmts} = let ok p=do {stmts}
ok _ = fail "error"
in e>=ok
do {let decls; stmts } = let decls in do {stmts}

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

nadic application

ap:: (Monadm)=m(a—b)—>ma—mb
apfx=do

ff

X' x

return (f' x')

Without do notation:

apfx=f>=\ —
x>= M —
return (f' x')

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

More on do notation

» Use it, it is usually more concise.

» Never forget that it is just syntactic sugar. Use (>=) and
(>) directly when it is more convenient.
» Remember that return is just a normal function:
» Not every do-block ends with a return.
» return can be used in the middle of a do-block, and it
doesn’t “jump” anywhere.
» Not every monad computation has to be in a do-block. In
particular do e is the same as e.

» On the other hand, you may have to “repeat” the do in
some places, for instance in the branches of an if.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
4-34 NS

ting functions to monads

liftM :: (Monad m) = (a — b) —ma—mb
liftM2 :: (Monad m) = (a +b—c) >ma—mb—>mc

liftM fx = returnf ‘ap‘x
liftM2 f x y = return f ‘ap‘ x ‘ap‘y

Question

What is liftM (+1) [1..5]?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Lifting functions to monads

liftM :: (Monad m) = (a — b) —ma—mb
liftM2 :: (Monad m) = (a +b—c) >ma—mb—>mc

liftM fx = returnf ‘ap‘x
liftM2 f x y = return f ‘ap‘ x ‘ap‘y

Question

What is liftM (+1) [1..5]?

Answer

Same as map (+1) [1..5]. The function liftM generalizes map
to arbitrary monads.

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

4-35

Excursion: functors

Structures that allow mapping have their own class:

class Functor f where
fmap:(a—b)—fa—fb

instance Functor Maybe
instance Functor []

» All containers, in particular all trees can be made an
instance of functor.

» Every monad is a functor morally (liftM), but not
necessarily in Haskell.

» Not all functors are monads.

» Why isn't simply map overloaded?

&\\‘Wﬁ)) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
4-36 N

Monadic map

mapM :: (Monad m) = (a - m b) — [a] = m [b]
mapM_:: (Monad m) = (a — mb) — [a] = m ()
mapM f [] = return []

mapM f (x:xs) = liftM2 (:) (f x) (mapM f xs)
mapM_f [] = return ()

mapM_f (x:xs) = f x > mapM_f xs

Question

Why not always use mapM and ignore the result?

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
437 NS

juencing monadic actions

sequence :: (Monad m) = [m a] — m [a]
sequence_:: (Monad m) = [m a] — m ()
)

sequence = foldr (liftM2 (:)) (return [])
sequence_ = foldr (>) (return ())

m a
m a

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Monadic fold

foldM :: (Monad m) = (a b —-ma) »a— [b] > ma

foldM op e [] = return e
foldM op e (x:xs) = dor < op e x
foldM f r xs
Question

Is this the same as defining the second case using

foldM op e (x:xs) = dor + op e x
s < foldM f r xs
return s

And why is foldM_ less essential than mapM_ or sequence_?

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
4-39 NS

More monadic operations

Browse Control.Monad:

filterM :: (Monad m) = (a — m Bool) — [a] — m [a]

replicateM :: (Monad m) = Int - ma — m [a]

replicateM_:: (Monad m) = Int > ma — m ()

join ::(Monad m) = m (ma) > ma

when :: (Monad m) = Bool - m () = m ()

unless :: (Monad m) = Bool - m () — m ()

forever 2 (Monad m) = ma—m ()

..and more!

ﬁ' aculty of Science

s ;:;Ué Universiteit Utrecht Information and CcErflputlitr):g ;csiences]

4.5 10 is a monad

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

The 10 monad

The well-known built-in type constructor 10 is another type
with actions that need sequencing and ordinary functions that
can be embedded.

The 10 monad is special in several ways:

» 10 is a primitive type, and (>=) and return for 10 are
primitive functions,

» there is no (politically correct) function runlO :: 10 a — a,
whereas for most other monads there is a corresponding
function,

» values of 10 a denote side-effecting programs that can be
executed by the run-time system.

Note that the specialty of 10 has really not much to do with

&‘\\‘iwf/);bel ng a monad ’ [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
442 N

10, internally

Main) :ilO
newtype |0 a
= GHC.IOBase.lO (GHC.Prim.State # GHC.Prim.RealWorld
— (# GHC.Prim.State # GHC.Prim.RealWorld, a #))
-- Defined in GHC.IOBase
Main) :i GHC.Prim.RealWorld
data GHC.Prim.RealWorld -- Defined in GHC.Prim

Internally, GHC models IO as a state monad having the ‘“real
world” as state!

ESW’B)) [Faculty of Science

<= Universiteit Utrecht Information and Computing Sciences]

= U
443 N

The role of 10 in Haskell

More and more features have been integrated into 1O, for
instance:

» classic file and terminal 10

| putStr, hPutStr

v

references

| newlORef, readlORef, writel ORef

v

access to the system

| getArgs, getEnvironment, getClockTime

> exceptions

| throwlO, catch

»> concurrency

g&\\‘wﬁ)) forklO [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
4-44 NS

The role of 10 in Haskell (contd.)

» Because of its special status, the IO monad provides a safe
and convenient way to express all these constructs in
Haskell. Haskell's purity (referential transparency) is not
compromised, and equational reasoning can be used to
reason about |0 programs.

» A program that involves O in its type can do everything.
The absence of 1O tells us a lot, but its presence does not
allow us to judge what kind of 10 is performed.

» It would be nice to have more fine-grained control on the
effects a program performs.

» For some, but not all effects in 10, we can use or build
specialized monads.

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
4-45 KT\

t lecture

» Next topic: Monad transformers

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

	Monads and monad transformers
	Maybe
	State
	List
	The Monad class
	IO is a monad

