
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Nov 22, 2010

[Faculty of Science
Information and Computing Sciences]

5-1

5. Monad transformers

[Faculty of Science
Information and Computing Sciences]

5-2

Combining monads

I A strong point of monads is that different monads can be
combined into new monads.

I If monadic code does not exploit the implementation of its
underlying implementation directly (i.e., if a state modifier
only uses get and put), the monad underlying a specific bit
of code can be changed to deal with new kinds of effects.

[Faculty of Science
Information and Computing Sciences]

5-3

Parsers

I The so called “list-of-successes” type of parsers is a monad:

newtype Parser s a =
Parser {runParser :: [s]→ [(a, [s])]}

I We have a combination of a state and a list monad.

instance Monad (Parser s) where
return x = Parser (λxs→ [(x, xs)])
p>>= f = Parser (λxs→ do

(r, ys)← runParser p xs
runParser (f r) ys)

[Faculty of Science
Information and Computing Sciences]

5-4

Monad transformers

We can actually assemble the parser monad from two building
blocks: a list monad, and a state monad transformer.

newtype Parser s a =
Parser {runParser :: [s]→ [(a, [s])]}

newtype StateT s m a =
StateT {runStateT :: s→ m (a, s)}

StateT [s] [] a ≈ [s]→ [(a, [s])]

Question

What is the kind of StateT?

[Faculty of Science
Information and Computing Sciences]

5-5

Monad transformers (contd.)

instance (Monad m)⇒ Monad (StateT s m) where
return a = StateT (λs→ return (a, s))
m>>= f = StateT (λs→ do (a, s′)← runStateT m s

runStateT (f a) s′)

The instance definition is using the underlying monad.

Even
more explicitly, using the underlying >>=:

m>>= f = StateT (λs→ runStateT m s >>= (λ(a, s′)
→ runStateT (f a) s′

[Faculty of Science
Information and Computing Sciences]

5-5

Monad transformers (contd.)

instance (Monad m)⇒ Monad (StateT s m) where
return a = StateT (λs→ return (a, s))
m>>= f = StateT (λs→ do (a, s′)← runStateT m s

runStateT (f a) s′)

The instance definition is using the underlying monad. Even
more explicitly, using the underlying >>=:

m>>= f = StateT (λs→ runStateT m s >>= (λ(a, s′)
→ runStateT (f a) s′

[Faculty of Science
Information and Computing Sciences]

5-6

Monad transformers (contd.)

For (nearly) any monad, we can define a corresponding monad
transformer, for instance:

newtype ListT m a =
ListT {runListT :: m [a]}

instance (Monad m)⇒ Monad (ListT m) where
return a = ListT (return [a])
m>>= f = ListT (do a← runListT m

b← mapM (runListT ◦ f) a
return (concat b)

Question

Is ListT (State s) the same as StateT s []?

[Faculty of Science
Information and Computing Sciences]

5-7

Order matters!

StateT s [] a ≈ s→ [(a, s)]
ListT (State s) a ≈ s→ ([a], s)

I Different orders of applying monads and monad
transformers create subtly different monads!

I In the former monad, the new state depends on the result
we select. In the latter, it doesn’t.

[Faculty of Science
Information and Computing Sciences]

5-7

Order matters!

StateT s [] a ≈ s→ [(a, s)]
ListT (State s) a ≈ s→ ([a], s)

I Different orders of applying monads and monad
transformers create subtly different monads!

I In the former monad, the new state depends on the result
we select. In the latter, it doesn’t.

[Faculty of Science
Information and Computing Sciences]

5-8

5.1 More monads

[Faculty of Science
Information and Computing Sciences]

5-9

Building blocks

I In order to see how to assemble monads from
special-purpose monads, let us first learn about more
monads than Maybe, State, List and IO.

I The place in the standard libraries for monads is
Control.Monad.∗.

I The state monad is available in Control.Monad.State.

I The list monad is avilable in Control.Monad.List.

[Faculty of Science
Information and Computing Sciences]

5-10

Error or Either

The Error monad is a variant of Maybe which is slightly more
useful for actually handling exceptions:

class Error e where
noMsg :: e
strMsg :: String→ e

instance Error e⇒ Monad (Either e) where
return x = Right x
(Left e) >>= = Left e
(Right r)>>= k = k r
fail msg = Left (strMsg msg)

instance Error String where
noMsg = ""

strMsg = id

[Faculty of Science
Information and Computing Sciences]

5-11

Error monad interface

Like State, the Error monad has an interface, such that we can
throw and catch exceptions without requiring a specific
underlying datatype:

class (Monad m)⇒ MonadError e m | m→ e where
throwError :: e→ m a
catchError :: m a→ (e→ m a)→ m a

instance (Error e)⇒ MonadError e (Either e)

The constraint m→ e in the class declaration is a functional
dependency. It places certain restrictions on the instances that
can be defined for that class.

[Faculty of Science
Information and Computing Sciences]

5-12

Excursion: functional dependencies

I Type classes are open relations on types.

I Each single-parameter type class implicitly defines the set
of types belonging to that type class.

I Instance corresponds to membership.

I There is no need to restrict type classes to only one
parameter.

I All parameters can also have different kinds.

[Faculty of Science
Information and Computing Sciences]

5-13

Excursion: functional dependencies (contd.)

I Using a type class in a polymorphic context can lead to an
unresolved overloading error:

show ◦ read :: (Read a)⇒ String→ String

Variables in the constraint no longer occur in the type.

I Multiple parameters lead to more unresolved overloading:

class (Monad m)⇒ MonadError e m | m→ e where
throwError :: e→ m a
catchError :: m a→ (e→ m a)→ m a

someComputation :: Either String Int
fallback :: Int
catchError someComputation (const (return fallback))

:: (MonadError e (Either String))⇒ Either String Int

[Faculty of Science
Information and Computing Sciences]

5-13

Excursion: functional dependencies (contd.)

I Using a type class in a polymorphic context can lead to an
unresolved overloading error:

show ◦ read :: (Read a)⇒ String→ String

Variables in the constraint no longer occur in the type.

I Multiple parameters lead to more unresolved overloading:

class (Monad m)⇒ MonadError e m | m→ e where
throwError :: e→ m a
catchError :: m a→ (e→ m a)→ m a

someComputation :: Either String Int
fallback :: Int
catchError someComputation (const (return fallback))

:: (MonadError e (Either String))⇒ Either String Int

[Faculty of Science
Information and Computing Sciences]

5-14

Excursion: functional dependencies (contd.)

I A functional dependency (inspired by relational databases)
prevents such unresolved overloading.

I The dependency m→ e indicates that e is uniquely
determined by m. The compiler can then automatically
reduce a constraint such as

(MonadError e (Either String))⇒ . . .

using

instance (Error e)⇒ MonadError e (Either e)

I Instance declarations that violate the functional
dependency are rejected.

[Faculty of Science
Information and Computing Sciences]

5-15

ErrorT monad transformer

Of course, there also is a monad transformer for errors:

newtype ErrorT e m a =
ErrorT {runErrorT :: m (Either e a)}

instance (Monad m,Error e)⇒ Monad (ErrorT e m)

New combinations are possible. Even multiple transformers can
be applied:

ErrorT e (StateT s IO) a
≈ StateT s IO (Either e a)
≈ s→ IO (Either e a, s)

StateT s (ErrorT e IO) a
≈ s→ ErrorT e IO (a, s)
≈ s→ IO (Either e (a, s))

Does an exception change the state or not? Can the resulting
monad use get, put, throwError, catchError?

[Faculty of Science
Information and Computing Sciences]

5-16

Lifting

class MonadTrans t where
lift :: Monad m⇒ m a→ t m a

instance (Error e)⇒ MonadTrans (ErrorT e) where
lift m = ErrorT (do a← m

return (Right a))

instance MonadTrans (StateT s) where
lift m = StateT (λs→ do a← m

return (a, s))

instance (Error e,MonadState s m)⇒
MonadState s (ErrorT e m) where

get = lift get
put = lift ◦ put

How many instances are required?

[Faculty of Science
Information and Computing Sciences]

5-17

Identity

The identity monad has no effects.

newtype Identity a = Identity {runIdentity :: a}
instance Monad Identity where

return x = Identity x
m>>= f = Identity (f (runIdentity m))

[Faculty of Science
Information and Computing Sciences]

5-18

Reader

The reader monad propagates some information, but unlike a
state monad does not thread it through subsequent actions.

newtype Reader r a = Reader {runReader :: r→ a}
instance Monad (Reader r) where

return a = Reader (λr→ a)
m>>= f = Reader (λr→ runReader (f (runReader m r)) r)

Interface:

instance (Monad m)⇒ MonadReader r m | m→ r where
ask :: m r
local :: (r→ r)→ m a→ m a

[Faculty of Science
Information and Computing Sciences]

5-19

Writer

The writer monad collects some information, but it is not
possible to access the information already collected in previous
computations.

newtype Writer w a = Writer {runWriter :: (a,w)}

To collect information, we have to know

I what an empty piece of information is, and

I how to combine two pieces of information.

A typical example is a list of things ([] and (++)), but the
library generalizes this to any monoid.

[Faculty of Science
Information and Computing Sciences]

5-20

Monoids

Monoids are algebraic structures (defined in Data.Monoid) with
a neutral element and an associative binary operation:

class Monoid a where
mempty :: a
mappend :: a→ a→ a

mconcat :: [a]→ a
mconcat = foldr mappend mempty

instance Monoid [a] where
mempty = []
mappend = (++)

. . . and many more! Note the similarity to monads!

[Faculty of Science
Information and Computing Sciences]

5-21

Writer (contd.)

instance (Monoid w)⇒ Monad (Writer w) where
return a = Writer (a,mempty)
m>>= f = Writer (let (a,w) = runWriter m

(b,w′) = runWriter (f a)
in (b,w ‘mappend‘ w′))

Interface:

class (Monoid w,Monad m)⇒
MonadWriter w m | m→ w where

tell :: w→ m ()
listen :: m a→ m (a,w)
pass :: m (a,w→ w)→ m a

[Faculty of Science
Information and Computing Sciences]

5-22

Cont

The continuation monad allows to capture the current
continuation and jump to it when desired.

newtype Cont r a⇒ Cont {runCont :: (a→ r)→ r}
instance Monad (Cont r) where

return a = Cont (λk→ k a)
m>>= f = Cont (λk→ runCont m (λa→ runCont (f a) k))

Interface:

instance MonadCont (Cont r) where
callCC f =

Cont (λk→ runCont (f (λa→ Cont (λ → k a))) k)

[Faculty of Science
Information and Computing Sciences]

5-23

Continuation example

Implementing a C-style for-loop with break and continue:

type CIO r a = ContT r IO a

for :: (Int, Int→ Bool, Int→ Int)→
(CIO r s→ CIO r t→ Int→ CIO r ())→ CIO r ()

for (i, c, s) body
| c i = callCC (λbreak→ callCC (λcontinue→

body (break ()) (continue ()) i)>> for (s i, c, s) body)
| otherwise = return ()

main = runContT main′ return

main′ :: CIO r ()
main′ = for (0, const True, (+1))

(λbreak continue i→
do when (even i) continue

when (i > 12) break
lift $ putStrLn $ "iteration "++ show i)

[Faculty of Science
Information and Computing Sciences]

5-24

5.2 Related structures

[Faculty of Science
Information and Computing Sciences]

5-25

MonadPlus

class (Monad m)⇒ MonadPlus m where
mzero :: m a
mplus :: m a→ m a→ m a

instance MonadPlus [] where
mzero = []
mplus = (++)

instance MonadPlus Maybe where
mzero = Nothing

Nothing ‘mplus‘ ys = ys
xs ‘mplus‘ ys = xs

msum :: MonadPlus m⇒ [m a]→ m a
guard :: MonadPLus m⇒ Bool→ m ()

[Faculty of Science
Information and Computing Sciences]

5-26

Applicative (applicative functors)

class (Functor f)⇒ Applicative f where
pure :: a→ f a
(<*>) :: f (a→ b)→ f a→ f b

The (<*>) operation is like ap:

ap :: (Monad m)⇒ m (a→ b)→ m a→ m b

Every functor supports map:

(<$>) :: Functor f ⇒ (a→ b)→ f a→ f b

I Note the parser interface!

I Easy to see: every monad is an applicative functor/idiom.

I But not every applicative functor is a monad.

[Faculty of Science
Information and Computing Sciences]

5-27

Monads vs. applicative functors, informally

(<*>) :: (Applicative f)⇒ f (a→ b)→ f a → f b
(=<<) :: (Monad m) ⇒ (a→ m b)→ m a→ m b

I Intuitively, applicative functors don’t dictate a full
sequencing of effects.

I With monads, subsequent actions can depend on the
results of effects.

I With applicative functors, the structure is statically
determined (and can be analyzed or optimized).

[Faculty of Science
Information and Computing Sciences]

5-28

Example: lists

We can impose a different applicative functor structure on lists
from that induced via the list monad:

pure x = repeat x

(f : fs) <*> (x : xs) = f x : (fs <*> xs)
<*> = []

Note that f <$> xs = pure x <*> xs.

With these functions, we can define transpose as follows:

transpose :: [[a]]→ [[a]]
transpose [] = pure []
transpose (xs : xss) = (:) <$> xs <*> transpose xss

[Faculty of Science
Information and Computing Sciences]

5-29

Example: Failure

instance (Monoid e)⇒ Applicative (Either e) where
pure x = Right x

Right f <*> Right x = Right (f x)
Left e1 <*> Left e2 = Left (e1 ‘mappend‘ e2)
Left e1 <*> Right = Left e1
Right <*> Left e2 = Left e2

This definition is different from the error monad in that multiple
failures are collected!

[Faculty of Science
Information and Computing Sciences]

5-30

Applicative functor laws

I identity

pure id <*> u = u

I composition

pure (◦) <*> u <*> v <*> w = u <*> (v <*> w)

I homomorphism

pure f <*> pure x = pure (f x)

I interchange

u <*> pure x = pure (λf → f x) <*> u

[Faculty of Science
Information and Computing Sciences]

5-31

Proposed applicative functor notation

Most applicative functor operations take the form

pure f <*> x1 <*> . . . <*> xn
f <$> x1 <*> . . . <*> xn

McBride and Paterson propose to write this as

J f x1 . . . xn K

[Faculty of Science
Information and Computing Sciences]

5-32

More on applicative functors

I Lots of derived functions, for instance for traversing
structures.

I The composition of two applicative functors is always an
applicative functor again, and this can easily be expressed
in Haskell code.

[Faculty of Science
Information and Computing Sciences]

5-33

Arrows

class Arrow a where
arr :: (b→ c)→ a b c
(>>>) :: a b c→ a c d→ a b d
first :: a b c→ a (b, d) (c, d)

I Every monad can be made into an arrow.

I Every arrow can be made into an applicative functor.

I Arrows turn out to require a complex set of additional
classes that add additional operations, and have a rather
complicated associated syntax proposal.

[Faculty of Science
Information and Computing Sciences]

5-34

Summary

I Common interfaces are extremely powerful and give you a
huge amount of predefined theory and functions.

I Look for common interfaces in your programs.

I Recognise monads and applicative functors in your
programs.

I Define or assemble your own monads.

I Add new features to the monads you are using.

I Monads and applicative functors make Haskell particularly
suited for Embedded Domain Specific Languages.

I Monads (Wadler, Moggi) are stronger than applicative
functors. Applicative functors (McBride, Paterson) are
more flexible. Arrows (Hughes) are yet another alternative.

I Monads have proved themselves. Time will tell whether
Applicative functors or arrows can be equally successful.

