[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Advanced Functional Programming
2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Nov 22, 2010

5. Monad transformers

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Combining monads

» A strong point of monads is that different monads can be
combined into new monads.

» If monadic code does not exploit the implementation of its
underlying implementation directly (i.e., if a state modifier
only uses get and put), the monad underlying a specific bit
of code can be changed to deal with new kinds of effects.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
s2 N

Parsers

» The so called “list-of-successes” type of parsers is a monad:

newtype Parser s a =
Parser {runParser :: [s] — [(a, [s])]}

» We have a combination of a state and a list monad.

instance Monad (Parser s) where
return x = Parser (Axs — [(x,xs)])
p>=f = Parser (Axs — do
(r,ys) < runParser p xs
runParser (f r) ys)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

5-3

Monad transformers

5.4

We can actually assemble the parser monad from two building
blocks: a list monad, and a state monad transformer.

newtype Parser s a =
Parser {runParser :: [s] — [(a,[s])]}

newtype StateT sma =
StateT {runStateT ::s — m (a,s) }

StateT [s] [] a =~ [s] — [(a,[s])]

Question

What is the kind of StateT?

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

nad transformers (contd.)

instance (Monad m) = Monad (StateT s m) where
return a = StateT (As — return (a,s))

m >=f = StateT (As — do (a,s’) < runStateT m's

runStateT (f a) §)
The instance definition is using the underlying monad.

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Monad transformers (contd.)

5-5

instance (Monad m) = Monad (StateT s m) where
return a = StateT (As — return (a,s))
m >=f = StateT (As — do (a,s’) < runStateT ms
runStateT (f a) s')

The instance definition is using the underlying monad. Even
more explicitly, using the underlying >=:

m >= f = StateT (As — runStateT m s >= (\(a,s’)
— runStateT (f a) s

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Monad transformers (contd.)

For (nearly) any monad, we can define a corresponding monad
transformer, for instance:

newtype ListT ma =
ListT {runListT :: m [a] }
instance (Monad m) = Monad (ListT m) where
return a = ListT (return [a])
m >=f = ListT (do a < runListT m
b < mapM (runListT of) a
return (concat b)

Question

Is ListT (State s) the same as StateT s []?

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

5-6

er matters!

StateTs[]a ~s—[(a,s)]
ListT (States) a~s — ([a],s)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Order matters!

StateTs[]a ~s—[(a,s)]
ListT (States) a~s — ([a],s)

» Different orders of applying monads and monad
transformers create subtly different monads!

> In the former monad, the new state depends on the result
we select. In the latter, it doesn't.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
5.7 NS

5.1 More monads

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Building blocks

» In order to see how to assemble monads from
special-purpose monads, let us first learn about more
monads than Maybe, State, List and IO.

» The place in the standard libraries for monads is
Control.Monad.x.

» The state monad is available in Control.Monad.State.

» The list monad is avilable in Control.Monad.List.

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
59 N

Error or Either

5-10

The Error monad is a variant of Maybe which is slightly more
useful for actually handling exceptions:

class Error e where
noMsg :: e
strMsg :: String — e
instance Error e = Monad (Either e) where
return x = Right x
(Lefte) >= _ = Lefte
(Rightr) >=k =kr

fail msg = Left (strMsg msg)
instance Error String where

noMsg = ""

strMsg = id

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Error monad interface

Like State, the Error monad has an interface, such that we can
throw and catch exceptions without requiring a specific
underlying datatype:

class (Monad m) = MonadError e m | m — e where
throwError ::e — m a
catchError :ma — (e > ma) > ma

instance (Error €) = MonadError e (Either e)

The constraint m — e in the class declaration is a functional
dependency. It places certain restrictions on the instances that
can be defined for that class.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
511 N

Excursion: functional dependencies

> Type classes are open relations on types.

» Each single-parameter type class implicitly defines the set
of types belonging to that type class.

» Instance corresponds to membership.

» There is no need to restrict type classes to only one
parameter.

» All parameters can also have different kinds.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

5-12

xcursion: functional dependencies (contd.)

» Using a type class in a polymorphic context can lead to an
unresolved overloading error:

show o read :: (Read a) = String — String

Variables in the constraint no longer occur in the type.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Excursion: functional dependencies (contd.)

5-13

» Using a type class in a polymorphic context can lead to an
unresolved overloading error:

show o read :: (Read a) = String — String

Variables in the constraint no longer occur in the type.

» Multiple parameters lead to more unresolved overloading:

class (Monad m) = MonadError e m | m — e where
throwError ::e —+ m a
catchError :ma — (e > ma) > ma

someComputation :: Either String Int

fallback :: Int

catchError someComputation (const (return fallback))
:: (MonadError e (Either String)) = Either String Int

[Faculty of Science

%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Excursion: functional dependencies (contd.)

» A functional dependency (inspired by relational databases)
prevents such unresolved overloading.

» The dependency m — e indicates that e is uniquely
determined by m. The compiler can then automatically
reduce a constraint such as

| (MonadError e (Either String)) = ...
using
| instance (Error €) = MonadError e (Either e)

» Instance declarations that violate the functional
dependency are rejected.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
5-14 NS

ErrorT monad transformer

Of course, there also is a monad transformer for errors:

newtype ErrorT em a =
ErrorT {runErrorT :: m (Either e a) }

instance (Monad m, Error) = Monad (ErrorT e m)

New combinations are possible. Even multiple transformers can

be applied:

ErrorT e (StateT s 10) a StateT s (ErrorT e 10) a
~ StateT s |0 (Either e a) ~s — ErrorT e 10 (a,s)
~ s — 10 (Either e a,s) ~ s — 10 (Either e (a,s))

Does an exception change the state or not? Can the resulting
\\Wy}monad use get, put, throwError, catchError? [Faculty of Science

Z Universiteit Utrecht Information and Computing Sciences]

515 7fﬂ§

Lifting

class MonadTrans t where
lift :: Monad m=ma—tma

instance (Error €) = MonadTrans (ErrorT e) where
lift m = ErrorT (do a < m
return (Right a))

instance MonadTrans (StateT s) where
lift m = StateT (As — doa <+ m
return (a,s))

instance (Error e, MonadState s m) =
MonadState s (ErrorT e m) where
get = lift get
put = lift o put

How many instances are required?

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

5-16

The identity monad has no effects.

newtype ldentity a = Identity {runldentity ::a}

instance Monad ldentity where
return x = ldentity x
m >=f = |dentity (f (runldentity m))

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Reader

The reader monad propagates some information, but unlike a
state monad does not thread it through subsequent actions.

newtype Reader r a = Reader {runReader::r — a}

instance Monad (Reader r) where
return a = Reader (Ar — a)
m >=f = Reader (Ar — runReader (f (runReader mr)) r)

Interface:

instance (Monad m) = MonadReader r m | m — r where
ask =mr
local :: (r - r) > ma—ma

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
518 NS

Writer

The writer monad collects some information, but it is not
possible to access the information already collected in previous
computations.

newtype Writer w a = Writer {runWriter :: (a,w) }
To collect information, we have to know

» what an empty piece of information is, and

» how to combine two pieces of information.

A typical example is a list of things ([] and (+4)), but the
library generalizes this to any monoid.

5&\\“% [Faculty of Science
= % Universiteit Utrecht Information and Computing Sciences]
K

519 ?f'ﬂ»

Monoids

Monoids are algebraic structures (defined in Data.Monoid) with
a neutral element and an associative binary operation:

class Monoid a where

mempty ::a

mappend :: a —a —a

mconcat :: [a] — a

mconcat = foldr mappend mempty
instance Monoid [a] where

mempty = ||

mappend = (+-)

..and many more! Note the similarity to monads!

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
5-20 NS

Writer (contd.)

5-21

instance (Monoid w) = Monad (Writer w) where
return a = Writer (a, mempty)
m >=f = Writer (let (a,w) = runWriter m
(b, w) = runWriter (f a)
n (b, w ‘mappend‘ w’))

Interface:

class (Monoid w, Monad m) =
MonadWriter w m | m — w where
tell =w—m()
listen::ma — m (a,w)

pass ::m (a,w —w)—ma

[Faculty of Science

%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Cont

5-22

The continuation monad allows to capture the current
continuation and jump to it when desired.

newtype Cont r a = Cont {runCont:: (a —r) —r}

instance Monad (Cont r) where
return a = Cont (Ak — k a)
m >=f = Cont (Ak — runCont m (Aa — runCont (f a) k))

Interface:

instance MonadCont (Cont r) where
callCCf =
Cont (Ak — runCont (f (Aa — Cont (A_ — k a))) k)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Continuation example

Implementing a C-style for-loop with break and continue:

type CIOra = ContT r 10 a

for :: (Int, Int — Bool, Int — Int) —
(ClI0rs—=ClOrt—Int—ClOr()) = ClOr ()
for (i, c,s) body
| ci = callCC (Abreak — callCC (Acontinue —
body (break ()) (continue ()) i) > for (s i,c,s) body)
| otherwise = return ()

main = runContT main’ return
main’ :: ClO r ()
main’ = for (0, const True, (+1))
(Abreak continue i —
do when (even i) continue
when (i > 12) break
lift $ putStrLn $§ "iteration " - show i)

ﬁ,) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]

5-23 K&/

5.2 Related structures

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

MonadPlus

class (Monad m) = MonadPlus m where
mzero :: m a
mplus :: ma—ma—ma
instance MonadPlus [] where
mzero = []
mplus = ()
instance MonadPlus Maybe where
mzero = Nothing
Nothing ‘mplus‘ ys = ys
XS ‘mplus‘ ys = xs
msum :: MonadPlus m = [m a] > ma
guard :: MonadPLus m = Bool — m ()

4 ﬁ)) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]

5-25 K&/

Applicative (applicative functors)

class (Functor f) = Applicative f where
pure ::a—fa
(<x>)f(a—b)—>fa—fb

The (<*>) operation is like ap:

| ap::(Monadm)=m(a—b) >ma—-mb
Every functor supports map:

| (<$>) : Functorf = (a—b) - fa—fb

» Note the parser interface!
» Easy to see: every monad is an applicative functor/idiom.

» But not every applicative functor is a monad.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
5-26 NS

Monads vs. applicative functors, informally

(<*>) :: (Applicativef) =f(a— b)) —>fa —fb
(<) :(Monadm) = (a—mb)—ma—mb

> Intuitively, applicative functors don't dictate a full
sequencing of effects.

» With monads, subsequent actions can depend on the
results of effects.

» With applicative functors, the structure is statically
determined (and can be analyzed or optimized).

&\\‘Wﬁ)) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
5-27 N

Example: lists

We can impose a different applicative functor structure on lists
from that induced via the list monad:

pure x = repeat x
(f: fs) <*>(x:xs) = f x: (fs <x>xs)
<k> =[]

Note that f <$> xs = pure x <*> xs.
With these functions, we can define transpose as follows:
transpose :: [[a]] — [[a]]

transpose || = pure []
transpose (xs : xss) = (:) <$> xs <*> transpose xss

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
5-28 NS

Example: Failure

instance (Monoid e) = Applicative (Either) where
pure x = Right x
Right f <*> Right x = Right (f x)
Left el <*> Left €2 = Left (el ‘mappend" e2)
Left el <*> Right _ = Left el
Right _ <> Left €2 = Left €2

This definition is different from the error monad in that multiple
failures are collected!

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
5-29 NS

plicative functor laws

> identity
| pure id <x>u =u
» composition
| pure (0) <> u <*> v <k> W = U <¥> (v <k>w)
» homomorphism
| pure f <x> pure x = pure (f x)
> interchange

| u <*>pure x = pure (AMf — f x) <*>u

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

oposed applicative functor notation

Most applicative functor operations take the form

pure f <*>xq <x> ... <> X,
f<$>x1 <k> ... <x> X,

McBride and Paterson propose to write this as

| [fx1...%n]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

More on applicative functors

» Lots of derived functions, for instance for traversing
structures.

» The composition of two applicative functors is always an
applicative functor again, and this can easily be expressed
in Haskell code.

*&\ ﬁ/) [Faculty of Science
% é Universiteit Utrecht Information and Computing Sciences]

5-32

Arrows

class Arrow a where
arr =(b—c)—abc
(>):abc—acd—abd
first :abc—a(b,d) (c,d)

» Every monad can be made into an arrow.
» Every arrow can be made into an applicative functor.

» Arrows turn out to require a complex set of additional
classes that add additional operations, and have a rather
complicated associated syntax proposal.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
5-33 NS

Summary

>

>

<
e

534 KN

Common interfaces are extremely powerful and give you a
huge amount of predefined theory and functions.

Look for common interfaces in your programs.

Recognise monads and applicative functors in your
programs.

Define or assemble your own monads.

Add new features to the monads you are using.

Monads and applicative functors make Haskell particularly
suited for Embedded Domain Specific Languages.

Monads (Wadler, Moggi) are stronger than applicative
functors. Applicative functors (McBride, Paterson) are
more flexible. Arrows (Hughes) are yet another alternative.

Monads have proved themselves. Time will tell whether
Applicative functors or arrows can be equally successful.

[Faculty of Science

%
N) % Universiteit Utrecht Information and Computing Sciences]

