
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Nov 27, 2012

[Faculty of Science
Information and Computing Sciences]

6-1

6. Functional Dependencies, Generalized
Algebraic Datatypes (GADTs), The Lambda

Cube

[Faculty of Science
Information and Computing Sciences]

6-2

This lecture

[Faculty of Science
Information and Computing Sciences]

6-3

6.1 Multiple parameters and functional
dependencies

[Faculty of Science
Information and Computing Sciences]

6-4

Multi-parameter type classes

This extension allows type classes to have multiple parameters:

class Collection c a where
union :: c a→ c a→ c a
elem :: a → c a→ Bool
empty :: c a

Why is

class Collection c where
union :: c a→ c a→ c a
elem :: a → c a→ Bool
empty :: c a

not an option?

[Faculty of Science
Information and Computing Sciences]

6-4

Multi-parameter type classes

This extension allows type classes to have multiple parameters:

class Collection c a where
union :: c a→ c a→ c a
elem :: a → c a→ Bool
empty :: c a

Why is

class Collection c where
union :: c a→ c a→ c a
elem :: a → c a→ Bool
empty :: c a

not an option?

[Faculty of Science
Information and Computing Sciences]

6-5

Multi-parameter type classes (contd.)

This form is still suboptimal:

class Collection c a where
union :: c a→ c a→ c a
elem :: a → c a→ Bool
empty :: c a

What about Data.IntSet.IntSet? It is not of the form c a, so it
cannot be made an instance of Collection, even though it
supports all the methods.

Another idea:

class Collection ca a where
union :: ca→ ca→ ca
elem :: a → ca→ Bool
empty :: ca

[Faculty of Science
Information and Computing Sciences]

6-5

Multi-parameter type classes (contd.)

This form is still suboptimal:

class Collection c a where
union :: c a→ c a→ c a
elem :: a → c a→ Bool
empty :: c a

What about Data.IntSet.IntSet? It is not of the form c a, so it
cannot be made an instance of Collection, even though it
supports all the methods.

Another idea:

class Collection ca a where
union :: ca→ ca→ ca
elem :: a → ca→ Bool
empty :: ca

[Faculty of Science
Information and Computing Sciences]

6-6

Multi-parameter type classes (contd.)

class Collection ca a where
union :: ca→ ca→ ca
elem :: a → ca→ Bool
empty :: ca

Problem 1

empty :: (Collection ca a)⇒ ca

has an ambiguous type.

Problem 2

test :: (Collection ca Bool,Collection ca String)⇒ ca→ Bool
test coll = elem True coll ∧ elem "foo" coll

is type-correct, but intuitively should not be.

[Faculty of Science
Information and Computing Sciences]

6-7

Functional dependencies

class Collection ca a | ca→ a where
. . .

I This indicates that ca determines a. It restricts the
admissible instances.

instance Collection IntSet Int

is possible, a subsequent

instance Collection IntSet Bool

is now disallowed.

I Solves both the problems just mentioned . . .

[Faculty of Science
Information and Computing Sciences]

6-8

Functional dependencies (contd.)

With functional dependencies, the type

empty :: (Collection ca a)⇒ ca

is no longer ambiguous.

instance Collection IntSet Int
empty :: IntSet

Now correct. The inferred class constraint Collection IntSet a
can be improved to Collection IntSet Int and then be reduced.

[Faculty of Science
Information and Computing Sciences]

6-8

Functional dependencies (contd.)

With functional dependencies, the type

empty :: (Collection ca a)⇒ ca

is no longer ambiguous.

instance Collection IntSet Int
empty :: IntSet

Now correct. The inferred class constraint Collection IntSet a
can be improved to Collection IntSet Int and then be reduced.

[Faculty of Science
Information and Computing Sciences]

6-9

Functional dependencies (contd.)

test :: (Collection ca Bool,Collection ca String)⇒ ca→ Bool
test coll = elem True coll ∧ elem "foo" coll

No longer ok, because the two constraints cannot be satisfied at
the same time while respecting the functional dependency.

[Faculty of Science
Information and Computing Sciences]

6-10

Functional dependencies (contd.)

Functional dependencies are extremely powerful and (in
conjunction with other extensions) can encode many
computations:

data Zero = Zero
data Succ a = Succ a

class Add x y z | x y→ z where
add :: x→ y→ z

instance Add Zero x x
where add Zero x = x

instance Add n x r⇒ Add (Succ n) x (Succ r)
where add (Succ n) x = Succ (add n x)

Main〉 : t add (Succ Zero) (Succ Zero)
add (Succ Zero) (Succ Zero) :: Succ (Succ Zero)

Addition performed by the type system!

[Faculty of Science
Information and Computing Sciences]

6-11

6.2 Type families

[Faculty of Science
Information and Computing Sciences]

6-12

Associated types

An alternative to functional dependencies. Type synonyms and
datatypes are allowed in classes:

class Collection c where
type Elem c
union :: c→ c→ c
elem :: Elem c→ c→ Bool
empty :: c

instance Collection IntSet where
type Elem IntSet = Int
. . .

Associated type synonyms trigger equality constraints, a
different form of qualified types:

elem False :: (Bool∼Elem c,Collection c)⇒ c→ Bool

[Faculty of Science
Information and Computing Sciences]

6-13

Type families

Like associated types, but the class declaration remains implicit:

type family Elem c :: ∗
type instance Elem IntSet = Int

Associated datatypes and datatype families are also supported.

[Faculty of Science
Information and Computing Sciences]

6-14

Type families (contd.)

Using type families, type-level functions look a bit more like
ordinary functions:

type family Add n x :: ∗
type instance Add Zero x = x
type instance Add (Succ n) x = Succ (Add n x)

[Faculty of Science
Information and Computing Sciences]

6-15

Fundeps vs. type families

Functional dependencies are controversial, because

I they lead to logic programming on the type level (as
opposed to functional programming),

I their interaction with other type system features (such as
GADTs) is somewhat broken,

I because their use has some strange restrictions.

The latter features are problems with the implementation rather
than the concepts.

[Faculty of Science
Information and Computing Sciences]

6-16

Fundeps vs. type families (contd.)

Type families have been proposed as a replacement for
functional dependencies.

I Type families allow a more functional style of programming.

I However, they expose a new language concept to the user
(equality constraints).

I Just those equality constraints make the connection to
GADTs somewhat easier.

I They are much more recent, therefore most libraries
(monad transformers, HList, . . .) still use functional
dependencies.

[Faculty of Science
Information and Computing Sciences]

6-17

Case study: Heterogeneous lists

The HList library makes use of functional dependencies in order
to support heterogenous lists.

data HNil = HNil
data HCons e l = HCons e l
type (:∗ :) = HCons

class HMap f l l′ | f l→ l′ where hMap :: f → l→ l′

instance HMap f HNil HNil where
hMap f HNil = HNil

instance (Apply f x y,HMap f xs ys)⇒
HMap f (HCons x xs) (HCons y ys) where

hmap f (HCons x xs) = HCons (apply f x) (hmap f xs)

class Apply f a r | f a→ r where apply :: f → a→ r
instance Apply (x→ y) x y

[Faculty of Science
Information and Computing Sciences]

6-18

Heterogeneous lists (contd.)

The HList library can be used to encode

I typed heterogenous lists or stacks

I extensible records

I objects

[Faculty of Science
Information and Computing Sciences]

6-19

More class system extensions . . .

I Local or named instances.

I Implicit parameters.

I Explicit implicit parameters.

I Quantified instances.

I Recursive dictionaries.

I Alternative translation methods.

I Cyclic class hierarchy.

I Backtracking.

I . . .

[Faculty of Science
Information and Computing Sciences]

6-20

6.3 GADTs

[Faculty of Science
Information and Computing Sciences]

6-21

A datatype

data Tree a = Leaf
| Node (Tree a) a (Tree a)

Introduces:

I a new datatype Tree of kind ∗ → ∗.
I constructor functions

Leaf :: Tree a
Node :: Tree a→ a→ Tree a→ Tree a

I the possiblity to use the constructors Leaf and Node in
patterns.

[Faculty of Science
Information and Computing Sciences]

6-21

A datatype

data Tree a = Leaf
| Node (Tree a) a (Tree a)

Introduces:

I a new datatype Tree of kind ∗ → ∗.
I constructor functions

Leaf :: Tree a
Node :: Tree a→ a→ Tree a→ Tree a

I the possiblity to use the constructors Leaf and Node in
patterns.

[Faculty of Science
Information and Computing Sciences]

6-22

Alternative syntax

Observation

The types of the constructor functions contain sufficient
information to describe the datatype.

data Tree :: ∗ → ∗ where
Leaf :: Tree a
Node :: Tree a→ a→ Tree a→ Tree a

Are there any restrictions regarding the types of the
constructors?

[Faculty of Science
Information and Computing Sciences]

6-23

Algebraic datatypes

Constructors of an algebraic datatype T must:

I target type T,

I result in a simple type, i.e., T a1 . . . an where a1, . . . , an are
distinct type variables.

Question

Does it make sense to lift these restrictions?

[Faculty of Science
Information and Computing Sciences]

6-24

Excursion: Writing an interpreter

data Expr =
Int Int
| Bool Bool
| IsZero Expr
| Plus Expr Expr
| If Expr Expr Expr

data Expr :: ∗ where
Int :: Int→ Expr
Bool :: Bool→ Expr
IsZero :: Expr→ Expr
Plus :: Expr→ Expr→ Expr
If :: Expr→ Expr→ Expr→ Expr

Imagined concrete syntax:

if isZero (0 + 1) then False else True

Abstract syntax:

If (IsZero (Plus (Int 0) (Int 1))) (Bool False) (Bool True)

[Faculty of Science
Information and Computing Sciences]

6-25

Evaluation

data Val =
VInt Int
| VBool Bool

data Val :: ∗ where
VInt :: Int→ Val
VBool :: Bool→ Val

eval :: Expr→ Val
eval (Int n) = VInt n
eval (Bool b) = VBool b
eval (IsZero e) = case eval e of

VInt n→ VBool (n = = 0)
→ error "type error"

eval (Plus e1 e2) = case (eval e1, eval e2) of
(VInt n1,VInt n2)→ VInt (n1 + n2)

→ error "type error"

eval (If e1 e2 e3) = case eval e1 of
VBool b→ if b then eval e2 else eval e3

→ error "type error"

[Faculty of Science
Information and Computing Sciences]

6-26

Evaluation (contd.)

I Evaluation code is mixed with code for handling type
errors.

I The evaluator uses tags (i.e., constructors) to dinstinguish
values – these tags are maintained and checked at run
time.

I Run-time type errors can, of course, be prevented by
writing a type checker.

I But even if we know that we only have type-correct terms,
the Haskell compiler does not enforce this.

[Faculty of Science
Information and Computing Sciences]

6-26

Evaluation (contd.)

I Evaluation code is mixed with code for handling type
errors.

I The evaluator uses tags (i.e., constructors) to dinstinguish
values – these tags are maintained and checked at run
time.

I Run-time type errors can, of course, be prevented by
writing a type checker.

I But even if we know that we only have type-correct terms,
the Haskell compiler does not enforce this.

[Faculty of Science
Information and Computing Sciences]

6-27

An idea

What if we encode the type of the term in the Haskell type?

data Expr :: ∗ where
Int :: Int→ Expr
Bool :: Bool→ Expr
IsZero :: Expr→ Expr
Plus :: Expr→ Expr→ Expr
If :: Expr→ Expr→ Expr→ Expr

data Expr :: ∗ → ∗ where
Int :: Int→ Expr Int
Bool :: Bool→ Expr Bool
IsZero :: Expr Int→ Expr Bool
Plus :: Expr Int→ Expr Int→ Expr Int
If :: Expr Bool→ Expr a→ Expr a→ Expr a

[Faculty of Science
Information and Computing Sciences]

6-28

GADTs

GADTs lift the restriction that constructors must target a
simple type.

I Constructors can target a subset of the type.
I Interesting consequences for pattern matching:

I when case-analyzing an Expr Int, it cannot be constructed
by Bool or IsZero;

I when case-analyzing an Expr Bool, it cannot be
constructed by Int or Plus;

I when case-analyzing an Expr a, once we encounter the
constructor IsZero in a pattern, we know that we have in
fact a Expr Bool;

I . . .

[Faculty of Science
Information and Computing Sciences]

6-29

Evaluation revisited

eval :: Expr a→ a
eval (Int n) = n
eval (Bool b) = b
eval (IsZero e) = (eval e) = = 0
eval (Plus e1 e2) = eval e1 + eval e2
eval (If e1 e2 e3) = if eval e1 then eval e2 else eval e3

I No possibility for run-time failure (modulo ⊥).

I No tags required.

I Pattern matching on a GADT requires a type signature.
Why?

[Faculty of Science
Information and Computing Sciences]

6-30

Type signatures are required . . .

data X :: ∗ → ∗where
C :: Int→ X Int
D :: X a

f (C n) = [n]
f D = []

Question

What is the type of f?

Answer

f :: X a→ [Int]
f :: X a→ [a]

None of the two is an instance of the other.

[Faculty of Science
Information and Computing Sciences]

6-30

Type signatures are required . . .

data X :: ∗ → ∗where
C :: Int→ X Int
D :: X a

f (C n) = [n]
f D = []

Question

What is the type of f?

Answer

f :: X a→ [Int]
f :: X a→ [a]

None of the two is an instance of the other.

[Faculty of Science
Information and Computing Sciences]

6-31

GADTs subsume existentials

Let us extend the expression types with pair construction and
projection:

data Expr :: ∗ → ∗ where
Int :: Int→ Expr Int
Bool :: Bool→ Expr Bool
IsZero :: Expr Int→ Expr Bool
Plus :: Expr Int→ Expr Int→ Expr Int
If :: Expr Bool→ Expr a→ Expr a→ Expr a

Pair :: Expr a→ Expr b→ Expr (a, b)
Fst :: Expr (a, b)→ Expr a
Snd :: Expr (a, b)→ Expr b

For Fst and Snd, the type of the non-projected component is
hidden.

[Faculty of Science
Information and Computing Sciences]

6-32

Evaluation again

eval :: Expr a→ a
eval . . .

eval (Pair x y) = (eval x, eval y)
eval (Fst p) = fst (eval p)
eval (Snd p) = snd (eval p)

[Faculty of Science
Information and Computing Sciences]

6-33

6.4 Example: Vectors

[Faculty of Science
Information and Computing Sciences]

6-34

Natural numbers and vectors

Natural numbers can be encoded as types – no constructors are
required.

data Zero
data Succ a

Vectors are lists with a fixed number of elements:

data Vec :: ∗ → ∗ → ∗where
Nil :: Vec a Zero
Cons :: a→ Vec a n→ Vec a (Succ n)

Unlike HLists, vectors are homogeneous.

[Faculty of Science
Information and Computing Sciences]

6-34

Natural numbers and vectors

Natural numbers can be encoded as types – no constructors are
required.

data Zero
data Succ a

Vectors are lists with a fixed number of elements:

data Vec :: ∗ → ∗ → ∗where
Nil :: Vec a Zero
Cons :: a→ Vec a n→ Vec a (Succ n)

Unlike HLists, vectors are homogeneous.

[Faculty of Science
Information and Computing Sciences]

6-35

Type-safe head and tail

head :: Vec a (Succ n)→ a
head (Cons x xs) = x

tail :: Vec a (Succ n)→ Vec a n
tail (Cons x xs) = xs

I No case for Nil is required.

I Actually, a case for Nil results in a type error.

[Faculty of Science
Information and Computing Sciences]

6-36

More functions on vectors

map :: (a→ b)→ Vec a n→ Vec b n
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

zipWith :: (a→ b→ c)→ Vec a n→ Vec b n→ Vec c n
zipWith op Nil Nil = Nil
zipWith op (Cons x xs) (Cons y ys) = Cons (op x y)

(zipWith op xs ys)

We require that the two vectors have the same length!

[Faculty of Science
Information and Computing Sciences]

6-37

Yet more functions on vectors

snoc :: Vec a n→ a→ Vec a (Succ n)
snoc Nil y = Cons y Nil
snoc (Cons x xs) y = Cons x (snoc xs y)

reverse :: Vec a n→ Vec a n
reverse Nil = Nil
reverse (Cons x xs) = snoc xs x

What about (++)?

[Faculty of Science
Information and Computing Sciences]

6-38

6.5 Problematic functions

[Faculty of Science
Information and Computing Sciences]

6-39

Problematic functions

Append (++):

(++) :: Vec a m→ Vec a n→ Vec a (Sum m n)

Do we need functions on the type level?

Converting from lists to vectors:

fromList :: [a]→ Vec a n

Where does n come from?

[Faculty of Science
Information and Computing Sciences]

6-40

Writing vector append

There are multiple options to solve that problem:

I construct explicit evidence,

I use a type family.

[Faculty of Science
Information and Computing Sciences]

6-41

Explicit evidence

We encode the addition as another GADT:

data Sum :: ∗ → ∗ → ∗ → ∗ where
SumZero :: Sum Zero n n
SumSucc :: Sum m n s→ Sum (Succ m) n (Succ s)

append :: Sum m n s→ Vec a m→ Vec a n→ Vec a s
append SumZero Nil ys = ys
append (SumSucc p) (Cons x xs) ys = Cons x (append p xs ys)

Disadvantage: we must construct the evidence by hand!

We could use a multi-parameter type class with functional
dependencies, but even better is a . . .

[Faculty of Science
Information and Computing Sciences]

6-41

Explicit evidence

We encode the addition as another GADT:

data Sum :: ∗ → ∗ → ∗ → ∗ where
SumZero :: Sum Zero n n
SumSucc :: Sum m n s→ Sum (Succ m) n (Succ s)

append :: Sum m n s→ Vec a m→ Vec a n→ Vec a s
append SumZero Nil ys = ys
append (SumSucc p) (Cons x xs) ys = Cons x (append p xs ys)

Disadvantage: we must construct the evidence by hand!

We could use a multi-parameter type class with functional
dependencies, but even better is a . . .

[Faculty of Science
Information and Computing Sciences]

6-42

Type family

type family Sum m n :: ∗
type instance Sum Zero n = n
type instance Sum (Succ m) n = Succ (Sum m n)

(++) :: Vec a m→ Vec a n→ Vec a (Sum m n)
Nil ++ ys = ys
Cons x xs ++ ys = Cons x (xs ++ ys)

[Faculty of Science
Information and Computing Sciences]

6-43

Converting between lists and vectors

Unproblematic:

toList :: Vec a n→ [a]
toList Nil = []
toList (Cons x xs) = x : toList xs

Does not work:

fromList :: [a]→ Vec a n
fromList [] = Nil
fromList (x : xs) = Cons x (fromList xs)

Why? The type says that the result must be polymorphic in n,
and it is not!

[Faculty of Science
Information and Computing Sciences]

6-44

From lists to vectors

We can

I specify the length,

I hide the length using an existential type.

For the former, we have to reflect type-level natural numbers on
the value level:

data Nat :: ∗ → ∗ where
Zero :: Nat Zero
Succ :: Nat n→ Nat (Succ n)

[Faculty of Science
Information and Computing Sciences]

6-45

From lists to vectors (contd.)

data Nat :: ∗ → ∗ where
Zero :: Nat Zero
Succ :: Nat n→ Nat (Succ n)

fromList :: Nat→ [a]→ Vec a n
fromList Zero [] = Nil
fromList (Succ n) (x : xs) = Cons x (fromList n xs)
fromList = error "wrong length!"

We have to know the length in advance.

[Faculty of Science
Information and Computing Sciences]

6-46

From lists to vectors (contd.)

Using an existential type (in GADT notation):

data VecAny :: ∗ → ∗ where
VecAny :: Vec a n→ VecAny a

fromList :: [a]→ VecAny a
fromList [] = VecAny Nil
fromList (x : xs) = case fromList xs of

VecAny ys→ VecAny (Cons x ys)

We can combine the ideas and include a Nat in the packed type:

data VecAny :: ∗ → ∗ where
VecAny :: Nat n→ Vec a n→ VecAny a

