Advanced Functional Programming

 2012-2013, periode 2Doaitse Swierstra
Department of Information and Computing Sciences Utrecht University

Nov 27, 2012

6. Functional Dependencies, Generalized Algebraic Datatypes (GADTs), The Lambda
 Cube

This lecture

6.1 Multiple parameters and functional dependencies

Multi-parameter type classes

This extension allows type classes to have multiple parameters:

```
class Collection c a where
    union :: ca }->\textrm{ca}->\textrm{ca
    elem :: a }->\textrm{ca}->\mathrm{ Bool
    empty ::
    c a
```


Multi-parameter type classes

This extension allows type classes to have multiple parameters:

```
class Collection c a where
    union :: ca }->\textrm{ca}->\textrm{c
    elem :: a }->\textrm{ca}->\mathrm{ Bool
    empty ::
                            c a
```

Why is
class Collection c where

$$
\begin{aligned}
& \text { union }:: \mathrm{ca} \rightarrow \mathrm{ca} \rightarrow \mathrm{ca} \\
& \text { elem }:: \mathrm{a} \rightarrow \mathrm{ca} \rightarrow \text { Bool } \\
& \text { empty }::
\end{aligned}
$$

not an option?

Multi-parameter type classes (contd.)

This form is still suboptimal:

```
class Collection ca where
    union \(:: c a \rightarrow c a \rightarrow c a\)
    elem \(:: \mathrm{a} \rightarrow \mathrm{ca} \rightarrow\) Bool
    empty ::
        c a
```

What about Data.IntSet.IntSet? It is not of the form ca, so it cannot be made an instance of Collection, even though it supports all the methods.

Multi-parameter type classes (contd.)

This form is still suboptimal:

```
class Collection ca where
    union \(:: c a \rightarrow c a \rightarrow c a\)
    elem \(:: \mathrm{a} \rightarrow \mathrm{ca} \rightarrow\) Bool
empty ::
C a
```

What about Data.IntSet.IntSet? It is not of the form c a, so it cannot be made an instance of Collection, even though it supports all the methods.

Another idea:

```
class Collection ca a where
    union :: ca \(\rightarrow\) ca \(\rightarrow\) ca
    elem :: a ca \(\rightarrow\) Bool
    empty :: ca
```


Multi-parameter type classes (contd.)

class Collection ca a where

$$
\begin{aligned}
& \text { union }:: \mathrm{ca} \rightarrow \mathrm{ca} \rightarrow \mathrm{ca} \\
& \text { elem }:: \mathrm{a} \rightarrow \mathrm{ca} \rightarrow \text { Bool } \\
& \text { empty }:: \quad \text { ca }
\end{aligned}
$$

Problem 1
empty :: (Collection ca a) \Rightarrow ca
has an ambiguous type.
Problem 2
test :: (Collection ca Bool, Collection ca String) \Rightarrow ca \rightarrow Bool test coll = elem True coll \wedge elem "foo" coll
is type-correct, but intuitively should not be.

Functional dependencies

class Collection ca a | ca \rightarrow a where

- This indicates that ca determines a. It restricts the admissible instances.
| instance Collection IntSet Int
is possible, a subsequent
| instance Collection IntSet Bool
is now disallowed.
- Solves both the problems just mentioned ...

Functional dependencies (contd.)

With functional dependencies, the type
| empty :: (Collection ca a) \Rightarrow ca
is no longer ambiguous.

Functional dependencies (contd.)

With functional dependencies, the type
| empty :: (Collection ca a) \Rightarrow ca
is no longer ambiguous.
instance Collection IntSet Int empty :: IntSet

Now correct. The inferred class constraint Collection IntSet a can be improved to Collection IntSet Int and then be reduced.

Functional dependencies (contd.)

test :: (Collection ca Bool, Collection ca String) \Rightarrow ca \rightarrow Bool test coll $=$ elem True coll \wedge elem "foo" coll

No longer ok, because the two constraints cannot be satisfied at the same time while respecting the functional dependency.

Functional dependencies (contd.)

Functional dependencies are extremely powerful and (in conjunction with other extensions) can encode many computations:

```
data Zero = Zero
data Succ a = Succ a
class Add x y z| x y }->\textrm{z}\mathrm{ where
    add :: }\textrm{x}->\textrm{y}->\textrm{z
instance Add Zero x x
    where add Zero x = x
instance Add n x r m Add (Succ n) x (Succ r)
    where add (Succ n) x = Succ (add nx)
Main> : t add (Succ Zero) (Succ Zero)
add (Succ Zero) (Succ Zero) :: Succ (Succ Zero)
```


6.2 Type families

Associated types

An alternative to functional dependencies. Type synonyms and datatypes are allowed in classes:
class Collection c where
type Elem c
union $:: c \rightarrow c \rightarrow c$
elem $::$ Elem $\mathrm{c} \rightarrow \mathrm{c} \rightarrow$ Bool
empty :: c
instance Collection IntSet where
type Elem IntSet = Int

Associated type synonyms trigger equality constraints, a different form of qualified types:
elem False :: (Bool~Elem c, Collection c) $\Rightarrow \mathrm{c} \rightarrow$ Bool
[Faculty of Science
Universiteit Utrecht

Type families

Like associated types, but the class declaration remains implicit:
$\left\lvert\, \begin{aligned} & \text { type family Elem c :: * } \\ & \text { type instance Elem IntSet }=\operatorname{Int}\end{aligned}\right.$
Associated datatypes and datatype families are also supported.

Type families (contd.)

Using type families, type-level functions look a bit more like ordinary functions:
type family Add $\mathrm{n} x::$ * type instance Add Zero $\quad \mathrm{x}=\mathrm{x}$ type instance Add (Succ n) $x=$ Succ (Add $n x$)

Fundeps vs. type families

Functional dependencies are controversial, because

- they lead to logic programming on the type level (as opposed to functional programming),
- their interaction with other type system features (such as GADTs) is somewhat broken,
- because their use has some strange restrictions.

The latter features are problems with the implementation rather than the concepts.

Fundeps vs. type families (contd.)

Type families have been proposed as a replacement for functional dependencies.

- Type families allow a more functional style of programming.
- However, they expose a new language concept to the user (equality constraints).
- Just those equality constraints make the connection to GADTs somewhat easier.
- They are much more recent, therefore most libraries (monad transformers, HList, ...) still use functional dependencies.

Case study: Heterogeneous lists

The HList library makes use of functional dependencies in order to support heterogenous lists.

```
data HNil = HNil
data HCons e I = HCons e I
type (:*:) = HCons
```

class HMap $\mathrm{fII} \mid \mathrm{fI} \rightarrow \mathrm{I}^{\prime}$ where hMap $:: \mathrm{f} \rightarrow \mathrm{I} \rightarrow \mathrm{I}^{\prime}$
instance HMap f HNil HNil where
hMap f HNil $\quad=$ HNil
instance (Apply $f \times y$, HMap $f \times s$ ys) \Rightarrow
HMap $f(H C o n s x x s)$ (HCons y ys) where
hmap $f(H C o n s x x s)=H C o n s($ apply $f x)(h m a p f x s)$
class Apply far|fa \rightarrow r where apply $:: f \rightarrow a \rightarrow r$
instance Apply $(\mathrm{x} \rightarrow \mathrm{y}) \times \mathrm{y}$

Heterogeneous lists (contd.)

The HList library can be used to encode

- typed heterogenous lists or stacks
- extensible records
- objects

More class system extensions ...

- Local or named instances.
- Implicit parameters.
- Explicit implicit parameters.
- Quantified instances.
- Recursive dictionaries.
- Alternative translation methods.
- Cyclic class hierarchy.
- Backtracking.
- ...

6.3 GADTs

A datatype

$$
\begin{aligned}
\text { data Tree } a & =\text { Leaf } \\
& \mid \text { Node (Tree a) a (Tree a) }
\end{aligned}
$$

Introduces:

A datatype

data Tree $\mathrm{a}=$ Leaf

| Node (Tree a) a (Tree a)

Introduces:

- a new datatype Tree of kind $* \rightarrow *$.
- constructor functions

```
Leaf :: Tree a
Node :: Tree a }->\textrm{a}->\mathrm{ Tree a }->\mathrm{ Tree a
```

- the possiblity to use the constructors Leaf and Node in patterns.

Alternative syntax

Observation

The types of the constructor functions contain sufficient information to describe the datatype.
data Tree :: * $\rightarrow *$ where
Leaf :: Tree a
Node :: Tree a $\rightarrow \mathrm{a} \rightarrow$ Tree $\mathrm{a} \rightarrow$ Tree a
Are there any restrictions regarding the types of the constructors?

Algebraic datatypes

Constructors of an algebraic datatype T must:

- target type T,
- result in a simple type, i.e., $T a_{1} \ldots a_{n}$ where a_{1}, \ldots, a_{n} are distinct type variables.

Question

Does it make sense to lift these restrictions?

Excursion: Writing an interpreter

data Expr =
Int Int
Bool Bool
| IsZero Expr
Plus Expr Expr
If Expr Expr Expr

data Expr :: * where

Int $\quad::$ Int \rightarrow Expr
Bool :: Bool \rightarrow Expr
IsZero :: Expr \rightarrow Expr
Plus :: Expr \rightarrow Expr \rightarrow Expr
If $::$ Expr \rightarrow Expr \rightarrow Expr \rightarrow Expr

Imagined concrete syntax:
| if isZero $(0+1)$ then False else True
Abstract syntax:
If (IsZero (Plus (Int 0) (Int 1))) (Bool False) (Bool True)

Evaluation

> data Val $=$ VInt Int
> \mid VBool Bool
data Val :: * where
VInt :: Int \rightarrow Val
VBool :: Bool \rightarrow Val

```
eval :: Expr }->\mathrm{ Val
eval (Int n) = VInt n
eval (Bool b) = VBool b
eval (IsZero e) = case eval e of
```

 VInt \(\mathrm{n} \rightarrow\) VBool (\(\mathrm{n}==0\))
 - \(\quad \rightarrow\) error "type error"
 eval (Plus $\mathrm{e}_{1} \mathrm{e}_{2}$) = case (eval e_{1}, eval e_{2}) of
(VInt n1, VInt n2) \rightarrow VInt (n1 + n2)
\rightarrow error "type error"
eval (If $e_{1} e_{2} e_{3}$) = case eval e_{1} of
VBool $b \rightarrow$ if b then eval e_{2} else eval e_{3}
- $\quad \rightarrow$ error "type error"

Evaluation (contd.)

- Evaluation code is mixed with code for handling type errors.
- The evaluator uses tags (i.e., constructors) to dinstinguish values - these tags are maintained and checked at run time.

Evaluation (contd.)

- Evaluation code is mixed with code for handling type errors.
- The evaluator uses tags (i.e., constructors) to dinstinguish values - these tags are maintained and checked at run time.
- Run-time type errors can, of course, be prevented by writing a type checker.
- But even if we know that we only have type-correct terms, the Haskell compiler does not enforce this.

An idea

What if we encode the type of the term in the Haskell type?
data Expr :: * where
Int $\quad::$ Int \rightarrow Expr
Bool :: Bool \rightarrow Expr
IsZero :: Expr \rightarrow Expr
Plus :: Expr \rightarrow Expr \rightarrow Expr
If $\quad::$ Expr \rightarrow Expr \rightarrow Expr \rightarrow Expr
data Expr $:: * \rightarrow *$ where
Int $\quad::$ Int \rightarrow Expr Int
Bool :: Bool \rightarrow Expr Bool
IsZero :: Expr Int \rightarrow Expr Bool
Plus :: Expr Int \rightarrow Expr Int \rightarrow Expr Int
If $::$ Expr Bool \rightarrow Expr a \rightarrow Expr a \rightarrow Expr a

GADTs lift the restriction that constructors must target a simple type.

- Constructors can target a subset of the type.
- Interesting consequences for pattern matching:
- when case-analyzing an Expr Int, it cannot be constructed by Bool or IsZero;
- when case-analyzing an Expr Bool, it cannot be constructed by Int or Plus;
- when case-analyzing an Expr a, once we encounter the constructor IsZero in a pattern, we know that we have in fact a Expr Bool;

Evaluation revisited

$$
\left.\begin{array}{l}
\text { eval :: Expr } \mathrm{a} \rightarrow \mathrm{a} \\
\text { eval (Int } \mathrm{n}) \\
=\mathrm{n} \\
\text { eval (Bool } \mathrm{b}) \\
\text { eval (IsZero } \mathrm{e}) \\
\text { eval }\left(\text { Plus } \mathrm{e}_{1} \mathrm{e}_{2}\right) \\
\text { eval e eval } \mathrm{e}_{1}+=0 \\
\text { eval (If eval } \mathrm{e}_{2} \\
\left.\mathrm{e}_{2} \mathrm{e}_{3}\right)
\end{array}\right) \text { if eval } \mathrm{e}_{1} \text { then eval } \mathrm{e}_{2} \text { else eval } \mathrm{e}_{3} .
$$

- No possibility for run-time failure (modulo \perp).
- No tags required.
- Pattern matching on a GADT requires a type signature. Why?

Type signatures are required ...

> data $X:: * \rightarrow *$ where
> $\quad C:: \operatorname{Int} \rightarrow X \operatorname{lnt}$
> $D:: X$ a
> $\mathrm{f}(\mathrm{C} n)=[\mathrm{n}]$
> $\mathrm{f} D \quad=[]$
> Question

What is the type of f ?

Type signatures are required ...

$$
\begin{aligned}
& \text { data } X:: * \rightarrow * \text { where } \\
& \text { C }:: \text { Int } \rightarrow X \operatorname{lnt} \\
& D:: X \text { a } \\
& f(C n)=[n] \\
& \text { f } D=[]
\end{aligned}
$$

Question

What is the type of f ?
Answer

$$
\begin{aligned}
& \mathrm{f}:: \mathrm{X} a \rightarrow[\operatorname{lnt}] \\
& \mathrm{f}:: \mathrm{Xa} \rightarrow[\mathrm{a}]
\end{aligned}
$$

None of the two is an instance of the other.

GADTs subsume existentials

Let us extend the expression types with pair construction and projection:
data Expr $:: * \rightarrow *$ where
Int $\quad::$ Int \rightarrow Expr Int
Bool :: Bool \rightarrow Expr Bool
IsZero :: Expr Int \rightarrow Expr Bool
Plus :: Expr Int \rightarrow Expr Int \rightarrow Expr Int
If $\quad::$ Expr Bool \rightarrow Expr a \rightarrow Expr a \rightarrow Expr a
Pair $\quad::$ Expr $a \rightarrow$ Expr $b \rightarrow \operatorname{Expr}(\mathrm{a}, \mathrm{b})$
Fst $\quad::$ Expr $(a, b) \rightarrow$ Expr a
Snd $::$ Expr $(\mathrm{a}, \mathrm{b}) \rightarrow$ Expr b
For Fst and Snd, the type of the non-projected component is hidden.

Evaluation again

$$
\begin{aligned}
& \text { eval :: Expr a } \rightarrow \text { a } \\
& \text { eval... } \\
& \text { eval }(\text { Pair } \times y)=(\text { eval } \times \text {, eval } y) \\
& \text { eval (Fst p) }=\text { fst (eval } p \text {) } \\
& \text { eval (Snd p) }=\text { snd }(\text { eval } p)
\end{aligned}
$$

6.4 Example: Vectors

Natural numbers and vectors

Natural numbers can be encoded as types - no constructors are required.
data Zero
data Succ a

Natural numbers and vectors

Natural numbers can be encoded as types - no constructors are required.
data Zero
data Succ a
Vectors are lists with a fixed number of elements:
data Vec :: $* \rightarrow * \rightarrow *$ where
Nil :: Vec a Zero
Cons :: a \rightarrow Vec a $\mathrm{n} \rightarrow$ Vec a (Succ n)
Unlike HLists, vectors are homogeneous.

Type-safe head and tail

$$
\begin{aligned}
& \text { head }:: \text { Vec a }(\text { Succ } n) \rightarrow \mathrm{a} \\
& \text { head }(\text { Cons } \times \mathrm{xs})=\mathrm{x} \\
& \text { tail }:: \text { Vec a }(\text { Succ } n) \rightarrow \text { Vec a } n \\
& \text { tail }(\text { Cons } \times x \text { s })=x s
\end{aligned}
$$

- No case for Nil is required.
- Actually, a case for Nil results in a type error.

More functions on vectors

$$
\begin{aligned}
& \text { map :: }(\mathrm{a} \rightarrow \mathrm{~b}) \rightarrow \text { Vec a } \mathrm{n} \rightarrow \text { Vec } \mathrm{b} \mathrm{n} \\
& \operatorname{map} \mathrm{f} \text { Nil }=\text { Nil } \\
& \operatorname{map} f(\text { Cons } \mathrm{x} \times \mathrm{s})=\operatorname{Cons}(\mathrm{fx})(\operatorname{map} \mathrm{fx}) \\
& \text { zipWith }::(\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c}) \rightarrow \text { Vec } \mathrm{a} \mathrm{n} \rightarrow \text { Vec } \mathrm{b} \mathrm{n} \rightarrow \text { Vec } \mathrm{c} n \\
& \text { zipWith op Nil Nil }=\text { Nil } \\
& \text { zipWith op (Cons } \times \mathrm{xs} \text {) (Cons y ys) }=\text { Cons (op } \times \mathrm{y} \text {) } \\
& \text { (zipWith op xs ys) }
\end{aligned}
$$

We require that the two vectors have the same length!

Yet more functions on vectors

$$
\begin{aligned}
& \text { snoc:: Vec an } \rightarrow \text { a } \rightarrow \text { Vec a (Succ } n \text {) } \\
& \text { snoc Nil } \quad y=\text { Cons y Nil } \\
& \text { snoc (Cons } x \text { xs) } y=\text { Cons } x(\operatorname{snoc} x s y) \\
& \text { reverse :: Vec a } \mathrm{n} \rightarrow \text { Vec a } \mathrm{n} \\
& \text { reverse Nil }=\text { Nil } \\
& \text { reverse }(\text { Cons } \times \text { xs })=\operatorname{snoc} \times s \times
\end{aligned}
$$

What about (+)?

6.5 Problematic functions

Problematic functions

Append (+):
$\mid(+)::$ Vec a $m \rightarrow$ Vec a $n \rightarrow$ Vec a (Sum m n)
Do we need functions on the type level?

Converting from lists to vectors:
fromList :: [a] Vec a n
Where does n come from?

Writing vector append

There are multiple options to solve that problem:

- construct explicit evidence,
- use a type family.

Explicit evidence

We encode the addition as another GADT:
data Sum $:: * \rightarrow * \rightarrow * \rightarrow *$ where SumZero :: Sum Zero $n \mathrm{n}$
SumSucc :: Sum mns \rightarrow Sum (Succ m) n (Succ s)
append :: Sum mns \rightarrow Vec a $m \rightarrow$ Vec a $n \rightarrow$ Vec as
append SumZero Nil ys = ys
append (SumSucc p) (Cons $\times \mathrm{xs}$) ys $=$ Cons $\times($ append $\mathrm{p} \times \mathrm{s} \mathrm{ys})$
Disadvantage: we must construct the evidence by hand!

Explicit evidence

We encode the addition as another GADT:
data Sum :: $* \rightarrow * \rightarrow * \rightarrow *$ where
SumZero :: Sum Zero $n \mathrm{n}$
SumSucc :: Sum mns \rightarrow Sum (Succ m) n (Succ s)
append :: Sum mns \rightarrow Vec a $m \rightarrow$ Vec a $n \rightarrow$ Vec as
append SumZero Nil ys =ys
append (SumSucc p) (Cons $\times \mathrm{xs}$) ys $=$ Cons $\times($ append $\mathrm{p} \times \mathrm{s} \mathrm{ys})$
Disadvantage: we must construct the evidence by hand!
We could use a multi-parameter type class with functional dependencies, but even better is a ...

Type family

> type family Sum m $\quad n:: *$
> type instance Sum Zero $\quad \mathrm{n}=\mathrm{n}$
> type instance Sum (Succ m$) \mathrm{n}=$ Succ (Sum $\mathrm{m} n)$
> $(+)::$ Vec a $\mathrm{m} \rightarrow$ Vec a $\mathrm{n} \rightarrow$ Vec a $($ Sum $\mathrm{m} n)$
> Nil $\quad+\quad$ ys $=$ ys
> Cons $\times \mathrm{xs}+\quad$ ys $=$ Cons $\times(\mathrm{xs}+$ ys $)$

Converting between lists and vectors

Unproblematic:

$$
\begin{aligned}
& \text { toList }:: \text { Vec a } \mathrm{n} \rightarrow[\mathrm{a}] \\
& \text { toList Nil } \quad=[] \\
& \text { toList }(\text { Cons } \times \mathrm{xs}) \\
& =x: \text { toList } \mathrm{xs}
\end{aligned}
$$

Does not work:

```
fromList :: [a] }->\mathrm{ Vec a n
fromList [] = Nil
fromList (x:xs) = Cons x (fromList xs)
```

Why? The type says that the result must be polymorphic in n, and it is not!

From lists to vectors

We can

- specify the length,
- hide the length using an existential type.

For the former, we have to reflect type-level natural numbers on the value level:
data Nat :: $* \rightarrow *$ where

$$
\begin{aligned}
& \text { Zero :: Nat Zero } \\
& \text { Succ :: Nat } \mathrm{n} \rightarrow \text { Nat (Succ n) }
\end{aligned}
$$

From lists to vectors (contd.)

$$
\begin{aligned}
& \text { data Nat :: } * \rightarrow * \text { where } \\
& \text { Zero :: Nat Zero } \\
& \text { Succ :: Nat } \mathrm{n} \rightarrow \text { Nat (Succ } \mathrm{n}) \\
& \text { fromList :: Nat } \rightarrow[\mathrm{a}] \rightarrow \text { Vec a } \mathrm{n} \\
& \text { fromList Zero } \quad[] \quad=\text { Nil } \\
& \text { fromList (Succ } \mathrm{n})(\mathrm{x}: \mathrm{xs}) \\
& \text { = Cons } \times \text { (fromList } \mathrm{n} \times \mathrm{ss}) \\
& \text { fromList } \quad=\quad \text { error "wrong length! " }
\end{aligned}
$$

We have to know the length in advance.

From lists to vectors (contd.)

Using an existential type (in GADT notation):

$$
\begin{aligned}
& \text { data VecAny }:: * \rightarrow * \text { where } \\
& \quad \text { VecAny }:: \text { Vec a } \mathrm{n} \rightarrow \text { VecAny a }
\end{aligned}
$$

$$
\text { fromList }::[a] \rightarrow \text { VecAny a }
$$

$$
\text { fromList [] }=\text { VecAny Nil }
$$

$$
\text { fromList }(x: x s)=\text { case fromList } x s \text { of }
$$

$$
\text { VecAny ys } \rightarrow \text { VecAny (Cons } x \text { ys) }
$$

We can combine the ideas and include a Nat in the packed type:
data VecAny :: * \rightarrow * where
VecAny $::$ Nat $\mathrm{n} \rightarrow$ Vec a $\mathrm{n} \rightarrow$ VecAny a

