
[Faculty of Science
Information and Computing Sciences]

C12. Grafical User Interfaces: wxHaskell

Doaitse Swierstra

Utrecht University

December 3, 2012

[Faculty of Science
Information and Computing Sciences]

2

Graphical User Interfaces

Reading and writing to a terminal window and/or files is not so
interesting for most applications; instead we want to progra
graphical user interfaces.

[Faculty of Science
Information and Computing Sciences]

3

The ideal GUI-library

Requirements for an ideal gui-library:

I Efficiënt

I Portable

I Native look-and-feel

I A lot of standard functionality

I Easy to use

In case of Haskell:

I Possibility to abstrcat

I Fully typed, guarding against wrong usage of the libary

[Faculty of Science
Information and Computing Sciences]

4

Implementatie

In principle we can build up a gui-library from the ground.
THis is however a temendous amount of work.

Better idea: make use of existing infra structure.

[Faculty of Science
Information and Computing Sciences]

5

wxHaskell

(Daan Leijen, Utrecht, Haskell Workshop 2004)

I ‘Portable and concise’

I Constructed on top of wxWidgets

I Free (open source)

I Well documented

I http://haskell.org/haskellwiki/WxHaskell/

http://haskell.org/haskellwiki/WxHaskell/

[Faculty of Science
Information and Computing Sciences]

6

hsReversi

(Lucas Torreão, Emanoel Barreiros, Hilda Borborema
en Keldjan Alves)

[Faculty of Science
Information and Computing Sciences]

7

GeBoP

(Maarten Löffler)

[Faculty of Science
Information and Computing Sciences]

8

HCPN

(Claus Reinke)

[Faculty of Science
Information and Computing Sciences]

9

HPView

(Wei Tan)

[Faculty of Science
Information and Computing Sciences]

10

Track editor

(Ade Azurat, Arthur Baars, Eelco Dolstra
en Andres Löh)

[Faculty of Science
Information and Computing Sciences]

11

Ant simulator

(Duncan Coutts, Andres Löh, Ian Lynagh
en Ganesh Sittampalam)

[Faculty of Science
Information and Computing Sciences]

12

Proxima

(Martijn Schrage)

[Faculty of Science
Information and Computing Sciences]

13

Dazzle

(Martijn Schrage en Arjan van IJzendoorn)

[Faculty of Science
Information and Computing Sciences]

14

Hello, world!

Our first wxHaskell-program:

I A friendly greeting the the title bar

I A button to close the window

[Faculty of Science
Information and Computing Sciences]

15

Hello, world!

import Graphics.UI.WX
main :: IO ()
main = start hello
hello :: IO ()
hello = do f ← frame [text := "Hello, world!"]

quit← button f [text := "Quit"]
set quit [on command := close f]
set f [layout := widget quit]

[Faculty of Science
Information and Computing Sciences]

16

Hello, world!

From source code to executable (after installing the wx
package):

ghc Hello.hs

[1 of 1] Compiling Main (Hello.hs, Hello.o)

Linking Hello ...

[Faculty of Science
Information and Computing Sciences]

17

Interface construction

Initialisation of a wxHaskell-program:

start :: IO ()→IO ()

Functions which create an element in the interface get as
argument a possible parent in the widget tree and a list of
properties:

frame :: [Prop (Frame ())]→IO (Frame ())
button :: Window a→[Prop (Button ())]→IO (Button ())
panel :: Window a→[Prop (Panel ())] →IO (Panel ())

[Faculty of Science
Information and Computing Sciences]

18

Overerving

wxHaskell refelcts the OO-framework used by wxWidgets.
Inheritance is modelled by so-called phantom types:

type Object a = . . .

data CWindow a = . . .
data CFrame a = . . .
data CControl a = . . .
data CButton a = . . .

type Window a = Object (CWindow a)
type Frame a = Window (CFrame a)
type Control a = Window (CControl a)
type Button a = Control (CButton a)

[Faculty of Science
Information and Computing Sciences]

19

Inheritance: Hiërarchy

Unfolding the type synonyms shows the type hiërarchy:

Button () ' Control (CButton ())
' Window (CControl (CButton ()))
' Object (CWindow (CControl (CButton ())))

[Faculty of Science
Information and Computing Sciences]

20

Inheritance: Subtyping

type Frame a = Window (CFrame a)
frame :: [Prop (Frame ())]→IO (Frame ())
button :: Window a→[Prop (Button ())]→IO (Button ())

The function button may be called with a value of any subtype
of Window, so also can be passed a Frame:

gui = do f ← frame []
q ← button f []

. . .

[Faculty of Science
Information and Computing Sciences]

21

Goodbye!

Our second program:

I If we press the button the welcome message becomes a
goodbye message.

I If we press again the window is closed.

[Faculty of Science
Information and Computing Sciences]

22

Goodbye!: Initialisatone

import Graphics.UI.WX
main :: IO ()
main = start goodbye

[Faculty of Science
Information and Computing Sciences]

23

Goodbye!: Interface construction

goodbye :: IO ()
goodbye = do f ← frame [text := "Goodbye!"]

p← panel f []
t ← staticText p [text := "Hello, world!"]
q ← button p [text := "Bye"]
set q [on command := bye f t q]
set f [layout := container p

$ margin 50
$ column 5
$ [centre (widget t)

, centre (widget q)
]]

[Faculty of Science
Information and Computing Sciences]

24

Goodbye!: Event handler

bye :: Frame ()→StaticText ()→Button ()→IO ()
bye f t q = do txt← get t text

if txt ≡ "Hello, world!"

then set t [text := "Goodbye!"]
else close f

[Faculty of Science
Information and Computing Sciences]

25

Goodbye!: Demo

[Faculty of Science
Information and Computing Sciences]

26

Attributen

With every widget type we associate a couple of attributes:

data Attr w a = . . .

class Textual w where
text :: Attr w String
. . .

instance Textual (Window a) where . . .

[Faculty of Science
Information and Computing Sciences]

27

Properties

A property is a combination of an attribute and a concrete
value:

data Prop w = . . .
(:=) :: Attr w a→a→Prop w
set :: w→[Prop w]→IO ()
get :: w→Attr w a→IO a

For example:

gui = do f ← frame [text := "Hello, world"]
txt← get f text
set f [text := txt ++ "!"]
. . .

[Faculty of Science
Information and Computing Sciences]

28

Events
Events are objects to which we can connect actions (IO ()
values):

data Event w a = . . .

class Commanding w where
command :: Event w (IO ())

instance Commanding (Button a) where . . .

Using on an event is promoted to an event-handling attribute:

on :: Event w a→Attr w a

For example::

gui = do f ← frame []
q ← button f [on command := close f]

. . .

[Faculty of Science
Information and Computing Sciences]

29

Dynamic event handlers

Event handlers can, just like most of the other attributes be
replaced dynamically:.

For example::

bye :: Frame ()→StaticText ()→Button ()→IO ()
bye f t q = do txt← get t text

if txt ≡ "Hello, world!"

then set t [text := "Goodbye!"]
else close f

Nicer and more robust:

bye :: Frame ()→StaticText ()→Button ()→IO ()
bye f t q = do set t [text := "Goodbye!"]

set q [on command := close f]

[Faculty of Science
Information and Computing Sciences]

30

Bouncing balls:Demo

[Faculty of Science
Information and Computing Sciences]

31

Bouncing Balls: Initialisation

import Graphics.UI.WX
main :: IO ()
main = start balls

[Faculty of Science
Information and Computing Sciences]

32

Bouncing Balls: Constants

Width and heigth of the screen; radius of a ball:

width, height, radius :: Int
width = 300
height = 300
radius = 10

Maximal y-coördinate of a bal:

maxH :: Int
maxH = height− radius

[Faculty of Science
Information and Computing Sciences]

33

Stuiterballen

A point consists of an x- and a y-coördinate:

data Point = Point Int Int

We represent a bal by a list of future positions:

type Ball = [Point]
bouncing :: Point→Ball
bouncing (Point x y) = let hs = bounce (maxH− y) 0

in [Point x (maxH− h) | h← hs]
bounce :: Int→Int→[Int]
bounce h v
| h 6 0 ∧ v ≡ 0 = replicate 20 0
| h 6 0 ∧ v < 0 = bounce 0 ((−v)− 2)
| otherwise = h : bounce (h + v) (v− 1)

[Faculty of Science
Information and Computing Sciences]

34

Bouncing balls: Drawing the scene

We can draw on a device context:

type DC a = . . .

circle :: DC a→Point→Int→[Prop (DC a)]→IO ()

drawBall :: DC a→Point→IO ()
drawBall dc pt = circle dc pt radius []

[Faculty of Science
Information and Computing Sciences]

35

Bouncing Balls: Interface Construction

balls :: IO ()
balls = do

vballs← variable [value := []]
f ← frameFixed [text := "Bouncing balls"]
p ← panel f [on paint := paintBalls vballs

, bgcolor := white]
t ← timer f [interval := 20

, on command := next vballs p]
set p [on click := dropBall vballs]
set f [layout := minsize (sz width height)

$ widget p]

[Faculty of Science
Information and Computing Sciences]

36

Bouncing Balls: Event handler for (Re)Drawing

Ieder Window heeft een paint-Event:

class Paint w where . . .
instance Paint (Window a) where . . .

paint :: (Paint w)⇒ Event w (DC ()→Rect→IO ())

Teken elke bal op zijn eerstvolgende positie:

paintBalls :: Var [Ball]→DC a→Rect→IO ()
paintBalls vballs dc vw = do

bs← get vballs value
set dc [brushColor := red, brushKind := BrushSolid]
sequence [drawBall dc pt | (pt :)← bs]

[Faculty of Science
Information and Computing Sciences]

37

Bouncing Balls: Event handler for timer

In setting properties we can access the current value of the
properties:

(:∼) :: Attr w a→(a→a)→Prop w

For each ball we get the next position:

next :: Var [Ball]→Panel ()→IO ()
next vballs p = do

set vballs [value :∼ filter (¬ ◦ null) ◦map tail]
repaint p

[Faculty of Science
Information and Computing Sciences]

38

Bouncing Balls: Event handler for mouse clicks

Elk Window heeft een click-Event:

class Reactive w where . . .
instance Reactive (Window a) where . . .

click :: (Reactive w)⇒ Event w (Point→IO ())

Laat een bal los op de aangegeven positie:

dropBall :: Var [Ball]→Point→IO ()
dropBall vballs pt = set vballs [value :∼ (bouncing pt:)]

[Faculty of Science
Information and Computing Sciences]

39

properties: use

Properties are used when constructing new widgets:

button :: Window a→[Prop (Button ())]→IO (Button ())

q← button f [text := "Quit"]

using get en set:

get :: w→Attr w a→IO a
set :: w→[Prop w]→IO ()

x← get t interval
set t [interval := x]

[Faculty of Science
Information and Computing Sciences]

40

Property Constructors: Assigment

(:=) is an infix-constructor function:

(:=) :: Attr w a→a→Prop w

Had we assigned the name Assign to this constructor we would
have written:

[Assign interval 20]

of

[interval ‘Assign‘ 20]

instead of the more usual notation:

[interval := 20]

[Faculty of Science
Information and Computing Sciences]

41

Property Constructors: Updates

Yet another infix-constructor:

(:∼) :: Attr w a→(a→a)→Prop w

Compare:

x← get t interval
set t [interval := x + 1]

with

set t [interval :∼ succ]

[Faculty of Science
Information and Computing Sciences]

42

Mutable variables

When implementing the bouncing balls examples we used
mutable variables:

balls = do
vballs← variable [value := []]
. . .
p ← panel f [on paint := paintBalls vballs]
t ← timer f [on command := next vballs]
. . .

drawBalls vballs = do
bs← get vballs value
. . .

next vballs = set vballs [value :∼ filter (¬ ◦ null) ◦map tail]

[Faculty of Science
Information and Computing Sciences]

43

Actions on Variables

To preserve referential transparency,operation on mutable
variables are of type IO . . .:

variabele :: [Prop (Var a)]→IO (Var a)

A variabele holding a value of type a has type Var a:

class Valued w where
value :: Attr (w a) a

instance Valued Var where . . .

[Faculty of Science
Information and Computing Sciences]

44

Imperative Programming: Fibonacci-function

An elegant, but inefficiënt Fibonacci-function:

fib :: Int→Int
fib n | n < 2 = n

| otherwise = fib (n− 2) + fib (n− 1)

An efficiënt alternative:

fib :: Int→Int
fib n = fibs !! n

where
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

[Faculty of Science
Information and Computing Sciences]

45

Imperative programming: Imperatieve
Fibonacci-function

An imperatieve variant (but still proper Haskell):

fib :: Int→IO Int
fib n = do x← variable [value := 0]

y← variable [value := 1]
for [1 . . n] $ \ →do

u← get x value
v ← get y value
set x [value := v]
set y [value := u + v]

get x value
return x

for :: [a]→(a→IO b)→IO [b]
for xs f = sequence (map f xs)

[Faculty of Science
Information and Computing Sciences]

46

And now Efficient Haskell

fib n = fib′ n 1 0
where fib′ 0 x y = y

fib′ 1 x y = x
fib′ n x y = fib′ (n− 1) (x + y) x

[Faculty of Science
Information and Computing Sciences]

47

Pay attention!

Why can’t we just write:

set x [value := get y value]

What is the type of get y value?

get y value :: IO Int

and thus not just Int, as you might have expected. Reading a
variable really is an effect, hence IO.
Who understands what f (x++) + g (x--) means in C or
C++?

[Faculty of Science
Information and Computing Sciences]

47

Pay attention!

Why can’t we just write:

set x [value := get y value]

What is the type of get y value?

get y value :: IO Int

and thus not just Int, as you might have expected. Reading a
variable really is an effect, hence IO.
Who understands what f (x++) + g (x--) means in C or
C++?

[Faculty of Science
Information and Computing Sciences]

47

Pay attention!

Why can’t we just write:

set x [value := get y value]

What is the type of get y value?

get y value :: IO Int

and thus not just Int, as you might have expected. Reading a
variable really is an effect, hence IO.

Who understands what f (x++) + g (x--) means in C or
C++?

[Faculty of Science
Information and Computing Sciences]

47

Pay attention!

Why can’t we just write:

set x [value := get y value]

What is the type of get y value?

get y value :: IO Int

and thus not just Int, as you might have expected. Reading a
variable really is an effect, hence IO.
Who understands what f (x++) + g (x--) means in C or
C++?

[Faculty of Science
Information and Computing Sciences]

48

Layout-combinators

Widgets like Frame () and Panel () have an attribuut layout:

layout :: (Form w)⇒ Attr w Layout

For example:

main = start gui
gui = do f ← frame []

q← button f [on command := close f]
set f [layout := widget q]

[Faculty of Science
Information and Computing Sciences]

49

Combinatoren

Layoutscan be specified using a special set of combinators:

I Embedded: just Haskell-functins

I Defined in Graphics.UI.WXCore.Layout and
Graphics.UI.WX.Layout (zie documentatie)

I Re-exported by Graphics.UI.WX

[Faculty of Science
Information and Computing Sciences]

50

Building blocks

Primitive layouts:

label :: String →Layout
space :: Int→Int →Layout
rule :: Int→Int →Layout
widget :: (Widget w)⇒ w→Layout

Composing layouts:

grid :: Int→Int→[[Layout]]→Layout
container :: Window a→Layout→Layout
margin :: Int→Layout→Layout

[Faculty of Science
Information and Computing Sciences]

51

Abstractions

With a few primitives and combinators we can already define
abstractions:

empty :: Layout
empty = space 0 0

hrule, vrule :: Int→Layout
hrule n = rule n 1
vrule n = rule 1 n
row, column :: Int→[Layout]→Layout
row n ls = grid n 0 [ls]
column n ls = grid 0 n [[l] | l← ls]

[Faculty of Science
Information and Computing Sciences]

52

Filling empty space

What to do if a layout does not consume all available space?

I Alignment: wher does a layout show up?

I Expansion: how large will the layout be?

I Stretch: in which direction will the layout strech?

[Faculty of Science
Information and Computing Sciences]

53

Alingning

Position in the xtra space:

halignLeft :: Layout→Layout -- default
halignRight :: Layout→Layout
halignCenter :: Layout→Layout
valignTop :: Layout→Layout
valignBottom :: Layout→Layout
valignCenter :: Layout→Layout

[Faculty of Science
Information and Computing Sciences]

54

Extend

Filling the extra space:

rigid :: Layout→Layout -- default
shaped :: Layout→Layout -- follow parent
expand :: Layout→Layout -- fill and extend

[Faculty of Science
Information and Computing Sciences]

55

Strech

Probably reserving extra space:

static :: Layout→Layout -- default
hstretch :: Layout→Layout
vstretch :: Layout→Layout

Only interesting for grids.

Abstraction:

stretch :: Layout→Layout
stretch = hstretch ◦ vstretch

[Faculty of Science
Information and Computing Sciences]

56

Standard layouts: Extend and Float

Using these combinators we can program many layout policies:

alignCenter, alignBottomRight :: Layout→Layout
alignCenter = halignCenter ◦ valignCenter
alignBottomRight = halignRight ◦ valignBottom
floatCenter, floatBottomRight :: Layout→Layout
floatCenter = stretch ◦ alignCenter
floatBottomRight = stretch ◦ alignBottomRight

[Faculty of Science
Information and Computing Sciences]

57

Standaard layouts: Filling and Glueing en lijmen

More layout-patterns:

hfill, vfill, fill :: Layout→Layout
hfill = hstretch ◦ expand
vfill = vstretch ◦ expand
fill = hfill ◦ vfill
hglue, vglue, glue :: Layout→Layout
hglue = hstretch empty
vglue = vstretch empty
glue = stretch empty

[Faculty of Science
Information and Computing Sciences]

58

Layout Demo

[Faculty of Science
Information and Computing Sciences]

59

Layout Demo

main :: IO ()
main = start layoutDemo

[Faculty of Science
Information and Computing Sciences]

60

Layout Demo: Widgets

layoutDemo :: IO ()
layoutDemo = do

f ˆˆˆ ← frame [text := "Layout Demo"]
p ← panel f []
x ← entry p [text := "100"]
y ← entry p [text := "100"]
ok ← button p [text := "Ok"]
can ← button p [text := "Cancel"]
. . .

[Faculty of Science
Information and Computing Sciences]

61

Layout Demo: Layout

layoutDemo :: IO ()
layoutDemo = do

. . .
set f [layout := container p $ margin 5 $

column 10 [hfill $ space 0 20,
hfill $ hrule 0,
margin 10 $ grid 5 5
[[label "x", hfill (widget x)],
[label "y", hfill (widget y)]],

hfill $ hrule 0,
hfill $ space 0 20,
floatBottomRight $ row 5
[widget ok, widget can]]]

	Introduction wxHaskell
	Mutable variables
	Layout-combinators

