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10. Advanced parser Combinators
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10.1 Problems with “List of Successes”
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Recap: parser Combinators

The näıve implementation of parser combinators uses the
list-of-successes method, which is a combination of a state
mondad and a list monad:

(<∗>) :: Parser (b→ a)→ Parser b→ Parser a
p<∗> q = λinp→ [(b2a b, qrest) | (b2a, prest)← p inp

, (b, qrest) ← q prest
]

(<||>) :: Parser a→ Parser a→ Parser a
p<||> q = λinp→ p inp ++ q inp
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Problems with Erroneous Input

I If your input does not conform to the language recognized
by the parser all you get as a result is: [ ].

I It may take quite a while before you get this negative
result, since the backtracking may try all other alternatives
at all positions.

I There is no indication of where things went wrong.
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Problems with Space Consumption

I A complete result has to be constructed before any part
of it is returned

I The complete input is present in memory as long as no
parse has been found

I Efficiency may depend critically on the ordering of the
alternatives, and thus on how the grammar was written

For all of these problems we have found solutions.
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10.2 History Parsers
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Replace depth-first by breath-first

We introduce a Steps data type which contains a computed
result (using a GADT and an existential type, to which we will
come back later).

data Steps a where
Step :: Progress→ Steps a → Steps a
Apply :: ∀a b.(b→ a) → Steps b→ Steps a
Fail :: . . .

The Progress field describes how much progress we made in the
input (i.e. how much of the input was consumed by this step)
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Computing a result

We compute a result on the fly, and change the parser type into
a “continuation monad”:

newtype HP st a
= HP (∀r.(a→ st→ Steps r)→ st→ Steps r)

p

ah

Steps r
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best

We define the function which compares two alternatives.

best′ :: Steps b→ Steps b→ Steps b
Fail . . . ‘best′‘ . . . = Fail . . .
Fail . . . ‘best′‘ r = r
l ‘best′‘ Fail . . . = l

Step n l ‘best′‘ Step m r
| n = = m = Step n (l ‘best′‘ r)
| n<m = Step n (l ‘best′‘ Step (m− n) r)
| n>m = Step m (Step (n−m) l ‘best′‘ r)
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History parsers are Functor and Applicative

instance Functor (T st) where
fmap f (HP ph) = HP (λk→ ph (k ◦ f))

instance Applicative (HP state) where
HP ph<∗> ∼(HP qh)

= HP (λk→ ph (λpr→ qh (λqr→ k (pr qr))))
pure a = HP ($a)

instance Alternative (T state) where
HP ph<|> HP qh = HP (λk inp→ ph k inp ‘best‘ qh k inp)
empty = HP (λk inp→ noAlts)

p

b2a

q

bλpr λqr

HSteps r apply

λprqr

Hsteps r

λqr
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10.3 Online Result Construction
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Online results

One of the problems which remains is that we only have access
to the result once we have found a complete parse.

I for our just introduced parsers this is obvious

I but this also holds for the “list-of-successes” method; it is
caused by the pattern-matching in the sequential
composition

p<∗> q = λinp→ [(b2a b, rr) | (b2a, prest) ← p inp
, (b, qrest)← q prest

]

We only get the first element of the list of results once q has
found a match!
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Change of Specification

In principle the non-online behaviour is correct: we ask for a
complete result, and we can only get a result once we have
found at least one complete parse!

We observe that, while parsing according to our breadth-first
stategy, once we have only one living alternative left we could
just as well return the result corresponding to the recognised
part!

This is especially useful if we incorporate error-correction in
such a way that we are guaranteed to get at least one “possibly
succesfully corrected” parse.
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Future Based Parsers

newtype FP st a = FP (∀r.(st→ Steps r)→
st→ Steps (a, r)
)

We merge fragments of the result we are constructing with the
progress information:

p a r(a, r)
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best

We have to make sure that if we compare two alternatives we
have progress information at the head:

norm :: Steps a→ Steps a
norm (Apply f (Step p l )) = Step p (Apply f l)
norm (Apply f (Fail . . . )) = Fail . . .
norm (Apply f (Apply g l )) = norm (Apply (f ◦ g) l)
norm steps = steps

x ‘best‘ y = norm x ‘best′‘ norm y

best′ :: Steps b→ Steps b→ Steps b
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FP is Applicative

instance Applicative (FP state) where
FP pf <∗>∼(FP qf) = FP ((apply◦) ◦ (pf ◦ qf))
pure a = FP ((push a)◦)

instance Alternative (FP state) where
FP pf <|> FP qf = FP (λk inp→ pf k inp ‘best‘ qf k inp)
empty = FP (λk inp→ noAlts)
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Sequential composition for FParser

p b2a q b f(b, f)(b2a, (b, f))

apply(a, f) (b2a, (b, f))
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FParser is ISParser

pSym a = FP (λk inp→
case inp of (s : ss)→ if s = = a then addStep ◦ push s $ k ss

else Fail . . .
[ ] → Fail . . .
)
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Helper code

eval :: Steps r→ r
eval (Step n l ) = (eval l)
eval (Fail ss ls) = . . .
eval (Apply f l ) = f (eval l)

push :: v→ Steps r→ Steps (v, r)
push v = Apply (λr→ (v, r))

apply :: Steps (b→ a, (b, r))→ Steps (a, r)
apply = Apply (λ(b2a,∼(b, r))→ (b2a b, r))

Notice the ∼ in apply. This makes that the function can
already produce something!
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10.4 A Monadic Interface
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Monadic Interface: Parsing XML

Using a Monadic interface we can e.g. check an XML file for
well balanced tags:

data XML = Tag t [XML]
pMany p = (:)<$> p<∗> pMany p<|> pSucceed [ ]

pXML = do t← pOpenTag
Tag t<$> pMany pXML<∗ pCloseTag t
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Our first attempt” FP
instance Monad FP s where

p>>= q = λk i→ let steps = p (q pv k) i
(pv, ) = eval steps

in Apply snd steps
return v = pSucceed v

p pv q qv(qv, f)(qv, f)

pv

Unfortunately this is not correct. This may lead to a black hole,
since the value pv may not be available yet in q, when needed
in producing Steps. The function norm may push the value
information behind the progress information.
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Solution: Combining HP and FP
(>>=) :: HP st a→ (a→ FP st b)→ FP st b
p>>= q = FP (λk st→ p (λpv st′ → q pv k st′) st)

p

a

()
(b, f)

q1 b

q2 b

(b, f
)

(b, f)

f

f

a1

a2
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Making the solution into a Monad

Our next kind of parser is a tupling between a history based and
a future based parser:

data Parser s a = P (HP s a) (FP s a)

instance Applicative (Parser s) where
(P hp fp) <∗> ∼(P hq fq) = P (hp<∗> hq) (fp<∗> fq)
(P hp fp)<|> (P hq fq) = P (hp<|> hq) (fp<|> fq)
pSucceed a = P (pSucceed a) (pSucceed a)
pFail = P pFail pFail
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The Monadic Interface Code

instance Monad (Parser s) where
(P (HP p) )>>= qq

= P (HP (λk st→ p (λa st′ → unHP (qq a) k st′) st))
(FP (λk st→ p (λa st′ → unFP (qq a) k st′) st))

where unHP (P (HP h) ) = h
unFP (P (FP f) ) = f

return x = P (pSucceed x) (pSucceed x)

Note that from left hand side of the bind we always take the
history based parser, whereas for the right hand side we have
two cases to take care of.
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Further optimisations

Once we have started to tuple various variants of parsers we
might just as well:

I also tuple a pure recogniser, so we can avoid construction
of results which will be discarded anyway

I tuple a possibly empty parser, which is needed for an
efficient implementation of the permutation parser with
components that may be empty

I a list of possible starter symbols to be used in error
messages

I ...
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10.5 Error Correction
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Error correction

We can extend the system with an error correcting mechanism.

I we may delete a symbol, at a certain cost

I we may insert a symbol, at a certain cost

I the function best does not select the longest sequence of
steps, but the cheapest

I limited look-ahead is needed in order to get fast parsers
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The correction function pSym

We show a simplified error correcting parser:

data Steps result = Shift (Steps result)
| Fail (Steps result)
| Done

pSym a =
FP $ let pSym′

= λk input→
case input of
inp@(b : bs)→ if a = = b

then Step ◦ push b $ k bs
else Fail ◦ push a $ k bs

‘best‘
Fail (pSym′ k bs)

[ ] → Fail ◦ push a $ k input
in pSym′
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Refinement of Error-correcting Process

1. We may associate a cost with each insertion of deletion
step, so we can take the “cheapest future”; some symbols
are unlikely to have been forgotten.

2. Limited look-ahead in order to speed-up correction process

3. Store a report about the corrections taken in the state

4. Collect a list of expected symbols, in order to generate nice
error messages.

5. Use an abstract interpretation to find a non-recursive
alternative, in order to avoid infinite insertions.
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Computing the minimal length of an alternative

In each tuple which represents a parser we incorporate a value
of type Nat:

data Nat = Zero
| Succ Nat deriving Show

nat min :: Nat→ Nat→ Int→ (Nat,Bool)
nat min Zero = (Zero,False)
nat min Zero = (Zero,True)
nat min l Infinite = (l,True)
nat min (Succ ll) (Succ rr) n

= if n> 1000 then error "problem with comparing lengths"

else let (v, b) = nat min ll rr (n + 1)
in (Succ v, b))

nat add Zero r = r
nat add (Succ l) r = Succ (nat add l r))
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The Actual Parser Types

data P st a
= P (T st a) -- HP, FP and recogniser

(Maybe (T st a)) -- non-empty parsers

Nat -- minimal length

(Maybe a) -- possibly empty

And the parsing triple:

data T st a
= T -- history

(∀r.(a→ st→ Steps r)→ st→ Steps r )
-- future

(∀r.( st→ Steps r)→ st→ Steps (a, r))
-- recogniser

(∀r.( st→ Steps r)→ st→ Steps r )
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Dealing with Fail

We have been a bit sloppy about failing parsers. We now give
the full Fail-alternative of the Steps a type:

type Syms = [String ]
data Steps a where

Step :: Progress→ Steps a → Steps a
Apply :: ∀a b.(b→ a) → Steps b → Steps a
Fail :: Syms → [Syms→ (Int,Steps a)]→ Steps a

The Strings field keeps track of symbols which were expected.

The are collected in the function best

best′ :: Steps b→ Steps b→ Steps b
Fail sl ll ‘best′‘ Fail sr rr = Fail (sl ++ sr) (ll ++ rr)
Fail ‘best′‘ r = r
l ‘best′‘ Fail = l
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Getting rid of Fail

In case a repair was really necessary the function eval will
encounter a Fail in the list of steps:

1. all the expected symbols are apssed to all the alternatives

2. the resulting tree is examined upto a certain depth

3. the cheapest branch is taken

eval (Fail expected ls)
= eval (getCheapest 3 (map ($expected) ls))

eval . . .
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