
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

December 20, 2010

[Faculty of Science
Information and Computing Sciences]

11-1

11. Types and type classes

[Faculty of Science
Information and Computing Sciences]

11-2

This lecture

Types and type classes

Prerequisites

Type inference

Introduction to type classes

Qualified types

Evidence translation

Defaulting

Extensions

[Faculty of Science
Information and Computing Sciences]

11-3

11.1 Prerequisites

[Faculty of Science
Information and Computing Sciences]

11-4

Type checking vs. type inference

Type checking

Given a type-annotated program, decide whether the program is
correctly typed.

Type inference

Given an un-annotated program, recover all the type
annotations such that the annotated program is correctly typed.

[Faculty of Science
Information and Computing Sciences]

11-4

Type checking vs. type inference

Type checking

Given a type-annotated program, decide whether the program is
correctly typed.

Type inference

Given an un-annotated program, recover all the type
annotations such that the annotated program is correctly typed.

[Faculty of Science
Information and Computing Sciences]

11-5

Types and free variables

Question

How do we assign a type to a term with free variables?

λx . plus x one

Answer

We cannot unless we know the types of the free variables.

[Faculty of Science
Information and Computing Sciences]

11-5

Types and free variables

Question

How do we assign a type to a term with free variables?

λx . plus x one

Answer

We cannot unless we know the types of the free variables.

[Faculty of Science
Information and Computing Sciences]

11-6

Environments

We therefore do not assign types to terms, but types to terms
in a certain environment (also called context).

Environments

Γ ::= ε empty environment
| Γ, x : τ binding

Later bindings for a variable always shadow earlier bindings.

[Faculty of Science
Information and Computing Sciences]

11-7

The typing relation

A statement of the form

Γ ` e : τ

can be read as follows:

In environment Γ, term e has type τ .

Note that Γ ` e : τ is formally a ternary relation between an
environment, a term and a type.

The ` (called turnstile) and the colon are just notation for
making the relation look nice but carry no meaning. We could
have chosen the notation T (Γ, e, τ) for the relation as well, but
Γ ` e : τ is commonly used.

[Faculty of Science
Information and Computing Sciences]

11-7

The typing relation

A statement of the form

Γ ` e : τ

can be read as follows:

In environment Γ, term e has type τ .

Note that Γ ` e : τ is formally a ternary relation between an
environment, a term and a type.

The ` (called turnstile) and the colon are just notation for
making the relation look nice but carry no meaning. We could
have chosen the notation T (Γ, e, τ) for the relation as well, but
Γ ` e : τ is commonly used.

[Faculty of Science
Information and Computing Sciences]

11-8

Type rules

The relation is defined inductively, using inference rules.

Variables

x : τ ∈ Γ

Γ ` x : τ

Above the bar are the premises.

Below the bar is the conclusion.

If the premises hold, we can infer the conclusion.

[Faculty of Science
Information and Computing Sciences]

11-8

Type rules

The relation is defined inductively, using inference rules.

Variables

x : τ ∈ Γ

Γ ` x : τ

Above the bar are the premises.

Below the bar is the conclusion.

If the premises hold, we can infer the conclusion.

[Faculty of Science
Information and Computing Sciences]

11-8

Type rules

The relation is defined inductively, using inference rules.

Variables

x : τ ∈ Γ

Γ ` x : τ

Above the bar are the premises.

Below the bar is the conclusion.

If the premises hold, we can infer the conclusion.

[Faculty of Science
Information and Computing Sciences]

11-9

11.2 Type inference

[Faculty of Science
Information and Computing Sciences]

11-10

Damas-Milner type inference

(Also called Hindley-Milner type inference.)

Mainly based on a paper by Milner (1978).

This algorithm is:

I the basis of the algorithm used for the ML family of
languages as well as Haskell;

I allows type inference essentially for the simply-typed
lambda calculus extended with a limited form of
polymorphism (sometimes called let-polymorphism);

I is a “sweet spot” in the design space: some simple
extensions are possible (and performed), but fundamental
extensions are typically significantly more difficult.

[Faculty of Science
Information and Computing Sciences]

11-10

Damas-Milner type inference

(Also called Hindley-Milner type inference.)

Mainly based on a paper by Milner (1978).

This algorithm is:

I the basis of the algorithm used for the ML family of
languages as well as Haskell;

I allows type inference essentially for the simply-typed
lambda calculus extended with a limited form of
polymorphism (sometimes called let-polymorphism);

I is a “sweet spot” in the design space: some simple
extensions are possible (and performed), but fundamental
extensions are typically significantly more difficult.

[Faculty of Science
Information and Computing Sciences]

11-10

Damas-Milner type inference

(Also called Hindley-Milner type inference.)

Mainly based on a paper by Milner (1978).

This algorithm is:

I the basis of the algorithm used for the ML family of
languages as well as Haskell;

I allows type inference essentially for the simply-typed
lambda calculus extended with a limited form of
polymorphism (sometimes called let-polymorphism);

I is a “sweet spot” in the design space: some simple
extensions are possible (and performed), but fundamental
extensions are typically significantly more difficult.

[Faculty of Science
Information and Computing Sciences]

11-10

Damas-Milner type inference

(Also called Hindley-Milner type inference.)

Mainly based on a paper by Milner (1978).

This algorithm is:

I the basis of the algorithm used for the ML family of
languages as well as Haskell;

I allows type inference essentially for the simply-typed
lambda calculus extended with a limited form of
polymorphism (sometimes called let-polymorphism);

I is a “sweet spot” in the design space: some simple
extensions are possible (and performed), but fundamental
extensions are typically significantly more difficult.

[Faculty of Science
Information and Computing Sciences]

11-11

Monotypes and type schemes

Damas-Milner types can be polymorphic only on the outside.

That is why Haskell typically does not use an explicit universal
quantifier.

Monotypes

Monotypes τ are types built from variables and type
constructors.

Type schemes (or polytypes)

σ ::= τ monotype
| ∀α.σ quantified type

[Faculty of Science
Information and Computing Sciences]

11-12

The key idea

The Damas-Milner algorithm distinguishes lambda-bound and
let-bound (term) variables:

I lambda-bound variables are always assumed to have a
monotype;

I of let-bound variables, we know what they are bound to,
therefore they can have polymorphic type.

[Faculty of Science
Information and Computing Sciences]

11-13

Inference variables

Whenever a lambda-bound variable is encountered, a fresh
inference variable is introduced.

The variable represents a monotype.

When we learn more about the types, inference variables can be
substituted by types.

Inference variables are different from universally quantified
variables that express polymorphism.

[Faculty of Science
Information and Computing Sciences]

11-14

Term language

e ::= x variables
| e e application
| λx . e abstraction
| let x = e in e let binding

Only a simple language to start with, but we include let
compared to plain lambda calculus.

[Faculty of Science
Information and Computing Sciences]

11-15

Example

Assume an environment Γ ≡ neg : Nat→ Nat.

Consider λx . neg x.

For x, we introduce an inference variable v and assume x : v.

To typecheck neg x, we first determine the types of the
components.

From the environment we learn neg : Nat→ Nat and x : v.

We now unify Nat and v, introducing the substitution v 7→ Nat.

[Faculty of Science
Information and Computing Sciences]

11-15

Example

Assume an environment Γ ≡ neg : Nat→ Nat.

Consider λx . neg x.

For x, we introduce an inference variable v and assume x : v.

To typecheck neg x, we first determine the types of the
components.

From the environment we learn neg : Nat→ Nat and x : v.

We now unify Nat and v, introducing the substitution v 7→ Nat.

[Faculty of Science
Information and Computing Sciences]

11-15

Example

Assume an environment Γ ≡ neg : Nat→ Nat.

Consider λx . neg x.

For x, we introduce an inference variable v and assume x : v.

To typecheck neg x, we first determine the types of the
components.

From the environment we learn neg : Nat→ Nat and x : v.

We now unify Nat and v, introducing the substitution v 7→ Nat.

[Faculty of Science
Information and Computing Sciences]

11-15

Example

Assume an environment Γ ≡ neg : Nat→ Nat.

Consider λx . neg x.

For x, we introduce an inference variable v and assume x : v.

To typecheck neg x, we first determine the types of the
components.

From the environment we learn neg : Nat→ Nat and x : v.

We now unify Nat and v, introducing the substitution v 7→ Nat.

[Faculty of Science
Information and Computing Sciences]

11-15

Example

Assume an environment Γ ≡ neg : Nat→ Nat.

Consider λx . neg x.

For x, we introduce an inference variable v and assume x : v.

To typecheck neg x, we first determine the types of the
components.

From the environment we learn neg : Nat→ Nat and x : v.

We now unify Nat and v, introducing the substitution v 7→ Nat.

[Faculty of Science
Information and Computing Sciences]

11-15

Example

Assume an environment Γ ≡ neg : Nat→ Nat.

Consider λx . neg x.

For x, we introduce an inference variable v and assume x : v.

To typecheck neg x, we first determine the types of the
components.

From the environment we learn neg : Nat→ Nat and x : v.

We now unify Nat and v, introducing the substitution v 7→ Nat.

[Faculty of Science
Information and Computing Sciences]

11-16

Generalization and instantiation

Consider

let id = λx . x
in (id False, id ’x’)

Inference for λx . x gives us the type v→ v for some inference
variable v, and there are no further assumptions about v.

On a let-binding, the algorithm generalizes the inferred type as
much as possible, in this case to id : ∀a.a→ a.

For every use, a polymorphic type is instantiated with fresh
inference variables. For example, we get w→ w for the first
call, u→ u for the second.

The w gets unified with Bool, and u with Char.

[Faculty of Science
Information and Computing Sciences]

11-16

Generalization and instantiation

Consider

let id = λx . x
in (id False, id ’x’)

Inference for λx . x gives us the type v→ v for some inference
variable v, and there are no further assumptions about v.

On a let-binding, the algorithm generalizes the inferred type as
much as possible, in this case to id : ∀a.a→ a.

For every use, a polymorphic type is instantiated with fresh
inference variables. For example, we get w→ w for the first
call, u→ u for the second.

The w gets unified with Bool, and u with Char.

[Faculty of Science
Information and Computing Sciences]

11-16

Generalization and instantiation

Consider

let id = λx . x
in (id False, id ’x’)

Inference for λx . x gives us the type v→ v for some inference
variable v, and there are no further assumptions about v.

On a let-binding, the algorithm generalizes the inferred type as
much as possible, in this case to id : ∀a.a→ a.

For every use, a polymorphic type is instantiated with fresh
inference variables. For example, we get w→ w for the first
call, u→ u for the second.

The w gets unified with Bool, and u with Char.

[Faculty of Science
Information and Computing Sciences]

11-16

Generalization and instantiation

Consider

let id = λx . x
in (id False, id ’x’)

Inference for λx . x gives us the type v→ v for some inference
variable v, and there are no further assumptions about v.

On a let-binding, the algorithm generalizes the inferred type as
much as possible, in this case to id : ∀a.a→ a.

For every use, a polymorphic type is instantiated with fresh
inference variables. For example, we get w→ w for the first
call, u→ u for the second.

The w gets unified with Bool, and u with Char.

[Faculty of Science
Information and Computing Sciences]

11-16

Generalization and instantiation

Consider

let id = λx . x
in (id False, id ’x’)

Inference for λx . x gives us the type v→ v for some inference
variable v, and there are no further assumptions about v.

On a let-binding, the algorithm generalizes the inferred type as
much as possible, in this case to id : ∀a.a→ a.

For every use, a polymorphic type is instantiated with fresh
inference variables. For example, we get w→ w for the first
call, u→ u for the second.

The w gets unified with Bool, and u with Char.

[Faculty of Science
Information and Computing Sciences]

11-17

Generalization again

Not everything can be generalized – assume that
singleton : ∀a.a→ [a]

λx . let y = singleton x
in head y

For x, an inference variable v is introdued.

Consequently, we infer the type [v] for singleton x.

But we must not generalize the type of y to ∀a.[a].

We can only generalize if a variable is not mentioned in the
environment.

[Faculty of Science
Information and Computing Sciences]

11-17

Generalization again

Not everything can be generalized – assume that
singleton : ∀a.a→ [a]

λx . let y = singleton x
in head y

For x, an inference variable v is introdued.

Consequently, we infer the type [v] for singleton x.

But we must not generalize the type of y to ∀a.[a].

We can only generalize if a variable is not mentioned in the
environment.

[Faculty of Science
Information and Computing Sciences]

11-17

Generalization again

Not everything can be generalized – assume that
singleton : ∀a.a→ [a]

λx . let y = singleton x
in head y

For x, an inference variable v is introdued.

Consequently, we infer the type [v] for singleton x.

But we must not generalize the type of y to ∀a.[a].

We can only generalize if a variable is not mentioned in the
environment.

[Faculty of Science
Information and Computing Sciences]

11-17

Generalization again

Not everything can be generalized – assume that
singleton : ∀a.a→ [a]

λx . let y = singleton x
in head y

For x, an inference variable v is introdued.

Consequently, we infer the type [v] for singleton x.

But we must not generalize the type of y to ∀a.[a].

We can only generalize if a variable is not mentioned in the
environment.

[Faculty of Science
Information and Computing Sciences]

11-17

Generalization again

Not everything can be generalized – assume that
singleton : ∀a.a→ [a]

λx . let y = singleton x
in head y

For x, an inference variable v is introdued.

Consequently, we infer the type [v] for singleton x.

But we must not generalize the type of y to ∀a.[a].

We can only generalize if a variable is not mentioned in the
environment.

[Faculty of Science
Information and Computing Sciences]

11-18

Motivation: unification

Question

What is the type of the following expressions?

λx y→ ’a’

λx y→ if x then y else y
[λx y→ ’a’, λx y→ if x then y else y]

[Faculty of Science
Information and Computing Sciences]

11-19

Unification

Given two types that contain inference variables, a unification
of the two types is a substitution on inference variables that
makes both types equal.

[λx y→ ’a’, λx y→ if x then y else y]

We have to unify the two types

v→ w→ Char
Bool→ u→ u

u 7→ Char,w 7→ Char, v 7→ Bool

[Faculty of Science
Information and Computing Sciences]

11-19

Unification

Given two types that contain inference variables, a unification
of the two types is a substitution on inference variables that
makes both types equal.

[λx y→ ’a’, λx y→ if x then y else y]

We have to unify the two types

v→ w→ Char
Bool→ u→ u

u 7→ Char,w 7→ Char, v 7→ Bool

[Faculty of Science
Information and Computing Sciences]

11-19

Unification

Given two types that contain inference variables, a unification
of the two types is a substitution on inference variables that
makes both types equal.

[λx y→ ’a’, λx y→ if x then y else y]

We have to unify the two types

v→ w→ Char
Bool→ u→ u

u 7→ Char,w 7→ Char, v 7→ Bool

[Faculty of Science
Information and Computing Sciences]

11-20

Unification – contd.

What if we want to unify the following types:

v→ w→ Char
v→ w→ u

What about the substitution:

v 7→ w, u 7→ Char

We are interested in the minimal substitution.

[Faculty of Science
Information and Computing Sciences]

11-20

Unification – contd.

What if we want to unify the following types:

v→ w→ Char
v→ w→ u

What about the substitution:

v 7→ w, u 7→ Char

We are interested in the minimal substitution.

[Faculty of Science
Information and Computing Sciences]

11-20

Unification – contd.

What if we want to unify the following types:

v→ w→ Char
v→ w→ u

What about the substitution:

v 7→ w, u 7→ Char

We are interested in the minimal substitution.

[Faculty of Science
Information and Computing Sciences]

11-21

Unification – contd.

What if we want to unify the types:

w
v→ u

And how about

u
u→ u

A substitution u 7→ u→ u would result in an infinite type. Most
systems (including Haskell) reject infinite types, and make this
a type error.

[Faculty of Science
Information and Computing Sciences]

11-21

Unification – contd.

What if we want to unify the types:

w
v→ u

And how about

u
u→ u

A substitution u 7→ u→ u would result in an infinite type. Most
systems (including Haskell) reject infinite types, and make this
a type error.

[Faculty of Science
Information and Computing Sciences]

11-21

Unification – contd.

What if we want to unify the types:

w
v→ u

And how about

u
u→ u

A substitution u 7→ u→ u would result in an infinite type. Most
systems (including Haskell) reject infinite types, and make this
a type error.

[Faculty of Science
Information and Computing Sciences]

11-22

Idea of the unification algorithm

We distinguish the following cases:

I if we have two equal inference variables, then there is
nothing to do;

I if we have an inference variable and another type that does
not contain the inference variable (occurs check to
prevent infinite types), we substitute the variable by the
other type;

I if we have two function types, we recursively unify the
domains and codomains;

I if we have two equal type variables, there is nothing to do;

I if we have any other situation, unification fails.

[Faculty of Science
Information and Computing Sciences]

11-22

Idea of the unification algorithm

We distinguish the following cases:

I if we have two equal inference variables, then there is
nothing to do;

I if we have an inference variable and another type that does
not contain the inference variable (occurs check to
prevent infinite types), we substitute the variable by the
other type;

I if we have two function types, we recursively unify the
domains and codomains;

I if we have two equal type variables, there is nothing to do;

I if we have any other situation, unification fails.

[Faculty of Science
Information and Computing Sciences]

11-22

Idea of the unification algorithm

We distinguish the following cases:

I if we have two equal inference variables, then there is
nothing to do;

I if we have an inference variable and another type that does
not contain the inference variable (occurs check to
prevent infinite types), we substitute the variable by the
other type;

I if we have two function types, we recursively unify the
domains and codomains;

I if we have two equal type variables, there is nothing to do;

I if we have any other situation, unification fails.

[Faculty of Science
Information and Computing Sciences]

11-22

Idea of the unification algorithm

We distinguish the following cases:

I if we have two equal inference variables, then there is
nothing to do;

I if we have an inference variable and another type that does
not contain the inference variable (occurs check to
prevent infinite types), we substitute the variable by the
other type;

I if we have two function types, we recursively unify the
domains and codomains;

I if we have two equal type variables, there is nothing to do;

I if we have any other situation, unification fails.

[Faculty of Science
Information and Computing Sciences]

11-23

Principal types

There is a similar notion for types as we had for unifications.
One type can be more general than another:

a → b
(a, b) → (b, a)
(a, a) → (a, a)
(Int, Int)→ (Int, Int)

Damas-Milner type inference always infers the most general
type (called the principal type).

[Faculty of Science
Information and Computing Sciences]

11-23

Principal types

There is a similar notion for types as we had for unifications.
One type can be more general than another:

a → b
(a, b) → (b, a)
(a, a) → (a, a)
(Int, Int)→ (Int, Int)

Damas-Milner type inference always infers the most general
type (called the principal type).

[Faculty of Science
Information and Computing Sciences]

11-24

What is missing?

I Top-level declarations.

I Mutually recursive definitions.

I Explicit type annotations.

I Kinds.

I Datatypes and pattern matching.

I Type classes.

I . . .

[Faculty of Science
Information and Computing Sciences]

11-25

Type classes

I One of the features that makes Haskell ‘unique’.

I Predicates on types (but not types themselves!).

I Provide ad-hoc polymorphism or overloading.

I Extensible or open.

I Haskell 98 only allows unary predicates, but already allows
classes that range over types of different kinds (Eq and
Show vs. Functor and Monad).

I Lots of extensions.

I Can be translated into polymorphic lambda calculus Fω.

[Faculty of Science
Information and Computing Sciences]

11-26

11.3 Introduction to type classes

[Faculty of Science
Information and Computing Sciences]

11-27

Classes and instances

I A class declaration defines a predicate. Each member of a
class supports a certain set of methods.

I An instance declaration declares some types to be in the
class, and provides evidence of that fact by providing
implementations for the methods.

I Depending on the situation, we may ask different questions
about a type and a class:

I Is the type a member of the class (yes or no)?
I Why/how is the type a member of the class (give me

evidence, please)?

I Functions that use methods get class constraints that are
like proof obligations.

[Faculty of Science
Information and Computing Sciences]

11-28

Parametric vs. ad-hoc polymorphism

Parametric polymorphism

swap :: (a, b)→ (b, a)
swap (x, y) = (y, x)

Unconstrained variables can be instantiated to all types. No
assumptions about the type can be made in the definition of
the function. The function works uniformly for all types.

Ad-hoc polymorphism

between :: (Ord a)⇒ a→ a→ a→ Bool
between x y z = x 6 y ∧ y 6 z

Constrained variables can only be instantiated to members of
the class. Since each instance is specific to a type, the
behaviour can differ vastly depending on the type that is used.

[Faculty of Science
Information and Computing Sciences]

11-29

Restrictions

The Haskell 98 design is rather restrictive:

I only one type parameter per class

I only one instance per type

I superclasses are possible, but the class hierarchy must not
be cyclic

I instances can only be declared for simple types, types of
the form T a1 . . . an (where T is not a type synonym and
a1, . . . , an are type variables).

I instance or class contexts may only be of the form C a
(where a is a type variable).

I function contexts can only be of the form C (a t1 . . . tn)
(where a is a type variable and t1, . . . , tn are types possibly
containing variables).

[Faculty of Science
Information and Computing Sciences]

11-30

Examples: Restrictions

instance Eq a ⇒ Eq [a]
instance Eq [a]⇒ Eq [a] -- illegal
instance Eq Int ⇒ Eq [Int] -- illegal
instance Eq a ⇒ Eq (a,Bool) -- illegal
instance Eq [[a]] -- illegal
instance Eq String -- illegal

(Eq (f Int))⇒ f Int → f Int → Bool
(Eq [Int]) ⇒ [Int]→ [Int]→ Bool -- illegal
(Eq [a]) ⇒ [a] → [a] → Bool -- illegal

The restrictions ensure that instance resolution is efficient and
terminates, and that contexts are always reduced as much as
possible.

[Faculty of Science
Information and Computing Sciences]

11-30

Examples: Restrictions

instance Eq a ⇒ Eq [a]
instance Eq [a]⇒ Eq [a] -- illegal
instance Eq Int ⇒ Eq [Int] -- illegal
instance Eq a ⇒ Eq (a,Bool) -- illegal
instance Eq [[a]] -- illegal
instance Eq String -- illegal

(Eq (f Int))⇒ f Int → f Int → Bool
(Eq [Int]) ⇒ [Int]→ [Int]→ Bool -- illegal
(Eq [a]) ⇒ [a] → [a] → Bool -- illegal

The restrictions ensure that instance resolution is efficient and
terminates, and that contexts are always reduced as much as
possible.

[Faculty of Science
Information and Computing Sciences]

11-31

11.4 Qualified types

[Faculty of Science
Information and Computing Sciences]

11-32

Introduction

I Types with contexts are also called qualified types.

I Mark Jones describes a Theory of Qualified Types, which is
a framework of which the Haskell type class system is one
specific instance.

I Qualified types can also be used to track other properties
of types:

I presence or absence of labels in extensible records,
I subtyping conditions
I type equality constraints
I presence or absence of effects (see Hage, Holdermans,

Middelkoop, ICFP 2007)

[Faculty of Science
Information and Computing Sciences]

11-33

Example

Some contexts imply other contexts:

Eq Int Eq [Int]
Eq Bool,Ord Int Ord Int
∅ Eq Int

The latter holds if we assume globally that an instance for
Eq Int exists.

[Faculty of Science
Information and Computing Sciences]

11-34

Entailment

Entailment () is a relation on two contexts, i.e., between two
sets.

We assume that the following property (set-entails) holds:

P Q if and only if for all π in q, P π

[Faculty of Science
Information and Computing Sciences]

11-35

Basic entailment rules

The following rules are given by the framework for qualified
types:

Q ⊆ P

P Q
(mono)

P Q Q R

P R
(trans)

P Q ϕ is a substitution

ϕ P ϕ Q
(closure)

[Faculty of Science
Information and Computing Sciences]

11-36

Derived rules

Some properties can easily be derived from the previous rules.

Directly from (mono):

P P
(id)

P ∅
(term)

P,Q P
(fst)

P,Q Q
(snd)

From (mono) and (set-entails):

P Q P R

P Q,R
(univ)

[Faculty of Science
Information and Computing Sciences]

11-37

Derived rules – contd.

Using these rules, we can derive yet more complex (but still
widely useful) rules:

P Q P′ Q′

P,P′ Q,Q′ (dist)

Proof

P,P′ P
(mono)

P Q

P,P′ Q
(trans)

P,P′ P′ (mono)
P′ Q′

P,P′ Q′ (trans)

P,P′ Q,Q′ (univ)

[Faculty of Science
Information and Computing Sciences]

11-37

Derived rules – contd.

Using these rules, we can derive yet more complex (but still
widely useful) rules:

P Q P′ Q′

P,P′ Q,Q′ (dist)

Proof

P,P′ P
(mono)

P Q

P,P′ Q
(trans)

P,P′ P′ (mono)
P′ Q′

P,P′ Q′ (trans)

P,P′ Q,Q′ (univ)

[Faculty of Science
Information and Computing Sciences]

11-38

Type class entailment

Only these two rules are specific to the type class system:

P π class Q⇒ π

P Q
(super)

P Q instance Q⇒ π

P π
(inst)

Example

class Eq a⇒ Ord a

Ord a Eq a
(super)

The direction of the arrow is somewhat misleading. Not Eq a
implies Ord a, but the other way around. Read: “only if Eq a,
we can define Ord a”.

[Faculty of Science
Information and Computing Sciences]

11-38

Type class entailment

Only these two rules are specific to the type class system:

P π class Q⇒ π

P Q
(super)

P Q instance Q⇒ π

P π
(inst)

Example

class Eq a⇒ Ord a

Ord a Eq a
(super)

The direction of the arrow is somewhat misleading. Not Eq a
implies Ord a, but the other way around. Read: “only if Eq a,
we can define Ord a”.

[Faculty of Science
Information and Computing Sciences]

11-39

Validity of instances

Instance declarations must adhere to the class hierarchy:

class Q⇒ π P ϕ Q

instance P⇒ ϕ π is valid
(valid)

[Faculty of Science
Information and Computing Sciences]

11-40

Example: validity of instances

class (Eq a, Show a)⇒ Num a
class Foo a⇒ Bar a
class Foo a

instance (Eq a,Show a)⇒ Foo [a]
instance Num a ⇒ Bar [a]

c Foo a ⇒ Bar a

. . .

Num a Foo [a]

i Num a ⇒ Bar [a] is valid
(valid)

c (Eq a, Show a) ⇒ Num a

Num a (Eq a, Show a)
(class)

i (Eq a, Show a) ⇒ Foo [a]

Num a Foo [a]
(inst)

[Faculty of Science
Information and Computing Sciences]

11-40

Example: validity of instances

class (Eq a, Show a)⇒ Num a
class Foo a⇒ Bar a
class Foo a

instance (Eq a,Show a)⇒ Foo [a]
instance Num a ⇒ Bar [a]

c Foo a ⇒ Bar a

. . .

Num a Foo [a]

i Num a ⇒ Bar [a] is valid
(valid)

c (Eq a, Show a) ⇒ Num a

Num a (Eq a, Show a)
(class)

i (Eq a, Show a) ⇒ Foo [a]

Num a Foo [a]
(inst)

[Faculty of Science
Information and Computing Sciences]

11-40

Example: validity of instances

class (Eq a, Show a)⇒ Num a
class Foo a⇒ Bar a
class Foo a

instance (Eq a,Show a)⇒ Foo [a]
instance Num a ⇒ Bar [a]

c Foo a ⇒ Bar a

. . .

Num a Foo [a]

i Num a ⇒ Bar [a] is valid
(valid)

c (Eq a, Show a) ⇒ Num a

Num a (Eq a, Show a)
(class)

i (Eq a, Show a) ⇒ Foo [a]

Num a Foo [a]
(inst)

[Faculty of Science
Information and Computing Sciences]

11-41

Type rules

Usually, type rules are of the form

Γ ` e :: τ

where Γ is an environment mapping identifiers to types, e is an
expression, and t is a (possibly polymorphic) type.

With qualified types, type rules are of the form

P | Γ ` e :: τ

where P is a context representing (local) knowledge, and τ is a
(possibly polymorphic, possibly overloaded) type.

[Faculty of Science
Information and Computing Sciences]

11-41

Type rules

Usually, type rules are of the form

Γ ` e :: τ

where Γ is an environment mapping identifiers to types, e is an
expression, and t is a (possibly polymorphic) type.

With qualified types, type rules are of the form

P | Γ ` e :: τ

where P is a context representing (local) knowledge, and τ is a
(possibly polymorphic, possibly overloaded) type.

[Faculty of Science
Information and Computing Sciences]

11-42

Context reduction

P | Γ ` e :: π ⇒ ρ P π
P | Γ ` e :: ρ

(context-reduce)

Haskell’s type inference applies this rule where adequate:

(= =) :: (Eq a)⇒ a→ a→ Bool
"hello" :: String
"hello" = = "hello" :: Bool

Requires ∅ Eq String.

[Faculty of Science
Information and Computing Sciences]

11-43

Context introduction

P, π | Γ ` e :: ρ

P | Γ ` e :: π ⇒ ρ
(context-intro)

Haskell’s type inference applies this rule when generalizing in a
let or a toplevel declaration:

between x y z = x 6 y ∧ y 6 z

Inferred to be of type (Ord a)⇒ a→ a→ a→ Bool.

[Faculty of Science
Information and Computing Sciences]

11-44

A strange error

Using the following definition in a Haskell module results in a
type error:

maxList = maximum

Monomorphism restriction

A toplevel value without an explicit type signature is never
overloaded.

[Faculty of Science
Information and Computing Sciences]

11-44

A strange error

Using the following definition in a Haskell module results in a
type error:

maxList = maximum

Monomorphism restriction

A toplevel value without an explicit type signature is never
overloaded.

[Faculty of Science
Information and Computing Sciences]

11-45

11.5 Evidence translation

[Faculty of Science
Information and Computing Sciences]

11-46

Translating type classes

Type classes can be translated into a lambda calculus without
type classes as follows:

I Each class declaration defines a record type (also called
dictionary).

I Each instance declaration defines a function resulting in
the dictionary type.

I Each method call selects the corresponding field from the
dictionary.

I Context introduction corresponds to the abstraction of
function arguments of dictionary type.

I Context reduction corresponds to the implicit construction
and application of a dictionary argument.

[Faculty of Science
Information and Computing Sciences]

11-47

Example: evidence translation

class E a where
e :: a → a → Bool

instance E Int where
e = (= =)

instance E a ⇒ E [a] where
e [] [] = True
e (x : xs) (y : ys) = e x y ∧ e xs ys
e = False

member :: E a ⇒ a → [a] → Bool
member [] = False
member a (x : xs) = e a x ∨ member a xs

duplicates :: E a ⇒ [a] → Bool
duplicates [] = False
duplicates (x : xs) =

member x xs ∨ duplicates xs

is = [[], [1], [2], [1, 2], [2, 1]] :: [[Int]]

main = (duplicates is,
duplicates (concat is))

data E a = E
{e :: a → a → Bool}

eInt :: E Int
eInt = E {e = (= =)}
eList :: E a → E [a]
eList ea = E {e = e′} where

e′ [] [] = True
e′ (x : xs) (y : ys) = e ea x y ∧ e (eList ea) xs ys
e′ = False

member :: E a → a → [a] → Bool
member ea [] = False
member ea a (x : xs) = e ea a x ∨ member ea a xs

duplicates :: E a → [a] → Bool
duplicates ea [] = False
duplicates ea (x : xs) =

member ea x xs ∨ duplicates ea xs

is = [[], [1], [2], [1, 2], [2, 1]] :: [[Int]]

main = (duplicates (eList eInt) is,
duplicates eInt (concat is))

[Faculty of Science
Information and Computing Sciences]

11-47

Example: evidence translation

class E a where
e :: a → a → Bool

instance E Int where
e = (= =)

instance E a ⇒ E [a] where
e [] [] = True
e (x : xs) (y : ys) = e x y ∧ e xs ys
e = False

member :: E a ⇒ a → [a] → Bool
member [] = False
member a (x : xs) = e a x ∨ member a xs

duplicates :: E a ⇒ [a] → Bool
duplicates [] = False
duplicates (x : xs) =

member x xs ∨ duplicates xs

is = [[], [1], [2], [1, 2], [2, 1]] :: [[Int]]

main = (duplicates is,
duplicates (concat is))

data E a = E
{e :: a → a → Bool}

eInt :: E Int
eInt = E {e = (= =)}
eList :: E a → E [a]
eList ea = E {e = e′} where

e′ [] [] = True
e′ (x : xs) (y : ys) = e ea x y ∧ e (eList ea) xs ys
e′ = False

member :: E a → a → [a] → Bool
member ea [] = False
member ea a (x : xs) = e ea a x ∨ member ea a xs

duplicates :: E a → [a] → Bool
duplicates ea [] = False
duplicates ea (x : xs) =

member ea x xs ∨ duplicates ea xs

is = [[], [1], [2], [1, 2], [2, 1]] :: [[Int]]

main = (duplicates (eList eInt) is,
duplicates eInt (concat is))

[Faculty of Science
Information and Computing Sciences]

11-48

Dictionaries and superclasses

Dictionaries contain dictionaries of their superclasses:

class Eq a⇒ Ord a

data Ord a = Ord
{eq :: Eq a,

compare :: a→ a→ Ordering,
. . .}

[Faculty of Science
Information and Computing Sciences]

11-49

Dictionaries and polymorphic methods

class Functor f where
fmap :: (a→ b)→ f a→ f b

data Functor f = Functor
{fmap :: ∀a b.(a→ b)→ f a→ f b}

The field fmap is a polymorphic field. Note that this is
equivalent to the non-record

data Functor f = Functor (∀a b.(a→ b)→ f a→ f b)

and different from the existential type

data Functor′ f = ∀a b.Functor′ ((a→ b)→ f a→ f b)

[Faculty of Science
Information and Computing Sciences]

11-50

Polymorphic fields vs. existential types

I An existential type hides a specific type.

I A polymorphic field stores a polymorphic function.

data Functor f = Functor (∀a b.(a→ b)→ f a→ f b)

data Functor′ f = ∀a b.Functor′ ((a→ b)→ f a→ f b)

Functor :: (∀a b.(a→ b)→ f a→ f b)→ Functor f
Functor′ :: ∀a b.((a→ b)→ f a→ f b)→ Functor f

The constructor Functor takes a polymorphic function as an
argument. The type of Functor is a so-called rank-2
polymorphic type. More in the next lecture.

[Faculty of Science
Information and Computing Sciences]

11-51

Type-directed translation

Evidence translation is a byproduct of type inference – type
rules can be augmented with translated terms. New form of
rules:

P | Γ ` e e′ :: τ

P Q e

Modified rules:

P | Γ ` e e′ :: π ⇒ ρ P π eπ
P | Γ ` e e′ eπ :: ρ

(context-reduce)

P, eπ :: π | Γ ` e e′ :: ρ

P | Γ ` e λeπ → e′ :: π ⇒ ρ
(context-intro)

[Faculty of Science
Information and Computing Sciences]

11-52

Monomorphism restriction revisited

Question

Why the monomorphism restriction?

Answer

To prevent unexpected inefficiency or loss of sharing.

[Faculty of Science
Information and Computing Sciences]

11-52

Monomorphism restriction revisited

Question

Why the monomorphism restriction?

Answer

To prevent unexpected inefficiency or loss of sharing.

[Faculty of Science
Information and Computing Sciences]

11-53

11.6 Defaulting

[Faculty of Science
Information and Computing Sciences]

11-54

Defaulting of numeric classes

Main〉 : t 42
42 :: (Num t)⇒ t

Defining

x = 42

does not produce an error despite the monomorphism
restriction.

Haskell performs defaulting of Num constraints and chooses
Integer in this case.

[Faculty of Science
Information and Computing Sciences]

11-54

Defaulting of numeric classes

Main〉 : t 42
42 :: (Num t)⇒ t

Defining

x = 42

does not produce an error despite the monomorphism
restriction.

Haskell performs defaulting of Num constraints and chooses
Integer in this case.

[Faculty of Science
Information and Computing Sciences]

11-55

GHCi defaulting

GHCi (not Haskell in general) also performs defaulting of other
constraints than Num, to ():

Main〉 let maxList = maximum
Main〉 : t maxList
maxList :: [()]→ ()

I Prevents annoying errors (show []).

I Can lead to subtle mistakes (QuickCheck properties).

[Faculty of Science
Information and Computing Sciences]

11-56

Ambiguity and coherence

Question

What is the type of the following expression?

show ◦ read

[Faculty of Science
Information and Computing Sciences]

11-57

Ambiguity and coherence (contd.)

I Such an expression is called ambiguous because it has a
constraint mentioning a variable that does not occur in the
rest of the type:

(Show a,Read a)⇒ String→ String

I Choosing different types can lead to different behaviour.

I Ambiguous types are disallowed by Haskell if they cannot
be defaulted.

I Ambiguity is a form of incoherence: if allowed, multiple
translations of a program with possibly different behaviour
are possible.

[Faculty of Science
Information and Computing Sciences]

11-58

Specialization

A specialization is a partially evaluated copy of an overloaded
function – trades code size for more efficiency. GHC provides a
pragma for this purpose:

between :: (Ord a)⇒ a→ a→ a→ Bool
{-# SPECIALISE between :: Char→ Char→ Char→ Bool #-}

causes

betweenChar :: Char→ Char→ Char→ Bool
betweenChar = between ordChar

to be generated and used whenever between ordChar would
normally be used.

Using a RULES pragma, one can even provide different
implementations for specific types. (Why useful?)

[Faculty of Science
Information and Computing Sciences]

11-59

11.7 Extensions

[Faculty of Science
Information and Computing Sciences]

11-60

Extensions to the class system

I Nearly all Haskell-98 restrictions to the class system can be
lifted.

I The price: worse properties of the program, less
predictability, worse error messages, partially unclear
semantics and interactions, possible compiler bugs.

I Nevertheless, some extensions are useful, and it is
important to explore the design space in order to find an
optimum.

[Faculty of Science
Information and Computing Sciences]

11-61

Flexible instances and contexts

I Lifts the restrictions on the shape of instances and
contexts.

[Faculty of Science
Information and Computing Sciences]

11-62

Overlapping instances

I Allows overlapping instance definitions such as

instance Foo a⇒ Foo [a]
instance Foo [Int]

I Two possibilities to construct Foo [Int] if

instance Foo Int

is also given. Both possibilities might lead to different
behaviour (incoherence).

I The most specific instance is chosen.

[Faculty of Science
Information and Computing Sciences]

11-63

Overlapping instances and context reduction

What about

foo :: (Foo a)⇒ a→ a
test x xs = foo (x : xs)

?

Reducing the context of test from Foo [a] to Foo a prevents
Foo [Int] from being selected! Delay?

[Faculty of Science
Information and Computing Sciences]

11-63

Overlapping instances and context reduction

What about

foo :: (Foo a)⇒ a→ a
test x xs = foo (x : xs)

?

Reducing the context of test from Foo [a] to Foo a prevents
Foo [Int] from being selected! Delay?

[Faculty of Science
Information and Computing Sciences]

11-64

Incoherent instances

If you let GHC infer a type for test in

foo :: (Foo a)⇒ a→ a
test x xs = foo (x : xs)

you get (Foo [a])⇒ a→ [a]→ [a], i.e., GHC tries to delay the
decision.

[Faculty of Science
Information and Computing Sciences]

11-65

Incoherent instances (contd.)

If you specify

test :: Foo a⇒ a→ [a]→ [a]

you get an error unless you tell GHC to allow incoherent
instances.

Advice

With incoherent instances, it is very hard to predict how the
instances are built. Allow incoherent instances only if you make
sure that different ways to construct an instance have the same
behaviour!

[Faculty of Science
Information and Computing Sciences]

11-66

Undecidable instances

With undecidable instances, it is no longer required that
context “reduction” actually reduces the context. The type
checker may loop:

instance Foo [[a]]⇒ Foo [a]

	Types and type classes
	Prerequisites
	Type inference
	Introduction to type classes
	Qualified types
	Evidence translation
	Defaulting
	Extensions

