
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

December 17, 2012

[Faculty of Science
Information and Computing Sciences]

12-1

12. Exceptions, Networking, Concurrency

[Faculty of Science
Information and Computing Sciences]

12-2

12.1 Handle-based IO

[Faculty of Science
Information and Computing Sciences]

12-3

Handles

Most basic IO functions such as getLine, putStr have a cousin
that works on an arbitrary handle.

System.IO

data Handle -- abstract

-- opening files
openFile :: FilePath→ IOMode→ IO Handle
openBinaryFile :: FilePath→ IOMode→ IO Handle

[Faculty of Science
Information and Computing Sciences]

12-4

Using handles

System.IO

-- operating on handles
hClose :: Handle→ IO ()
hIsTerminalDevice :: Handle→ IO Bool
hSetBuffering :: Handle→ BufferMode→ IO ()
hFlush :: Handle→ IO ()

-- input/output on handles
hPutStr :: Handle→ String→ IO ()
hGetLine :: Handle→ IO String
hGetContents :: Handle→ IO String

-- standard handles
stdout :: Handle
stdin :: Handle
stderr :: Handle

[Faculty of Science
Information and Computing Sciences]

12-5

Terminal IO

Most terminal IO functions are special cases of the handle IO
functions:

putStr :: String→ IO ()
putStr s = hPutStr stdout s

getLine :: IO String
getLine = hGetLine stdin

getContents :: IO String
getContents = hGetContents stdin

[Faculty of Science
Information and Computing Sciences]

12-6

Buffering

Buffering is often a source of unexpected behaviour.

data BufferMode = NoBuffering
| LineBuffering
| BlockBuffering (Maybe Int)

I No buffering: everything is directly read or written.

I Line-buffering: everything up to the next newline is
buffered and then read or written at once.

I Block-buffering: blocks of a certain size are buffered and
then read or written at once.

Terminals should typically be line-buffered, files are typically
block-buffered. The stderr output is typically not buffered.

[Faculty of Science
Information and Computing Sciences]

12-7

Lazy IO

Another pitfall is the use of lazy IO:

hGetContents :: Handle→ IO String

getContents :: IO String
getContents = hGetContents stdin

readFile :: FilePath→ IO String
readFile name = openFile name ReadMode>>= hGetContents

The function hGetContents internally makes use of

System.IO.Unsafe.unsafeInterleaveIO :: IO a→ IO a

This function delays an IO computation of type IO a and
returns it as a thunk of type a.

[Faculty of Science
Information and Computing Sciences]

12-8

The dangers of lazy IO

I The whole file is returned as a string, but it is only read
when the string is evaluated.

I Lazy IO is only safe if the underlying files are essentially
static and do not change.

I If the file changes in the meantime, unexpected effects can
occur.

I The use of lazy IO in Haskell is often considered a mistake.

[Faculty of Science
Information and Computing Sciences]

12-9

12.2 (Extensible) Exceptions

[Faculty of Science
Information and Computing Sciences]

12-10

Exceptions

I IO operations are a common source of exceptions in
Haskell.

I GHC has a very general exception handling mechanism.

I Exceptions have been changed for GHC-6.10.1 so that the
exception mechanism is more extensible.

[Faculty of Science
Information and Computing Sciences]

12-11

The Exception class

class (Typeable e,Show e)⇒ Exception e where
toException :: e→ SomeException
fromException :: SomeException→ Maybe e

-- default implementations
toException = SomeException
fromException (SomeException e) = cast e

data SomeException where
SomeException :: ∀e.(Exception e)⇒ e→ SomeException

cast :: (Typeable a,Typeable b)⇒ a→ Maybe b

Note that SomeException is an existential type defined using
GADT syntax.

[Faculty of Science
Information and Computing Sciences]

12-12

Excursion: GADT syntax

Existential typescome for free using GADT syntax, as in:

data Stream :: ∗ where
Stream :: (s→ Step s)→ s→ Int→ Stream

data Step :: ∗ → ∗ where
Done :: Step s
Yield :: Word8→ s→ Step s
Skip :: s→ Step s

[Faculty of Science
Information and Computing Sciences]

12-13

Excursion: Typeable – dynamic typing in Haskell

class Typeable a where
typeOf :: a→ TypeRep

cast :: (Typeable a,Typeable b)⇒ a→ Maybe b
cast x = r

where
r = if typeOf x = = typeOf (fromJust r)

then Just (unsafeCoerce x)
else Nothing

unsafeCoerce :: a→ b

I The type TypeRep holds run-time type information.

I The function cast is safe if no two types get the same
TypeRep and the equality function on TypeRep is sane.

I Unfortunately, this cannot yet be enforced in Haskell’s class
system.

[Faculty of Science
Information and Computing Sciences]

12-14

Excursion: Typeable – deriving instances

I Defining good instances of Typeable is critical for the
safety of a program.

I Therefore, Typeable instances should best not be defined
by hand.

I In GHC, you can derive instances of Typeable when
enabling the DeriveDataTypeable language extension.

I The class Typeable shows how we can integrate dynamic
typing into a statically type language (available via
Data.Dynamic):

data Dynamic -- abstract, contains a TypeRep

toDyn :: (Typeable a)⇒ a→ Dynamic
fromDyn :: (Typeable a)⇒ Dynamic→ Maybe a -- uses cast

[Faculty of Science
Information and Computing Sciences]

12-14

Excursion: Typeable – deriving instances

I Defining good instances of Typeable is critical for the
safety of a program.

I Therefore, Typeable instances should best not be defined
by hand.

I In GHC, you can derive instances of Typeable when
enabling the DeriveDataTypeable language extension.

I The class Typeable shows how we can integrate dynamic
typing into a statically type language (available via
Data.Dynamic):

data Dynamic -- abstract, contains a TypeRep

toDyn :: (Typeable a)⇒ a→ Dynamic
fromDyn :: (Typeable a)⇒ Dynamic→ Maybe a -- uses cast

[Faculty of Science
Information and Computing Sciences]

12-14

Excursion: Typeable – deriving instances

I Defining good instances of Typeable is critical for the
safety of a program.

I Therefore, Typeable instances should best not be defined
by hand.

I In GHC, you can derive instances of Typeable when
enabling the DeriveDataTypeable language extension.

I The class Typeable shows how we can integrate dynamic
typing into a statically type language (available via
Data.Dynamic):

data Dynamic -- abstract, contains a TypeRep

toDyn :: (Typeable a)⇒ a→ Dynamic
fromDyn :: (Typeable a)⇒ Dynamic→ Maybe a -- uses cast

[Faculty of Science
Information and Computing Sciences]

12-15

Working with exceptions

Control.Exception.Extensible

-- throwing exceptions
throw :: (Exception e)⇒ e→ a
throwIO :: (Exception e)⇒ e→ IO a

-- handling exceptions
try :: (Exception e)⇒ IO a→ IO (Either e a)
catch :: (Exception e)⇒ IO a→ (e→ IO a)→ IO a
handle :: (Exception e)⇒ (e→ IO a)→ IO a→ IO a
. . .

While exceptions can be thrown everywhere, they can only be
caught in an IO context.

[Faculty of Science
Information and Computing Sciences]

12-16

Implementation of catch

I Given a particular thrown exception of type e, use
toException to turn it into SomeException.

I Next, use fromException to see if we we can turn it into
type e′ of the handler.

I If the type of the handler matches, then call it.

I Otherwise, re-throw the exception.

[Faculty of Science
Information and Computing Sciences]

12-17

Example: catching an exception

import Prelude hiding (catch)
import Control.Monad
import Control.Exception.Base
import Control.Exception.Extensible

safeRead :: FilePath→ IO (Maybe String)
safeRead name =

catch (liftM Just (readFile name))
(λ(e :: IOException)→

putStrLn "Error">> return Nothing)

I Omitting the type annotation IOException triggers a type
error – why?

I The type annotation requires enabling a language
extension: PatternSignatures for GHC-6.8, and
ScopedTypeVariables for GHC-6.10.

[Faculty of Science
Information and Computing Sciences]

12-18

12.3 Networking

[Faculty of Science
Information and Computing Sciences]

12-19

Sockets

I Sockets allow processes to communicate via the network.

I A server listens on a particular network port for incoming
connections.

I A client can connect to a host on a particular port.

I Once a connection has been established, two-way
communication via the socket becomes possible.

I In Haskell, a high-level socket library is offered by the
Network module.

I A much more detailed network socket library is available
via the Network.Socket module.

[Faculty of Science
Information and Computing Sciences]

12-20

Communicating via sockets

Network

-- initialization
withSocketsDo :: IO a→ IO a

-- server-side
listenOn :: PortID→ IO Socket
accept :: Socket→ IO (Handle,HostName,PortNumber)
sClose :: Socket→ IO ()

-- client-side
connectTo :: HostName→ PortID→ IO Handle

[Faculty of Science
Information and Computing Sciences]

12-21

More on sockets

I Use withSocketsDo as an initializer:

main = withSocketsDo $ realMain

I The function listenOn opens a socket. It does not block.

I Both connectTo on the client side and accept on the server
side block until a connection has been established.

I A socket gives both the client and the server a handle to
communicate over.

I Both server and client can terminate an individual
connection by closing the handle.

I The server can also close the entire socket.

I It is usually a good idea to let the server fork a new thread
upon accepting a connection and continue to listen for
more connections on the original thread.

[Faculty of Science
Information and Computing Sciences]

12-22

12.4 Threads

[Faculty of Science
Information and Computing Sciences]

12-23

Working with threads

Control.Concurrent

-- creating a thread
forkIO :: IO ()→ IO ThreadId

-- managing current thread
threadDelay :: Int→ IO ()
yield :: IO ()
myThreadId :: IO ThreadId

-- managing other threads
killThread :: ThreadId→ IO ()
throwTo :: (Exception e)⇒ ThreadId→ e→ IO ()

[Faculty of Science
Information and Computing Sciences]

12-24

Forking a new thread

forkIO :: IO ()→ IO ThreadId

I Note that IO () is also the type of main. We can thus run
a whole program in its own thread.

I Any thread can create new threads.

I Haskell threads are very lightweight. They are created and
scheduled by the Haskell runtime system and do not
require creation of an OS thread.

I If the main program ends, all its threads are stopped too.

I You can explicitly control other threads by killing them or
sending them exceptions via their thread ids.

[Faculty of Science
Information and Computing Sciences]

12-25

Threads and shared data

How to communicate between threads?

I Using IORefs to share data between threads is unsafe.

I Generally, when working with threads, you have to watch
out that they don’t interfere with each other (while writing
files, for example).

[Faculty of Science
Information and Computing Sciences]

12-26

Unsafe shared data demonstration

test n = do
x← newIORef 0
mapM (forkIO ◦ writer x) [1 . . n]
writer x 0

writer x m = do
writeIORef x m
n← readIORef x
when (m 6≡ n) (putStrLn (show m))
writer x m

[Faculty of Science
Information and Computing Sciences]

12-27

MVars

Control.Concurrent.MVar

data MVar -- abstract
newMVar :: a→ IO (MVar a)
newEmptyMVar :: IO (MVar a)
readMVar :: MVar a→ IO a
putMVar :: MVar a→ a→ IO ()
takeMVar :: MVar a→ IO a

I Unlike an IORef, an MVar can be empty.

I Using putMVar works only if the MVar is empty before. If
the MVar is not yet empty, the call blocks.

I Using takeMVar leaves the MVar empty in the process. If
the MVar is empty, the call blocks.

I Using MVars, we can implement other concurrency
abstractions such as semaphores or channels.

[Faculty of Science
Information and Computing Sciences]

12-28

Using MVars to implement semaphores

I A semaphore controls that no more than a particular
number of clients access a particular resource.

newtype QSem = QSem (MVar (Int, [MVar ()]))

I The first component of the pair indicates how many clients
can still access the resource; the list implements a queue of
waiting threads.

I Note the nested use of MVars.

[Faculty of Science
Information and Computing Sciences]

12-29

Creating a new semaphore

newQSem :: Int→ IO QSem
newQSem initial =

do
sem← newMVar (initial, [])
return (QSem sem)

[Faculty of Science
Information and Computing Sciences]

12-30

Waiting for a semaphore

waitQSem :: QSem→ IO ()
waitQSem (QSem sem) =

do
(avail, blocked)← takeMVar sem
if avail> 0 then

putMVar sem (avail− 1, [])
else

do
block← newEmptyMVar
putMVar sem (0, blocked ++ [block])
takeMVar block

The last call waits for the empty MVar to be filled.

[Faculty of Science
Information and Computing Sciences]

12-31

Signalling a semaphore

signalQSem :: QSem→ IO ()
signalQSem (QSem sem) =

do
(avail, blocked)← takeMVar sem
case blocked of

[] → putMVar sem (avail + 1, [])

(block : blocked′)→ do
putMVar sem (0, blocked′)
putMVar block ()

The last call signals the blocked thread that it can continue.

[Faculty of Science
Information and Computing Sciences]

12-32

Channels

FIFO channels to communicate data safely between threads.
Channels are a very useful and much more high-level
abstraction than MVars or semaphores.

Control.Concurrent.Chan

data Chan -- abstract

newChan :: IO (Chan a)
dupChan :: Chan a→ IO (Chan a)
unGetChan :: Chan a→ a→ IO ()
readChan :: Chan a→ IO a
writeChan :: Chan a→ a→ IO ()

[Faculty of Science
Information and Computing Sciences]

12-33

12.5 Software Transactional Memory

[Faculty of Science
Information and Computing Sciences]

12-34

Software Transactional Memory (STM)

I An alternative implementation of concurrency abstractions
in GHC.

I Use ideas from database systems.

I Threads can start transactions.

I Transactions are guaranteed to be run atomically.

I The implementation keeps a log of all the memory accesses
during a transaction, but does not actually perform any
writes yet.

I At the end of a transaction, the log is checked against the
memory. If the memory is still consistent, the transaction is
committed. Otherwise, it is restarted.

[Faculty of Science
Information and Computing Sciences]

12-35

STM is lock-free

I STM does not use locking.

I Deadlocks cannot occur.

I However, large transactions can take a huge number of
retries, so STM works best if transactions are kept as small
as possible.

[Faculty of Science
Information and Computing Sciences]

12-36

STM and Haskell

I Generally, it is difficult to log all side effects during a
transaction.

I In Haskell, we can easily use the type system to keep track
of such effects.

I The Haskell STM implementation introduces an STM
monad, which is (again) a restricted form of the IO monad.

I Only TVars can be accessed within the STM monad, which
are a logged version of IORefs.

I It is thus easy to guarantee the safety of STM in Haskell.

[Faculty of Science
Information and Computing Sciences]

12-37

STM interface

STM in Haskell is provided by the stm package.

Control.Concurrent.STM

data STM -- abstract
instance Monad STM

-- running a transaction
atomically :: STM a→ IO a

-- TVars
newTVar :: a→ STM (TVar a)
newTVarIO :: a→ IO (TVar a)
readTVar :: TVar a→ STM a
writeTVar :: TVar a→ a→ STM ()

[Faculty of Science
Information and Computing Sciences]

12-38

Thread example using STM

test n = do
x← newTVarIO 0
mapM (forkIO ◦ writer x) [1 . . n]
writer x 0

writer x m = do
n← atomically $ do

writeTVar x m
readTVar x

when (m 6≡ n) $ putStrLn $ show m
writer x m

[Faculty of Science
Information and Computing Sciences]

12-39

Implementing MVar using STM

type MVar a = TVar (Maybe a)

newEmptyMVar :: STM (MVar a)
newEmptyMVar = newTVar Nothing

takeMVar :: MVar a→ STM a
takeMVar m = do

x← readTVar m
case x of

Nothing→ retry
Just v → do

writeTVar m Nothing
return v

The function putMVar is similar.

[Faculty of Science
Information and Computing Sciences]

12-39

Implementing MVar using STM

type MVar a = TVar (Maybe a)

newEmptyMVar :: STM (MVar a)
newEmptyMVar = newTVar Nothing

takeMVar :: MVar a→ STM a
takeMVar m = do

x← readTVar m
case x of

Nothing→ retry
Just v → do

writeTVar m Nothing
return v

The function putMVar is similar.

[Faculty of Science
Information and Computing Sciences]

12-40

More STM combinators

Control.Concurrent.STM

retry :: STM a

Request to retry the current transaction. Will usually block the
thread until one of the TVars read from is updated by another
thread.

orElse :: STM a→ STM a→ STM a

If the first action retries, the second action is tried next.

In addition, STM supports checking for invariants, catching
exceptions in the STM monad, and it has an implementation of
MVars and Chans that can be used in the STM monad –
TMVars and TChans.

[Faculty of Science
Information and Computing Sciences]

12-41

Interesting papers

I “Tackling the Awkward Squad” by Simon Peyton-Jones –
on IO, concurrency, exceptions and foreign function calls

I “An Extensible Dynamically-Typed Hierarchy of
Exceptions” by Simon Marlow – the paper where extensible
exceptions for Haskell were introduced

I “Haskell Session Types with (Almost) No Class – session
types give you advanced typed communication between
different threads.

I “Composable memory transactions” by Tim Harris, Simon
Marlow, Simon Peyton Jones, and Maurice Herlihy – the
paper where STM for Haskell was introduced

